Large Spillover Networks of Nonstationary Systems

Shi Chen* Melanie Schienle

Abstract

This paper proposes a vector error correction framework for constructing large
consistent spillover networks of nonstationary systems grounded in the network the-
ory of Diebold and Yilmaz (2014). We aim to provide a tailored methodology for
the large non-stationary (macro)economic and financial system application settings
avoiding technical and often hard to verify assumptions for general statistical high-
dimensional approaches where the dimension can also increase with sample size. To
achieve this, we propose an elementwise Lasso-type technique for consistent and nu-
merically efficient model selection of VECM, and relate the resulting forecast error
variance decomposition to the network topology representation. We also derive the
corresponding asymptotic results for model selection and network estimation under
standard assumptions. Moreover, we develop a refinement strategy for efficient esti-
mation and show implications and modifications for general dependent innovations.
In a comprehensive simulation study, we show convincing finite sample performance
of our technique in all cases of moderate and low dimensions. In an application to
a system of FX rates, the proposed method leads to novel insights on the connect-

edness and spillover effects in the FX market among the OECD countries.
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1 Introduction

In recent years, the analysis of networks over time has become central for understanding
and estimating complex systems in macroeconomics and finance. Generally, links between
the components of the system might act as the carriers of systemic risk transmission
and thus identifying the connectedness structure has become research focus in order to
uncover the spillover effects. For example, Billio et al| (2012)) use a Granger causal
network to measure systemic risk across and within different parts of the financial sector;
in the framework of vector autoregressive (VAR) model, Diebold and Yilmaz| (2009, 2012)
and later Diebold and Yilmaz (2014) propose a volatility spillover network using the

generalized variance decomposition of [Pesaran and Shin| (1998)).

However many economic and financial systems are dynamic, multi-dimensional and often
contain a large number of non-stationary potentially cointegrated components, the stan-
dard VAR setting does not consider a potential cointegration structure. To handle such
multivariate time-series, we use the VECM as introduced in Engle and Granger (1987)).
While already for settings greater than dimension two, standard econometric techniques
(Johansen| |19881991; Xiao and Phillips, (1999 [Hubrich et al., 2001; Boswijk et al. |2015)
often fail to provide accurate, testable and computationally tractable estimates, there has
emerged a recent literature on high-dimensional estimation (Liang and Schienle; [2019;
Zhang et al., |2018) in this context. The generality of the latter approaches, however,
comes with a set of technical assumptions which are hard to verify in practice and lacking
asymptotic distributional results which are key for inference. Thus in particular in view
of many macroeconomic applications, there is a need for easy to use practically feasible
techniques with available asymptotic distributions for cases where cross-sectional dimen-
sions are moderately large, i.e. large but not expanding with sample size. We show that
for such settings, not only assumptions simplify and asymptotic confidence regions exist,
but also novel tailored procedures can be designed. Such techniques would not be feasible
in the fully high-dimensional setup, but allow for a more refined identification of non-zero

elements in the moderate dimensional model.

In our setting, the above VECM estimation results can be associated with several net-
work structures such as Dahlhaus (2000), Eichler| (2007)), Eichler| (2012) and |Diebold and
Yilmaz (2014). Here we focus on one particular structure, the DY network, following
the work of |Diebold and Yilmaz (2014). To estimate the VECM, we propose an adap-
tive shrinkage method that simultaneously allows for model choice and direct estimation.
Model determination is treated as a joint selection problem of cointegrating rank and VAR
lags. Even for moderate cross-section dimensions, the amount of possible combinations
of cointegration relations and VAR lags becomes quite large. In this case, we exploit that

from a large fixed number of potential cointegration relations, in practice, only a few of



them actually occur in the system. In the same way in practice, a small number of VAR
lags are considered sufficient for a parsimonious model specification, i.e. within a maxi-
mum lag range only a small number of effective lags are relevant, which are not required
to be consecutive. In this sense, the problem is assumed to be “sparse”. In contrast
to a fully high-dimensional set-up, this “sparsity” is not necessary for consistent model
identification but only increases the numerical efficiency and thus the feasibility of our
procedure. We show consistency of the variable selection by the proposed Lasso-VECM
estimator and derive its asymptotic properties for inference. For more efficient estimation
in particular in cases with a small sample for a large cross-section dimension, we provide
a refined estimation strategy and derive its statistical properties. Our presented methods
here are tailored to the moderate fixed-dimensional case where elementwise adaptive lasso
penalization is still numerically feasible. For such cases which are prevalent in macroeco-
nomic applications, the techniques can identify not only the cointegration rank and lag
consistently but also non-zero elements in the structure of the cointegration space. A
simulation study shows the effectiveness of the proposed techniques in finite samples. In
addition, we conduct an empirical study for quarterly floating exchange (FX) data for
a system of 17 OECD countries. There is a sizable literature suggesting that, especially
at short horizons, a random walk forecast of the exchange rate generally outperforms
alternative models (such as Meese and Rogofl (1983))). This indicates that the FX series
contain nonstationary dynamics and VECM is required to handle such large system. Our

FX application illustrates that such refinements can make a difference in practice.

Our theoretical work builds on the vast literature of VECM as summarized e.g. in Lutke-
pohl (2007) as well as on results for adaptive Lasso techniques as in Zou| (2006 and [Yuan
and Lin| (2006) and Medeiros and Mendes| (2016)). More recently, our technique also relates
to the work of [Kock and Callot| (2015)), Barigozzi and Brownlees (2019) which use Lasso
for model determination in a stationary high-dimensional VAR context but cannot handle
nonstationary components. For non-stationary time series, there also exists some empir-
ical and simulation work employing penalizing algorithms for VECM without proofs, see
e.g. Signoretto and Suykens (2012), |Wilms and Croux (2016). Some theoretical results
for a nonlinear penalization criterion in fixed-dimensional VECM have been derived by
Liao and Phillips (2015). However their theoretical results hold only for real eigenvalues
but complex eigenvalues will occur in the numerical and empirical examples. Our pro-
posed linear Lasso approach, however, does not require a symmetric cointegration matrix
and thus provides a feasible solution for general moderate to high dimensional settings.
These non-symmetric cases are the rule rather than the exception where eigenvalue based
methods have not only feasibility problems but fail to get any real-valued solution at all.
In contrast to the general but only group-wise rough high-dimensional shrinkage in [Liang

and Schienle (2019)), the presented moderate dimensional technique can identify non-zero



elements in the cointegration space and avoid technical and hard to verify eigenvalue type
assumptions. For applications, this can be key to augmented forecasting results as illus-
trated in the studied FX case. The paper is also related to the high-dimensional factor
model without explicit VECM structure in |Lam and Yao| (2012)), Zhang et al.| (2018) and
the high-dimensional distributional results by random matrix theory in Onatski and Wang
(2018). Compared to Lam and Yao| (2012), |Zhang et al.| (2018]), we incorporate standard
factor model with VECM structure and apply Lasso to determine the rank. In contrast
to (Onatski and Wang (2018]), our focus in on consistent model selection rather than the

distribution of eigenvalues.

The paper is organized as follows. Section [2| presents the model setup. Section |3 provides
the determination of underlying dynamics. We first show the lasso-type technique for
consistent and numerically efficient model selection of VECM. Second, we give the main
asymptotic results on model selection consistency and derives the asymptotic distribution
for estimates. We also show strategies for refined estimation and derive results when the
error terms are weakly dependent. Section [5| presents comprehensive simulation results,

as well as the empirical findings for FX rates. All proofs are contained in the Appendix.

2 Model setup

We consider a VECM setup with {Y;} is a nonstationary m-dimensional I(1) process,

AY; =Y, — Y, is stationary. Suppose general structure of the true process {Y;} follows

AY, = 1Y, 1+ B1AY, 1 +---+ BpAY;, p+uy (1)
fort=1,...,T. Il is an m x m matrix of rank r with 0 < r < m, marking the number
of cointegration relations in the system. II can be further decomposed as II = af’,

where § marks the r long-run cointegrating relations and « is a loading matrix of rank 7.
Without loss of generality, we set § as orthogonal, i.e. '8 = I,. Then the decomposition
IT = af’ is unique up to an orthonormal H, the cointegration relations (3 are identified
up to rotation. We set the maximum possible lag length P as sufficiently large but fixed
independent of 7', such that it is an upper bound for the true lag p, i.e. p < P. In
this case, Byy1,...,Bp are all zero matrices. Additionally we assume that m/r = ¢
and P/p = ¢y with ¢1,¢0 > 1, i.e. ¢, ¢y are substantially exceeding 1, meaning that the
number of cointegration relations is small relative to m as well as the effective lag length
p is much smaller than P. Note that in contrast to a fully high-dimensional set-up, this
“sparsity” type assumption is not necessary for consistent model identification but only

increases the numerical efficiency and thus the feasibility of our procedure.



For the error term u;, we first employ a standard white noise assumption to focus on the
key aspects of our Lasso selection procedure while keeping technical results simple. Later
in Section |3.3.2] we show how this ¢.7.d assumption can be relaxed allowing linear forms
of weak dependence. Though, we show that such a general setting requires changes in the
Lasso procedure and leads to different statistical properties of the modified technique los-
ing the elementwise advantages. Generally, the normality in the following Assumption [2.1
is not crucial and can be further relaxed to only moment assumptions at the price of more

involved technical arguments which, however, are not specific to our VECM set-up.

Assumption 2.1. The error term u; is i.i.d. N'(0,%,,) where ¥, is a symmetric, positive

definite m x m matriz.

Following the DY-network, we rely on the variation decomposition tool to evaluate the
effect of a shock in one system variable. The network literature generally characterizes
systemic risk spillover effects as connectedness obtained from a generalized forecast error
variance decomposition (FEVD) of an underlying VAR system. As cointegrated variables
can be generated by a VAR process, rearranging terms in then gives the following
VAR(P + 1) process in levels

Vi = (In+Bi+ad)Yia+ (Bo—B)Yia+... (2)
+(Bp — Bp_1)Yi—p — BpYi_p_1 +

and we write model in companion form as

Vi = AVioi+w (3)

where V; = [Y/, Y/ ..., Y/ ] and w; = [u},0,...,0]" and

[m -+ Bl + Oéﬁ, B2 — Bl ce Bp — Bpfl —Bp
L, 0 0 0
A= . . . . o] (4)
0 0 I, 0

We also use the corresponding infinite moving average (MA) representation of the system

in the form

Vi=Y Auw_; or V=) Qu (5)
j=0 =0



where the jth MA coeflicient matrices ®; are the elements of the upper left-hand (m xm)
block of A7, with ®; = I,,. Using the framework proposed by Koop et al. (1996) and
Pesaran and Shin| (1998)), we specify the scaled generalized impulse response function
as IRF(j,h) = U;j%¢h2u€j which measures the effect of one standard error shock to
the jth equation at time ¢ on expected values of Y at time ¢ + h. o;; is the standard
deviation of the innovation term in j-th equation. e; is a selection vector with unity as
its i-th element and zeros elsewhere. Finally, the H-step ahead generalized forecast error
variance decomposition (GFEVD) 6,;(H) of elements ¢ and j is given by
oS (eé@hzuej)Z

0y (H) = L =0=0
o) o (0,2, e

(6)

The DY-network works with the following ;;(H) which are normalized by row sum for

easier interpretability

5 0i;(H)

0i(H) = <o (7)
! > e 03 (H)

Note that by construction (7)) we have » 7", @ij(H ) = 1. Accordingly, for each node i in

the network we work with the following quantities as in the DY-network literature. We

denote the pairwise directional connectedness C}

from 5 to i by
CH ., =0,(H) (8)

Moreover, aggregating all effects of component ¢ on other elements in the system, we

to,i
> e 0:;(H)/m, for i # j. Analogously, the total directional connectedness “from” CIL
(from 4 to others) is defined as CJL; = Cfl,, . =>", 0,;(H)/m, for j #i. Each column

refers to a variable that transmits the shock while the rows refer to respective variables

call the total directional connectedness “to” CH , (others to i) given by C/,

that receive the transmitted shock.

Moreover the net total directional connectedness C’r{{zt,i

nitude of the net spillover impacts of node ¢ in the system as

measures the direction and mag-

CH = Cﬁ‘om,i - CtH = Cflez - CZ]{_. (9)

net,i 0,1

and the total connectedness is given as

Ctar =Y 03 (H)/m, for i # j (10)

3,j=1



Estimates of all connectedness measures are obtained by using the respective plug-in

estimates in the GFEVD ().

3 Determination of underlying dynamics

3.1 Model determination

For the detection of network spillovers in large nonstationary systems from forecast error
variance decompositions, the determination and pre-estimation of the underlying dynam-
ics is key. Note while direct VAR estimation of cointegrated systems in is consistent, it
is well-known that pre-detection of the cointegration parameters in the VECM specifica-
tion yields finite sample advantages in forecasting (see e.g. |[Engle and Yoo| (1987)). For
this, we propose a sparse and thus numerically efficient Lasso-type VECM determination

technique which scales to general larger systems.

This section contains two parts: we first derive the Lasso objective function for cointe-
grating rank selection and estimation. Then we show the determination of the lag order
in a similar manner. Therefore the model specification amounts to both rank and lag
order determination. Throughout the paper, we use the following notation. For a € R™,
we write ||a||3 = @’ Aa for any non-singular positive definite matrix A. The corresponding
empirical norm is denoted by |[|a|[% = o’ Aa with a consistent pre-estimate A of A. |a|[?
denotes the squared /o norm. For matrices we use the Frobenius norm || - ||z and —4

denotes convergence in distribution.

In addition to the error term assumption [2.1 our analysis also relies on the decomposition
of a transformed Y; into a stationary and a non-stationary component. Its existence is
generally guaranteed by the Granger representation theorem (see Engle and Granger

(1987)) which requires the following assumptions,

Assumption 3.1. 1. The roots for |(1 — 2)I,, — 1z — > ¥

' Bi(1—2)2/| = 0 is either

|z| =1 or|z] > 1.
2. The number of roots lying on the unit circle is m — r.
3. The matriz o, (I, — > 5_, B;)B1 is nonsingular.
For estimation purposes, we rewrite the general VECM defined in in matrix notation
AY =1IY_ ;1 + BAX +U (11)
where AY = [AY;,...,AY7], Y 1 =[Yo,...,Yr 4], B=[By,...,Bp|, AX = [AXy,...,AXp 4]

7



with AX,_; = [AY;’_I,...,AYt’_P}/ and U = [ug,...,ur]. W.lo.g, Y, =0 for £ < 0.
Moreover, we denote I'y = [Y/ 8, AY/ |,...,AY/ p]’. Under Assumptions [2.1{ and it
holds by Lemma 1 in [Toda and Phillips| (1993)

[Ts

]
1
— Y Ty —, Br(s) (12)
VTS
where Br(s) is a Brownian motion with covariance given as

ZZ z EZ x

ZAmzl EAZ‘A.I

Denote the LS estimate for as [ﬁls, §ls], thus we obtain the consistent estimate of X,
as iu = (AY — ﬁle_l — EZSAX)(AY — ﬁlSY_l — élsAX)' (see e.g. Liitkepohl,
2007)).

1
T—mP+1

For model selection, we disentangle the joint lag-rank selection problem by employing the
Frisch-Waugh-idea in . Thus we obtain two independent criteria for lag and rank

choice which can be computed separately.

Rank determination For rank selection, the partial LS pre-estimate II can be obtained
from the corresponding partial model when removing the effect of AX in AY and Y_; by
regressing AY M on Y_; M with M = Iz — AX'(AXAX')"'AX. Thus it is

M= (AYMY11> (YlMY11>_1 (14)

and we show that II is a consistent estimate for II in Lemma in the Appendix.

The distribution of II relies on a @-transformation of Y;, which allows to disentangle
stationary and nonstationary components. It pre-multiplies all elements in from the

left with the specific matrix () defined as follows

Qzlﬁll Q7 = | a(fra) pulap) |

!
Q)

where o; and 3, denote the orthogonal complement of o and respectivelyH Note in

particular, that the I(1) assumption on Y; ensures that '« and o/, 8, are non-singular

For m > r, we denote by M, an orthogonal complement of the m x r matrix M with rk(M) = r.
Thus M, is any m x (m — r) matrix with rk(M,) =m —r and M'M, = 0.



component matrices in r X r and (m — r) X (m — r) respectively, thus appearing inverses
in Q! exist and all matrices are well-defined. Thus by @Q-transformation, we obtain a
new vector Z; = QY; = [(8'Yy), (¢/\ Y3)']" = [Z],, Z3,]" decomposed into a distinct sta-
tionary and nonstationary part. In particular by definition, the first component Z;; of

dimension r is stationary and the (m—r)-dimensional remainder Zs ; is a unit root process.

For determining the cointegration rank, we therefore aim at empirically disentangling the
stationary part Z;; from the non-stationary Z,, with the help of a Lasso-type proce-
dure. The basic principle of standard Lasso-type methods is to determine the number
of covariates in a linear model according to a penalized loss-function criterion. Likewise,
the determination of the cointegration rank in amounts to distinguishing the vectors
spanning the cointegration space from the basis of its orthogonal complement. This is
equivalent to separating the non-zero singular values of II from the zero ones, where the
number of non-zero singular values corresponds to the rank. Thus, the corresponding
loading matrix for 5'Y;_; is a while the remainder £’ Y;_; should get loading zero. We
say the underlying model has a sparse structure with respect to the rank if m/r = ¢;
and ¢; > 1. In this case, which we consider as practically prevalent in the moderate-
dimensional setting, only a very limited number r of cointegration relationships occur
while there are potentially many options m. The problem is more sparse, the larger
c1. In such cases, Lasso-type methods are tailored to detecting corresponding non-zero
loadings. To do so, we require a pre-estimate for 5, which we obtain from the following

QR-decomposition

I = RS (15)
— [ Ell El ( : :| _ 1,7"><m ]
,MmXTr 2,mx(m—r
Sé,(m—r)xm

where S is an orthonormal matrix, i.e. §'’S =1. Risan upper triangular matrix nd
further properties of this decomposition can be found in|Stewart| (1984). Column-pivoting
orders columns in R according to size putting zero-columns at the end Since II is a
matrix of full-rank and also a consistent estimate of II, the lower diagonal elements of
the last (m — r) columns of the matrix R are expected to be small, converging to zero
asymptotically at unit root speed T'. This is shown in the following Lemma where we

derive convergence results of the QR-decomposition components R and S from the least

2Such a_decomposition exists for any real squared matrix. It is unique for invertible I if all diagonal
entries of R are fixed to be positive. There are several numerical algorithms like Gram-Schmidt or the
Householder reflection which yield the numerical decomposition.

3Generally, column pivoting uses a permutation on R such that its final elements R(i,j) fulfill:
|R(1,1)| > |R(2,2)| > ... > |R(m,m)| and R(k,k)*> > >7_, | R(i,j)*



squares pre-estimate II'.

Lemma 3.1. Let Assumptions and hold for Il in . We denote by E’l the first
r and by }N%’2 the last m — r columns of R’ in the QR-decomposition of 1T defined in
(14). Let B be orthonormal and H be a (r x r)-orthonormal matriz.

18- Bl = 0,(7)
IRlle = Oy(z)

VTvee(R\H — ) —4 N(0, Sita0 ® Zu)

where —B’ MY B =) Eaas.a0 and i1 g 1S defined as in Lemma .

Thus from Lemma and [3.1], we can construct a corresponding adaptive Lasso proce-

dure. Hence components }A%(z, j) of R minimize the following criterion over all R(i,7) for

,j=1,....m
~ n rank
lvec(AY M) — (MY, S & Ln)vec(R)|[7 51+ Y ﬁlR(i, Il (16)
ij=1 {1 ]

where E(z, j) is from the QR-decomposition of I in the partial model . We choose
the cointegration rank as # = rank(R), where rank(R) is the number of non-zero columns
in R .

Lag order determination Likewise, for independent lag selection, the effect of the
nonstationary term Y_; in must be filtered out in AY and AX for unbiased estimation
in the partial model via regression of AYC on AXC with C = Ir — Y’ (Y_,Y')7'Y_,.
Thus we obtain B as minimizing the following objective function over all components
Bi(i,j) for k=1,...,Pandi,j=1,...,m

P m lag,k
)\2 7 ..
[[vec(AY C) — (CAX' @ I,,)vec(B ||I - Z Z B ;; By (i, 7)| (17)
k=1 14,j=1

for fixed tuning parameters /\iajgj’f ,7Y, where v here and in the rank selection might
differ. Moreover, the pre-estimate B in the adaptive Lasso weight can be taken from the
partial least squares estimate B = (AY CAX')(AXCAX')~! due to consistency. Though
in practice, especially with larger dimensions and lags, multicollinearity effects in AX
are quite likely to occur which cause the least squares estimate to become numerically

instable. Therefore we also consider a robust ridge type pre-estimate BE as B , which can

10



be obtained from

B = argmin |vec(AY C) — (CAX' ® I, )vec(B)|? (18)
tur Yy g [Br(is )

The following Theorem shows that this pre-estimate is consistent for appropriate

choices of tuning parameters.

Theorem 3.1. If the tuning parameter vr in the ridge regression satisfies \l’/—% —p 0,

then VT(B® — B) = O,(1) under Assumptions and .

The tuning parameter v is designed for ridge regression only, and therefore independent of
the rest of the paper. Such choice of tuning parameters has some important implications,
in small sample it will mitigate the multi-collinearity, and in large sample it will achieve

consistency.

As in the case of rank selection, a lag k£ should be included into the model, whenever
By, from the Lasso selection (17) is different from zero. Thus, in contrast to other model
selection criteria, a Lasso-type procedure allows for the inclusion of non-consecutive lags,
which we consider an additional advantage of the procedure. We obtain an estimate p of

the true lag length from as p = maxlgkgp{k@k # 0}.

Note that the residual transformation C' in the lag selection criterion is similar to
the second term of the PIC statistics introduced in |Chao and Phillips (1999). Moreover,
the lag selection procedure is independent of the unknown rank. Generally, the proposed
Ridge regression pre-step can potentially be further refined, e.g. by elastic net (see Zou
and Hastie| (2005])) or sure independence screening (see Fan and Lv| (2008)) for a sparse,
consistent and numerically stable pre-estimate. We expect effects on the overall selection
consistency results, however, to be only minor. Morevover, our separate two-step approach
for rank and lag length can help alleviate the numerical instability caused by multi-
collinearity in the lag selection step. The following subsection will show that a larger
than necessary lag P has no effect on model selection consistency which is the main focus
of the paper. Only obtained estimates of § suffer from a corresponding efficiency loss
which can be cured with a refinement (see Subsection below).

3.2 Model selection consistency

This section states the asymptotic properties of the adaptive Lasso-VECM procedure.
First, we show the result for the cointegrating rank selection according to criterion ({16)

which uses the residual transformation M in order to focus on the respective partial effect.

11



Theorem 3.2. Suppose that )\:‘;751?/\/7 — 0 and T%(V_l)/\;,‘;%“ — 00. Under Assumptions

cmd the objective function (@) yields

1. limgyoo P(A = A) = 1

where A% is index set of the non-zero elements of vec(R') in (I6).

2' \/T’U@C(R/T - RI).A —d N(O, (Zzlzl.Aa} ® Zal)il(zzlzl.Ax & qul)A(Zzlzl.Ax & 2171).,_41> fOT'
r > 0.

Thus Theorem yields rank selection consistency. Moreover, for the variance of the
estimates of the non-zero components in R, a smaller P closer to the true p would provide
additional efficiency gains. Using valid restrictions on irrelevant components of AX,
variation in X.71.1.a, could be reduced. As our focus here is on model selection, however,

this is a secondary concern and we point to Subsection for refined estimation.

In addition to the rank, for general VECM, we also need to determine the correct lag
in a separate procedure. The following theorem shows the results using the Lasso lag
selection criterion ((17)) with adaptive weights from a ridge regression pre-estimate BE. In
this way, we account for prevalent multicollinearity effects in particular in settings with

higher dimensions and large lag lengths.

Theorem 3.3. Suppose that )\iajgjlf/ﬁ — 0 and T%(V_l)/\ﬁ%]f — 00. Under Assumptions

cmd the objective function yields:

1. limg_yoo P(B: = B) = 1;
where B is the set of indices for the non-zero elements of vec(B), Bl is the set of
indices for the non-zero elements of vec(B) in

2. \/TIUGC(B% - B,)B —d N(07 (EAxA:E.zl ® Egl)gl(ZAzAmzl &® Eal)B(ZAazAz.zl & Eal)gl)

where YazAz1 = LAzAz — EAmE;fAzzm with all the component covariance ma-

trices defined in .

Thus lag selection is consistent i.e., the true lags are selected with probability 1 even if
they are non-consecutive. For estimation of the coefficients in the relevant lag compo-
nents, as in the case for the rank, we find asymptotic normality and unbiasedness at the
standard stationary speed. Different to the rank selection result in Theorem how-
ever, the variance component Ya,a, .1 only depends on the true rank r automatically
and a pre-estimate for it is not necessary. This results from the different speed of conver-
gence which asymptotically separates the stationary cointegrated component Z;; ; and
the nonstationary parts. In this sense, penalized estimates of lag coefficients are more

efficient than the ones for R.
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3.3 Important Refinements and Generalizations
3.3.1 Refined model estimation in higher dimensions

In this section, we show strategies for refined estimation and its corresponding asymp-
totic results when the error terms are weakly dependent. With our proposed adaptive
Lasso techniques, we can select the true model with probability one for sufficiently many
observations. Although both model selection criteria and also yield consistent
estimates for the coefficients of appropriate variables, there is, however, substantial room
for improvement on the estimation side in particular in finite samples for higher dimen-
sions. For pure model estimation in higher dimensions, we therefore suggest a refined
procedure for o and By with k& € {1,...,p} which is still of Lasso type but no longer
adaptive. With a focus on model estimation, given the pre-selected rank and lag, we
propose a pure Lasso procedure rather than an adaptive variant. While the latter is tar-
geted at consistent model selection, a pure Lasso estimate performs better in estimation
and prediction (see Bihlmann and Van De Geer| (2011) for the comparison of different

variants of Lasso).

Besides, we use an improved estimate 81 of 8 from reduced rank regression (see Ahn and
Reinsel (1990) and |Anderson (2002)), which does not suffer from endogeneity bias and
yields improved finite sample performance. Please note, that generally BT an efficient
estimate of 57 relies on a precise estimate for the rank by matrix perturbation theory, as
well as a consistent estimate for the lag p. Therefore in particular in higher-dimensional
sparse settings, it can only be employed in the estimation refinement step and is no option

for the pre-step in model selection.

~
~

We thus obtain estimates &, By, ..., B, as minimizers of

~
~

T p
> lIAY: —apY, — Z BLAY; i[5,
t=1

r

+ S NMal, \+ZZ)\“‘9’T|B i) (19)
7=1

i=1 k=11,j=1

rank \lagk rank lag,k __
where A577, A7 are tuning parameters. For no penalty A7 = A7 = 0, we recover

the reduced rank regression estimates for a and B? from ([19)).

We show that with appropriate choices of tuning parameters, the penalized estimates
from ((19)) are consistent and yield the same asymptotic variance as the ones from reduced
rank regression, while its solution is sparse in finite samples and thus improves the mean
squared error in general. Though as the simulations in Section will confirm, their

finite-sample performance, however, is superior in particular for estimation but also for
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prediction.

Theorem 3.4. Denote BP = By, ..., By|. If /T —, 0 and )\iajgjlf/ﬁ —, 0, then
the solution to problem (@) under Assumptions and satisfies:

VT (veel[ér, BY]) = vee([, B')) ) ~a N(0, Sl @ T0)
where T = [Y/_1 B, AY/_|,...,AY, ) and £ 3 DTV —, Srors.

Theorem shows that asymptotically, the penalized estimate has the same distribution
as the reduced rank estimate. This is in contrast to the adaptive estimates in Theorem [3.2]
and 3.3 In finite samples, however, the variances of nonzero Lasso estimates are smaller
than those from the reduced rank because variables with small coefficients are excluded
from the model, see Section for details. Thus even if Lasso estimates may suffer
from finite-sample bias, the overall mean squared error might still be superior. Secondly,
although reduced rank estimates are consistent, i.e. in finite samples, estimates of irrele-
vant zero components are small but might add up influencing estimation and prediction
significantly. The advantage of the penalized estimate in higher dimensions might result
from the fact that the assumption of sparsity in o and B; becomes increasingly justified
with dimensions more than 3, i.e. often only a small group of leading variables has impact
on the whole system while many others are irrelevant for the rest. Besides, the tuning

parameter can be chosen in the same manner as in univariate case.

3.3.2 Model selection with dependent error terms

Here we illustrate how Assumption [2.1] on i.i.d. innovations can be relaxed. Generally,
independent error terms help to simplify the theoretical analysis but for real data they
are often hard to justify. Therefore we provide explicit results for more general weak
dependence structures and show in which way they effect and deteriorate estimates for a

and . We illustrate the main effects in the setting of the special case only.

Assumption 3.2. In the VECM as the error term can admit the following linear

dependence structure
o0 o0
U = E Kjwi_j with E Jll&jlle < oo.
Jj=0 J=0

where wy i N(0,%,) and 2, is positive definite matriz.
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Here we consider weaker dependence in the residual process, therefore stronger assump-
tion on k; is required in Assumption which is a sufficient condition for the absolute

summability assumption on k;, i.e. Y377 [|#ll2 < oo.

Lemma 3.2. Under Assumptéon the least squares estimate for 11 in 15 biased

and satisfies

QI -~ Q™ L [QTSL, O mn)]

For the exact form of T as well as the asymptotic distribution ofﬁ we refer to the Appendix

(see Lemma[A.5).

The term T measures the correlation between u, and Z;,_; due to the auto-correlation
of u; under Assumption [3.2]

/

Define = =

/
L

] , we have

o + EzleT'

2N -1 — B, YY) = 21 — .

By a similar argument as for Lemma [3.1} we can conclude that

Lemma 3.3. By the same notation as in Lemma [3.1 and under Assumption the
following results hold:

- 1
|51 — BH||lp = Op(f)
- 1
|Ro||lr = Op(f)
VTvee(R\H —a — YY) —4 N(0,Z7L, @ %,)

Due to the bias term, we can’t expect that the selection result is consistent element-wise,
but consistency in rank could still hold when the penalty term is modified. The estimate

R is obtained by minimizing the follwing objective function row-wise in R(i,) for i =

1,....m
T " m rank
SNAY, —RSY |3+ %HR(@ 2 (20)
t=1 i=1 ||R(l7)||2

Different from before, we penalize each row in R as a group, similar to |Yuan and Lin
(2006), Wang and Leng (2008). Therefore, there could be zero and non-zero rows in R,

but non-zero rows have no zero elements. By Lemma [3.3] the penalty on the first r rows
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of R would be bounded and the penalty on the last m —r rows explodes. Thus consistency
of the estimate from (20)) in rank selection is expected. Besides, the first term in is
equivalent to the ordinary least squares problem rather than a generalized least squares
because we penalize the each row in R as a whole. The statistical property is given in

Proposition (3.1

rank

.- : . _ AT
Proposition 3.1. Given Assumption suppose that /\ffrf,?k satisfies \/TT — 0 and

T%lx\;‘?k — 00, the solution to 15 consistent in selecting the right rank.

When the dimension is higher, the variance of R from (16) generally increases due to the

non-sparse structure within non-zero rows of R.

4 Determination of network effects

In this section, we present the statistical properties for estimates of the impulse responses
and the corresponding forecast error variance decomposition (FEVD) as building blocks

for the network connectedness with an underlying large-dimensional VECM dynamics .

As shown in [Park and Phillips (1989) and Phillips| (1998)) the impulse response functions
are then given by the elements of the sequence of matrices ®; or certain linear combina-
tions of the components of ®; in the MA-representation , depending on the information
set containing the ordering of the shocks or structural relations among them. We get an
estimate <i>j of ®;, in from estimates A of the coefficient matrices A as defined in (4)
with &, = /Alffl where A;; where is the upper left-hand (m x m) block of A. The estimate
A is obtained from the adaptive lasso procedures and that yield estimates for the
components 8’ and By of A in . Alternatively, we can also use the refined two-step
version for the components.

Thus the following result holds for each component h of the impulse response function

Theorem 4.1. Under Assumptions and let estimates Cf>j of the impulse response
matrices ®; be constructed such that all conditions for Theorem[3.4 and[3.3 are met. Then
we get for each integer 7 > 0:

. 1
[®; — sz = Op(ﬁ) :

The above theorem shows that the MA coefficient matrices are +/T-consistent. The re-
spective rate corresponds to the usual stationary rate as expected given the definition of
A. Note that the result directly generalizes to the case when <i>j are obtained from the
refined two-step procedure ((19) when the conditions of Theorem are met. Moreover,
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general time-dependent innovations as in Assumption are admissible if estimates (i)j

are produced from and the conditions of Proposition [3.1] hold.

With the T-consistent standard least-squares estimate of X, Theorem also implies
consistency of the estimates of the impulse response components I RF'(j,h) by standard

arguments.

From the MA representation , the forecast error of the optimal h-step ahead predictor
Yip is Yegp — Y, = Z;:& ® U p—;. Its variance matrix, the h-step ahead forecast-error

variance F}, is then
h—1
Fy = E(Yi - Y)Y —Y) =) &%,8 . (21)
3=0

We employ a consistent plug-in estimator for all components in in order to derive an

estimate Fh for Fy,.

Theorem 4.2. Under the Assumptions of Theorem [{.1] we get for each h, we get

- 1
1Eh = Full2 = Op(7) -

The above result shows that the estimated forecast error variance matrices for finite
forecast horizon h are T-consistent. Thus standard results imply v/T-consistency for each
forecast error variance decomposition @ and thus consistency for all estimated network

links based on the connectedness measures derived from (7).

5 Simulations and empirical findings

5.1 Simulations

In this section, we investigate the finite-sample performance of the proposed model selec-
tion methodology. We first study the estimation and prediction performance of our refined
Lasso estimates in comparison to reduced rank method, this includes standard settings of
dimension three for comparison with existing low dimensional techniques. Then we focus
on cases up to dimension eight and sixteen with a thorough simulation study of model
selection quality as well as the estimation and forecast fit. Such higher dimensional spec-
ifications are not feasible with available standard techniques and provide a substantial

generalization to the common bivariate illustrations in existing literature.

The results presented in this section are based on independent multivariate Gaussian inno-

vations with covariance matrix X, = [p'i*j‘]?;‘jzl for two cases of p = 0.0 and p = 0.6. Thus
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our specifications also include cases of strong cross-sectional dependence. For example,
the chosen vanishing pattern of correlations may correspond to increasing geographical
distance in the case of the FX application presented in Section [5.2] For these settings,
we use the general FGLS-type empirical versions of the objective functions and ((17)
for model selection with least squares estimate ZN]u for »,. For each model, we provide
simulation results based on 7" = 200 and 7" = 500 observations corresponding to roughly
1 year and 2.5 years of working days in financial data. In each setting, simulation and

model selection are repeated for b = 100 times.

For transparency, we report all results dependent on the choice of tuning parameters ~
and A in the adaptive Lasso procedure. Thus for each setting, we show all results on a
two-dimensional grid of A = ¢I'"/?7¢ and ~ where ¢ = 0.1 and ¢ takes all integers from
1 to 3 and v ranges from 2 to 5 in steps of 1. We focus on the penalties A and v for
the rank selectionﬁ Although lag and rank selections work independently, we find that
choosing p first according to Theorem leads to superior finite-sample choices of p
which can then be used in setting P for numerically efficient rank selection in . In
the literature, BIC is a standard way to choose tuning parameters. For comparison, we
mark the BIC-selection of (7,c) in the Tables by underlining respective median values
which actually hardly vary over all simulation runs. They are obtained as minimizing the

following criteria:

logT

B]Crank = 10g|zres|+ f()‘v/y)m
logT’

T

BICy,, = log|%cs| + 2

P(A,v)m
The first term of the criteria is the goodness of fit measured by the determinant of the
covariance matrix of the residuals, and the second terms are the penalty. Because we are
interested in the selection results of how many columns in R’ or lags By should be kept

in the model, the number of free coefficients are #m or pm? respectively.

Simulations for model selection are done in R. Lasso is implemented with the package
1bfgs (called through Rcpp for faster speed) which can solve the penalized model for a
fixed tuning parameter numerically very efficiently. For pure model estimation part, we
use the R-package grpreg, which works for a sequence of tuning parameters and has the

implemented option to select the optimal tuning parameter by BIC.

In this paper, we consider the following settings:

4For the lag selection, we chose the parameters identical to the rank selection. In practice, this could be
further refined with different tuning parameters for each criterion, where the choice in the rank criterion
is key as dealing with the nonstationary setting while the selection in the lag case is more robust as
comparable to the standard stationary case.
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model I: m=3 r=2 p=1
model 22 m=8 r=4 p=1
model 3: m=8 r=2 p=2
model 4: m=16 r=8 p=1

Model 1 For this standard three dimensional case, we choose a setting considered in
Chao and Phillips| (1999) for comparison purposes. The experiments 7 and 8 in Chao and
Phillips (1999) are a trivariate VAR with one lag and two cointegration vectors entering a
single equation of the system. In their setting, the Monte Carlo study has demonstrated
that their criterion performs well in small samples. In addition to p = 0.0, we allow
for strong cross-sectional dependence by choosing p = 0.6. Our rank and lag selection
results indicate that lag selection performs well independent of the exact choice of tuning

parameters with almost perfect results. More details are available in the Appendix [C]

For the cases of higher dimensions, at each level of model complexity with given dimension,
cointegration rank and lag length, our simulation settings are randomly chosen from all
possible VECM specifications satisfying the Assumption [3.1} In particular, all unknown
elements are drawn independently from U[—1.5,1.5]. Therefore in the following settings
(Model 2, 3 and 4), the model specifications are randomly chosen, see Appendix |C| for

more details.

Model 2 and Model 3 These two models are both of dimension m = 8, where tradi-
tional methods cannot be employed either due to inconsistency in theory or because of
numerical inefficiency. Note that for both model 2 and model 3, the results are based on
a ridge regression pre-estimate for the lag selection criterion in order to han-
dle multicollinearity effects. Lag selection results based on adaptive weights from least

squares pre-estimates perform substantially inferior.ﬂ

The selection results for model 2 with p = 1 and r = 4 are represented in upper panel
of Table [I Note that the lag and rank selections work independently. In the table we
report two values in each cell (the absolute numbers of correct rank/lag selections) using
the same tuning parameters. If we take the values reported in different cells, we can easily
compare the rank and lag selection results with different tuning parameters. In general,
the results demonstrate perfect performance in rank and lag selection for a wide range of
tuning parameters when ¢ > 1 and « > 3. This also holds even for the most difficult case:
p = 0.6 and T" = 200, while for all other settings the range of acceptable parameters is
even wider. In comparison to the low-dimensional model 1, larger tuning parameters are

preferred both for rank and lag selection due to the higher complexity of the true model.

SResults are not reported here but are available on request.
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Model 2 (m=8,r=4,p=1,

T = 200, p = 0.0)

Model 2 (m=8,r=4,p=1,
T =500, p = 0.0)

c=1 c=2 c=3 c=1 c=2 c=3
v=20| 99/34 100/72 99/84 v=2.0| 100/45 100/81 100/90
~v=3.0| 100/97 100/100 100/100 ~=3.0 | 100/100 100/100 100/100
~v=4.0 | 100/100 100/100 100/100 ~v=4.0 | 100/100 100/100 100/100
~v=>5.0 | 100/100 100/100 100/100 ~v=15.0 | 100/100 100/100 100/100

Model 2 (m =38, r=4,p=1,

T = 200, p = 0.6)

Model 2 (m =38, r=4,p=1,
T = 500, p = 0.6)

c=1 c=2 c=3 c=1 c=2 c=3
v =20 92/1 100/14  97/33 v =20 99/1 100/7 100/16
v=3.0 100/@ 100/99 98/99 v=3.0 100/@ 100/99 100/100
v=4.0 | 100/100 99/100 99/100 ~v=4.0 | 100/100 100/100 100/100
~=5.0 | 100/100 99/100 99/100 v=25.0 m/loo 100/100 100/100

Model 3 (m=8,r=2, p=2,

T = 200, p = 0.0)

Model 3 (m=8,r=2,p=2,
T = 500, p = 0.0)

c=1 c=2 c=3 c=1 c=2 c=3
v=2.0 63/91 95/98 100/99 ~v=2.0 | 100/100 100/100 100/100
~=3.0 | 100/100 100/100 100/100 ~=3.0 | 100/100 100/100 100/100
v=4.0| 100/94 100/65 100/41 ~v=4.0 | 100/100 100/100 100/100
v=5.0| 100/41 100/11 100/1 ~=5.0 | 100/100 100/91 100/68

Model 3 (m=8,r=2, p=2,

T = 200, p = 0.6)

Model 3 (m=8,r =2, p=2,
T =500, p = 0.6)

c=1 c=2 c¢c=3 c=1 c=2 c=3
v=20| 35/63 80/80 90/92 v=20| 95/69 100/85  100/94
v=3.092/100 97/99 99/97 ~=3.0 | 100/100 100/100 100/100
v=4.0 98/90 99/48 98/17 ~=4.0 | 100/100 100/100 100/100
v=50199/13 99/0 99/0 v=5.0 100/99 100/56  100/26

Table 1: Each cell reports two values (the absolute numbers of correct rank/lag selections)
by solving and for b = 100 repetitions for model 2 and 3 withm =8, r =2, p =
2. To compare the rank and lag selections with different tuning parameters, we can take
the corresponding values reported in different cells. Underlining marks the choice with

tuning parameters selected according to median BIC.
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For model 3, the larger lag length p = 2 poses challenge in estimating the results. The
selection of the tuning parameter v = 3.0 results in very high correct estimates of both lag
and rank selection results. In particular, for the case of 200 observations, larger tuning

parameters are preferred for rank selection.

Model 4 For model 4, we consider a nonstationary VAR(2) process like in model 1
but of dimension 16, i.e. m = 16, r = 8 and p = 1. Due to the complexity from
the higher dimensionality of the model we only report results for 7" = 500. For well-
chosen tuning parameters, both rank and lag selection results are perfect. In particular,
v = 2 with larger ¢ and v = 3 with smaller ¢ are crucial for good performance of rank
selection. Given the complexity of the model, however, there is still a range of such
admissible tuning parameters which ensures robust performance in application scenarios
where tuning parameters must be pre-chosen. As for models 2 and 3, we use a ridge
regression estimate for B in the lag selection criterion . Generally, the simulation
results show that lag selection works better than rank selection results. The reason lies in
that rank selection problem is based on a pre-estimated cointegrating space, which adds

one more source of finite-sample bias.

Model 4 (T = 500, p = 0.0) Model 4 (T = 500, p = 0.6)

c=1 c=2 c=3 c=1 c=2 c=3
v=20| 69/98 98/100 100/100 v=20| 11/93 58/100 84/100
~=3.0 | 100/100 78/100 46/100 ~=3.0 | 100/100 95/100 83/100
v=4.0| 49/100 11/100 5/100 v=4.0| 77/100 48/100 19/100
v=5.0| 9/100 2/100 0/100 v=5.0 28/100 10/100 2/100

Table 2: Absolute numbers of correct rank/lag selections by solving and for
b = 100 repetitions for model 4 with m = 16, » = 8, p = 1. Reporting style is as in Table

M

For known true model specifications, we estimate all four models above according to the
refined Lasso procedure and compare estimation fits and one-step ahead forecasts to
reduced rank regression. For the case of model 1, we also illustrate their finite-sample
advantage if the model is known to the adaptive Lasso estimates from the model selection
procedure. In particular, we use ﬂadaptwe = ]A%jng; where ]:2; comprises the first r columns
of the solution to the adaptive Lasso rank selection problem 1) and :Si’ﬂ consists of the
first r rows of the orthonormal matrix defined in (I5). We generally only report the
most difficult case p = 0.6. We report pointwise empirical quantiles of squared errors
over all simulation iterations for Il , By and the 1—step ahead squared forecast error. In
particular, we evaluate ||II, — IT||2 and the same loss function for By, where the norm
denotes the squared l5 norm of vec(f[* —1II) divided by m?, in which * refers to cases where

I1 is estimated by Lasso or least squares. We divide by m in order to ensure comparability
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of results across different dimensions. AYTJFL* denotes the 1-step ahead forecast based on
method x and AY7,, is the forecast based on the true model. Again for comparability
1

the squared I, norm is divided by m and the reported forecast error is normalized by ¥, 2.

The results for model 1 indicate the refined estimation leads to superior results if the
true model is selected. Besides, refined Lasso estimates of II and B; are overall better
than the least squares (LS). In this simple 3-dimensional model, however, the prediction
based on the tailored high-dimensional Lasso procedure is dominated by the one of LS
due to the inherent sample bias. For the more complex model 2 with m = 8 and r = 4,
however, Lasso is substantially superior to LS in both estimation and prediction (see
Table . Similar results are reported in Table [11| for model 3 and Table |12 for model 4.
While in the standard low-dimensional model 1, the advantage of using Lasso is not so
significant, we find that the more complicated the model is, the more superior becomes
the Lasso in particular in estimation. Moreover, the obtained simulation results confirm
the advantage of element-wise penalization on the loading matrix over penalization on
eigenvalues/singular values only. In the latter case, e.g. [Liao and Phillips (2015)), the
“one-step” approach is not able to take the sparse structure of loading matrix in higher
dimension into account. This might also drive the excellent forecasting performance in
all considered model set-ups as the results in Tables indicate.

5.2 Empirical results

There exists a sizable literature, such as e.g. |Meese and Rogoff (1983) and (Cheung
et al.| (2005]), which concludes that a pure random walk model can hardly be beaten
in forecasting floating exchange rates (FX) between countries by advanced time series
methods. In particular, system information and cointegration structures could not be
shown to yield any prediction advantages. Related work like |Engel and West| (2005))
and [Engel et al.| (2015) among others, apply techniques such as panel data and factor
model methods to predict exchange rates also for larger systems. In general, they obtain
promising results which are, however, mixed with regard to beating the random walk
benchmark. From economic theory, however, it is clear that system and equilibrium
cointegration information on different underlying stochastic trends of exchange rates (see
e.g. Baillie and Bollerslev| (1989)) do carry valuable information which should provide
performance gains in particular for longer horizons. Thus we use our proposed tailored
lasso technique to estimate VECM for a moderate dimension portfolio consisting of 17
series. By exploiting the potential sparse cointegration relations within the FX market,
we are able to also study the spillover network of the FX system gaining insights into
important channels. Moreover, our method also provides improved forecasts without

inclusion of additional information, where the benchmark is the random walk without
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drift.

Our empirical analysis uses quarterly data from Engel et al. (2015)ﬁ We consider bilateral
exchange rates y;; calculated as the end of quarter ¢ logarithmic exchange rate of country ¢
against the U.S. dollar (USD). We study 17 OECD countries: Australia, Austria, Belgium,
Canada, Denmark, Finland, France, Germany, Japan, Italy, Korea, Netherlands, Norway,
Spain, Sweden, Switzerland, and the United Kingdom. For comparability with the original
results of Engel et al| (2015) we use the same estimation period running from the first

quarter of 1973 to fourth quarter of 2007 for a total of 140 observations.

ADF, vy ADF, Ay,  KPSS, v KPSS, Ay
Australia 0.95 0.01 0.01 0.08
Austria 0.98 0.04 0.01 0.03
Belgium 0.50 0.01 0.10 0.10
Canada 0.39 0.01 0.01 0.10
Denmark 0.38 0.01 0.01 0.10
Finland 0.42 0.01 0.01 0.10
France 0.88 0.01 0.01 0.10
Germany 0.76 0.01 0.01 0.10
Japan 0.07 0.01 0.01 0.10
Italy 0.24 0.01 0.01 0.10
Korea 0.34 0.01 0.05 0.10
Netherlands 0.57 0.01 0.03 0.10
Norway 0.22 0.01 0.01 0.10
Spain 0.69 0.01 0.01 0.09
Sweden 0.71 0.01 0.01 0.05
Switzerland 0.50 0.01 0.01 0.10
United Kingdom 0.29 0.01 0.01 0.10

Table 3: The p-values for the panel unit root tests of FX time series for each country.
For country i, y; is the log value of FX, and Ay; is the log return of FX. The ADF
(Augmented Dickey-Fuller test) tests the null hypothesis that a unit root is present in a
time series sample, and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) is used for testing
a null hypothesis that an observable time series is stationary.

As a pre-check for the existence of cointegration relations, we apply panel unit root tests
to both original y; and differenced data Ay;, with the corresponding p-values reported
in Table [3] The results of ADF and KPSS tests indicate clearly that the differenced
data Ay;; are stationary while y;; are not. This presence of unit roots in FX-rates was
also documented in e.g. [Baillie and Bollerslev| (1989)) and Diebold et al. (1994) where

low-dimensional subsystems of cointegration were studied.

We start with the general VECM by conducting both rank and lag estimation proce-

dure. The simulation results in the previous section indicate robust model performance

SFor a detailed description of the data and their sources we refer to Engel et al.| (2015).
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for a wide range of tuning parameters, where v = 3 and a BIC-based choice of X\ in
both cases generally yielded convincing results. We follow this best-practice guidance in
determining the tuning parameters and also set the upper bound for the lag selection as
P = 5. Note that the estimation results are based on a ridge regression pre-estimate
for B in in order to handle multicollinearity effects, with the optimal tuning
parameters selected by BIC. Then we obtain lag length p = 0, and a cointegration rank

A

of rank(R) = 7 = 2. Therefore the resulting model is as follows,
AY, = TV, +u, (22)

where Y; is the vector composed of the stacked cross-sectional observations y;;, ¢ =
1,...,17. We depict the time evolution of the two resulting cointegration factors in
Figure [ in the Appendix.

In the following, we illustrate the finite sample prediction performance gain from the
proposed VECM in comparison to standard benchmarks in the last subsection. We also
study how this can be used to study the network spillover effects in connectedness among
FX rates using the network measures based on . As a benchmark for the determined
VECM specification , we employ connectedness-based networks obtained from the
directly estimated corresponding VAR(p) model in differences. This is of independent

interest as such models have been widely used in the applied literature.

5.2.1 Static network analysis

We further construct the DY-network by computing variance decompositions and cor-
responding connectedness measures at horizon H = 10[| The graph of our full-sample
FX market network defined in @ is depicted in Figure . We observe a cluster of six
closely interconnected European countries (France, Germany, Spain, Italy, Finland and
the Netherlands) as highlighted by stronger color intensity in this graph, which are now
part of the European monetary union (EMU). This can be explained by the economic
integration among these countries, which involves the coordination of economic and fiscal
policies, a common monetary policy, and a common currency, the euro among these Euro-
zone nations. Based on Figure |1} the network graph in Figure [2| highlights the significant
pairwise directional connectedness among the six EMU countries, in particular for the

countries of France, Germany, Italy, Finland and the Netherlands.

To understand the behavior of networks, there are various approaches for evaluating the
node importance. We employ the centrality measures proposed by [Freeman (1978) to

evaluate the relative importance of nine stocks,

"Presented results are robust for H in the range of 8-12.
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we select the 90th quantile to cut
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the scaling of edges in width and color saturation. Edges with absolute weights over this
value will have the strongest color intensity and become wider the stronger they are, and
edges with absolute weights under this value will have the smallest width and become

vaguer the weaker the weight (see [Epskamp et al. (2012))).

Figure 1: The graph for full-sample FX market network for 17 OECD countries based on
Figure 2: The graph for the FX market network among several European countries. As
before, we select the 90th quantile to cut the scaling of edges in width and color saturation.

the estimation of our VECM model

e degree centrality deg(V): refers to the number of edges attached to one node. This

is simplest measure of node connectivity, but it is can be interpreted as a form

7

degree

of popularity. We use “out

centrality outdeg(V), i.e. the number of ties

that the node directs to others to measure the impact of “to”-connectedness, and
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“In-degree” centrality indeg(V) (number of inbound links) to measure the impact

of “from”-connectedness.

e betweenness centrality Bet()): quantifies the number of times a node lies on the
shortest path between other nodes. Nodes that have a high probability to occur
on a randomly chosen shortest path between two randomly chosen vertices have a
high betweenness. This centrality measure is helpful to decide which nodes act as
“bridges” between nodes in a network, and can potentially influence the spread of

information through the network.

e closeness centrality Clos(V): is defined as the inverse of the sum of its distances
to all other nodes, it scores each node based on their closeness to all other nodes
within the network. Thus we are able to identify the nodes who are best placed to
influence the entire network most quickly. The more central a node is, the closer it
is to all other nodes. This centrality measure will be useful to distinguish influencers

in the network.

Table [4] reports the above four centrality measures and three connectedness measures
defined in and for all the sample countries. We observe higher negative net con-
nectedness for France, Germany, Italy, Finland and Netherland, indicating a net connect-
edness receiver behavior. Besides, Denmark and Sweden have relatively larger positive
levels of net connectedness making these two non-EMU countries net connectedness trans-
mitter for the FX market. Note that the obtained above results for the different network
measures are stable across the a wide range of tuning parameter choices as indicated in

Figures|[6] [7, and [§ in the Appendix.

For the estimation of the benchmark VAR specification in differences for large dimensions
we use VAR combined with Lasso. A VAR model with lag length of one was selected
by BIC. The resulting DY-network connectedness and centrality measures are reported
in Table 5] The graph for the full-sample FX market network is shown in Figure 3] The
topology of the graph and the observed spillover effects differ substantially from the VECM
results which are generally known to have higher finite sample accuracy (see e.g. |Engle and
Yool (1987)). The estimation results based on the benchmark VAR-FEVD are mixed. We
also observe strong pairwise connectedness among several European countries which are
also net connectedness receivers, but the components are Denmark, Netherland, Germany,
France, Belgium and Austria. Among them, Denmark is not part of the EMU and retains
its own monetary policy and currency. In addition, two non-European countries Australia

and Japan become net connectedness transmitters.

In the closing part of this section we show that our VECM based connectedness is not sen-

sitive to parameter choices. The results presented in Figure 2 show the network topology
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Chomi Ciai Cilii indeg(i) outdeg(i) Bet(i) Clos(i)
Australia 0.97 045 0.52 0.01 0.01 0.00 0.02
Canada 5.23 533 -0.10 045 0.52 16.00  0.07
Denmark 3.06 1.71 1.34 0.05 0.05 29.00 0.02
UK 0.15 4.78  0.37 0.39 0.38 0.00 0.06
Japan 5.30 6.17 -0.87 0.52 0.52 0.00 0.07
Korea 5.17 4.94  0.23 0.41 0.41 0.00 0.07
Norway 2.23 544 -0.21 0.46 0.40 26.00 0.07
Sweden 4.66 281 1.85 0.22 0.23 40.00 0.06
Switzerland 0.15 476  0.39 0.40 0.39 0.00 0.06
Austria 5.00 3.85 1.15 0.32 0.29 0.00 0.06
Belgium 1.80 0.95 0.85 0.02 0.01 0.00 0.01
France 5.32 6.38 -1.06  0.53 0.56 0.00 0.07
Germany 52.32 640 -1.08 0.54 0.56 0.00 0.07
Spain 5.20 5.26 -0.06 0.43 0.38 0.00 0.07
Italy 50.33 643 -1.10 0.54 0.56 2.00 0.07
Finland 5.32 6.43 -1.11 0.54 0.54 2.00 0.07
Netherlands 5.33 643 -1.10 0.54 0.56 0.00 0.07

Table 4: The “from”, “to” and “net” connectedness for the sample countries based on the
estimation of our VECM model (22).

Chomi Ciai Cilii indeg(i) outdeg(i) Bet(i) Clos(i)
Australia 3.27 1.75 1.52 0.06 0.06 43.00 0.03
Canada 229 1.05 124 0.03 0.02 0.00 0.02
Denmark 5.34 6.41 -1.07 0.54 0.54 3.00 0.07
UK 5.03 3.94 1.09 0.32 0.28 0.00 0.06
Japan 4.77 2.89 1.88 0.24 0.25 15.00 0.06
Korea 0.77 0.56 0.21 0.01 0.01 0.00 0.01
Norway 5.25 5.54 -0.29 0.46 0.40 33.00 0.07
Sweden 518 4.93 0.25 0.40 0.39 0.00 0.07
Switzerland 5.24 523 0.01 0.45 0.53 8.00 0.07
Austria 5.33 6.35 -1.02 0.54 0.56 0.00 0.07
Belgium 533 6.35 -1.02 0.54 0.57 0.00 0.07
France 5.32 6.22 -0.90 0.52 0.52 0.00 0.07
Germany 5.33 6.32 -0.99 0.54 0.56 0.00 0.07
Spain 519 4.97 0.22 0.41 0.39 0.00 0.06
Italy 522 5.14  0.08 0.43 0.43 0.00 0.07
Finland 524 542 -0.18 0.44 0.41 14.00 0.07
Netherlands 5.34 6.38 -1.04 0.54 0.56 0.00 0.07

Table 5: The “from”, “to” and “net” connectedness for the sample countries based on
VAR(1)-Lasso estimation.

when we consider alternative specifications.
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Figure 3: The graph for full-sample FX market network for 17 OECD countries, based
on VAR(1)-Lasso estimation. We select the 90th quantile to cut the scaling of edges in
width and color saturation.

5.2.2 Dynamic network analysis

We now study the dynamic network using rolling estimation, and compare the dynamic
total connectedness from our VECM-FEVD with the one based on the VAR model es-
timated over the same rolling window. The number of observations used in the rolling
sample to compute prediction is 120 or correspondingly thirty years, and we examine
dynamic evolution of the network for the following five years (20 observations). In each
window, we repeat model selection and conduct the proposed technique to obtain the

sparse estimates.

We first calculate full sample system-wide connectedness for each window by summing up
the total directional connectedness whether “from” or “to”. In general, the full sample
system-wide connectedness reflects the overall uncertainty that has arisen in the system.
The dynamic pattern of the system-wide connectedness is shown in the left panel of Figure
The VECM based system-wide connectedness is larger than the VAR based system-
wide connectedness. We interpret this result as the VECM based connectedness capturing
the impact of long-run relationships that affected the FX market, particularly the EMU

and non-EMU countries.

To assess the system-wide interaction, we further decompose the full sample system-wide
connectedness into two parts: cross-EMU connectedness and within-EMU connectedness
as shown in the right panel of Figure[d In both cases the within-EMU spillovers generally

exceed cross-EMU values at all time-points. The differences between the two parts are
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Figure 4: The time-varying network for the system-wide connectedness from April 2003 to
January 2008, based on the the estimation of the VECM (black) and VAR (grey) models.
The left panel is the time-varying full sample connectedness, it can be decomposed into
two parts: the within-EMU connectedness (upper dotted curves in the right panel) and
the respective cross-EMU connectedness (lower dashed curves in the right panel).

much more pronounced and smoothed over time in the VAR, while the VECM compo-
nents indicate substantial variation in time in opposite directions. As a plausiblity check,
we have compared the within-EMU-connectedness to the EUR/USD exchange rates and
found an overall correlation of 0.315 for the VECM-based component dominating the
VAR.

5.2.3 Out-of-sample forecasting performance

We compare the out-of-sample forecasting performance of our model to two bench-
mark models, the simple random walk and VAR(1)-Lasso. We use the first 120 observa-
tions (i.e. 30 years) in our sample for estimation and the remaining 20 observations for

evaluation.

We already have Y; as the actual data series, let f;ht denote the ith competing h-step
forecasting series and the out-of-sample forecasting errors from the ith competing models
are defined as eﬁft =Y — ffﬁ In this paper, h is set to be 1, and the superscript h is
omitted in the following context. Table [6] compares the mean p and the corresponding

5% confidence interval, and standard deviation sd for the out-of-sample forecast errors
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€it ﬁ of our model (left panel) and the random walk benchmark (middle panel) and the
VAR benchmark (right panel). The results clearly show the superiority of our technique
throughout all countries in the sample. We observe not only smaller values of forecast

errors, but also narrower confidence intervals for our VECM model.

plevec) sd(evecn) p(erwy) sd(epwy) p(evary) sd(evary)
Australia | 0.02 (-0.01 0.05) 0.01 0.17 (-0.11 0.48) 0.12 0.11 (-0.75 0.88) 0.45
Canada | 0.10 (0.04 0.17) 0.03 0.14  (0.00 0.30) 0.05 0.15 (-0.36 0.71) 0.35
Denmark | 0.07 (-0.03 0.16)  0.04 0.0 (-0.26 045) 027 |0.09 (-0.65 0.77)  0.40
UK | 0.05 (-0.07 0.19) 0.06 0.13 (-0.18 0.46) 0.19 0.06 (-0.42 0.68) 0.33
Japan | 0.07 (-0.08 0.22) 0.07 -0.01 (-0.37 0.32) 0.41 0.02 (-047 0.71) 0.39
Korea | 0.15 (-0.02 0.33) 0.08 0.22 (-0.15 0.57) 0.16 0.11 (-0.34 0.82) 0.31
Norway | 0.09 (-0.09 0.29) 0.10 0.13 (-0.19 0.44) 0.20 0.10 (-0.59 0.83) 0.45
Sweden | 0.02 (-0.19 0.23) 0.11 0.14 (-0.20 0.47) 0.21 0.05 (-0.92 0.77) 0.54
Switzerland | 0.00 (-0.22 0.24) 0.12 0.02 (—0.36 0.42) 0.38 0.06 (-0.68 0.84) 0.41
Austria | -0.03 (-028 0.22)  0.13 0.06 (-0.30 042) 031 |0.10 (-0.64 0.84) 043
Belgium | -0.01 (-0.27 0.26) 0.14 0.08 (-0.28 0.46) 0.30 0.10 (-0.64 0.84) 0.43
France | 0.02 (-0.25 0.31) 0.14 0.11 (-0.24 047) 0.25 0.09 (-0.64 0.85) 0.40
Germany | 0.01 (029 031)  0.15 0.06 (-0.30 0.43) 032 | 0.11 (-0.64 0.84) 043
Spain | 0.04 (-0.29 0.36) 0.16 0.15 (-0.19 0.488) 0.20 0.09 (-0.68 0.82) 0.43
Italy | 0.04 (-0.30 0.38) 0.17 0.16 (-0.20 0.51) 0.21 0.06 (-0.67 0.80) 0.42
Finland | 0.04 (-0.30 0.40) 0.17 0.11 (—0.21 0.43) 0.22 0.08 (-0.66 0.80) 0.42
Netherlands | 0.08 (-0.27 0.45)  0.18 0.06 (-0.30 043) 031 |0.10 (-0.64 0.84) 043

Table 6: Comparison of the out-of-sample forecast errors ¢;;, with our model on the left
panel, the random walk benchmark in the middle and the VAR benchmark on the right
panel.

We also compute the mean squared prediction error M SE; ; = % Z?zl eﬁt for each sample
country, and apply a one sided hypothesis test on Hy : MSEygcm: > MSErw, against
Hy : MSEyvgpcuy < MSEgw;. The p-value of the t-test is 0.00026. We therefore
reject the null hypothesis, indicating that there is strong evidence of smaller MSE for

our technique.

In addition to the comparative MSE evaluation, we further use the Diebold and Mariano
(DM) test (see Diebold and Mariano, (2002)) and Diebold| (2015)) for comparing predictive
accuracy. Denote the loss associated with forecast error €;; by L(e;¢); here we consider
the squared-error (SE) loss function Lq(e;¢) = Zthl €;, and the absolute-error (AE) loss
function Ly(e;;) = .1, |€is|. Table [7| shows that generally V ECM clearly outperforms
the RW and VAR where the RW is the runner-up.

6 Conclusion

In this paper, we provide a novel technique for estimating large spillover networks of

nonstationary systems in VECM framework. This elementwise Lasso-type technique does

8We use the standard bootstrap (Hubrich and West| (2010) and Engel et al. (2015)) with 1000 rsepe-
titions for each point.
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H, : E{L(€VECI\I)} < E{L(ERw)} Hy : E{L((«VECIW)} < E{L(€VAR>} Hy : E{L(EVAR)} < E{L(ER[/[/)}
DM-AE DM-SE DM-AE DM-SE DM-AE DM-SE

Australia | 1.000 0.999 1.000 0.994 0.021 0.017
Canada | 0.999 0.998 1.000 0.998 0.009 0.006
Denmark | 0.999 0.994 1.000 0.998 0.000 0.003
UK | 1.000 1.000 1.000 0.995 0.023 0.016
Japan | 0.968 0.862 1.000 0.999 0.000 0.001
Korea | 1.000 1.000 0.998 0.949 0.458 0.247
Norway | 1.000 0.997 1.000 0.999 0.000 0.002
Sweden | 1.000 0.999 1.000 0.999 0.000 0.001
Switzerland | 0.010 0.005 1.000 0.995 0.000 0.004
Austria | 0.905 0.897 1.000 0.998 0.000 0.002
Belgium | 0.999 0.993 1.000 0.998 0.000 0.003
France | 1.000 0.998 1.000 0.998 0.001 0.004
Germany | 0.962 0.946 1.000 0.998 0.000 0.002
Spain | 1.000 0.999 1.000 0.998 0.006 0.007
Italy | 1.000 0.999 1.000 0.998 0.006 0.007
Finland | 1.000 0.997 1.000 0.998 0.001 0.003
Netherlands | 0.981 0.967 1.000 0.998 0.000 0.002

Table 7: The p-values for the Diebold-Mariano tests based on different models for each
country. For country ¢, we compare the forecasting two models using both the Diebold-
Mariano test by absolute-error loss (DM-AE) and the Diebold-Mariano test by squared-
error loss (DM-SE).

not only determine cointegration rank and autoregressive lags of the large nonstationary
system, but also allows to directly assess the non-zero elements in the cointegration vector,
the resulting VECM estimation is then associated with network structure. The tailoring of
the procedure to moderate large but fixed dimensions also keeps the technical prerequisites
for statistical validity to the standard low dimensional assumptions, making the technique

easily accessible for practitioners in most relevant application cases.

We report results on model selection consistency, derive the asymptotic distribution of
estimates and propose refinements under general assumptions on the innovation. We
also report the statistical properties for network estimation under standard assumptions.
The excellent finite sample performance of the proposed technique is demonstrated in a
comprehensive simulation study. In an application to a system of FX rates, we study the

spillover effects in the FX market among 17 OECD countries.
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A  Proofs

Lemma A.1. Under Assumptions and the partial least squares estimate I1 defined
in satisfies

vec[Q(I — Q™" Dy]

N(O Ezlzl Az ® )Y )
—> 1
vec{ 1/2 fo —rdWp) (fol W W ds)™ (o S0 ) 7205

where DT - dlag(ﬁ]m Tlm—r)y Zv - QEuQ/; Z—l - 6IY—1; %Z—IMZ,fl %p Zzlzl.A:ﬁ =
Y11 — EAMEZ;MEMA with all the component covariance matrices defined in ;

Wi = (0, 20a1) "2 [0m—ryxrs Inr) 52 Wi, and W,

s Wi are standard Brownian mo-

tions with dimension m —r, m respectively and the exact from of © is defined as and

in the proof.

Here we have Y.1,1.a, instead of 3,1,; in the variance part of the stationary component
due to the partial estimation problem and the residual maker M. In the non-stationary

component, the term © appears due to the lagged differenced term AX.

Lemma A.2. With the notation defined in Section we have

1
TAXCAX/ —>p EAxAx.Zl

1
—vec(UCAX") —, N(0,YAzaz.21 @ Xy
77 ( ) = N(0,Zaza02 )

1
TUC’U/ —p Eu
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where ZAwa.zl = EAa:Ax - EArzlzzlzlzzlAw~
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The second claim follows naturally because we have already proved the covariance matrix

of AXC.
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Proof for Lemma [A.T]

By the same argument as that for the special case, we have

QI — Q' Dy
_ QUMYilQ/DfZ_ﬂl(D'Z_ﬂle_lMYT_IQ/D'Z_ﬂl)_l
— QUMZ D;(D7'Z_ MZ D7)

where 7' | = [Z] |, Zy, | and Z] _,,Z;, , satisfy the following process

AZL_lM = BICYZL—IM + ﬂlg
227_1M —_= ZQ’_lM _I_ &lf

where £ = U — UAX'(AXAX')TAX.
In order to derive the asymptotic distributions, we also need some notations as follows:
By pre-multiply all the terms of general VECM by Q
AY, =11IY,_ + BAX, 1 +uy
We have

AZy = QUQ " Zi1 + 1y (23)

where ¢y, = QBAX;_1 + v;, vy = Quy with covariance matrix Y, and

Yy = O(L)vy (24)

Define © = ©(1) and Oy, as the bottom-right (m — r) x (m — r) submatrix of ©.

1. Distribution of Error Terms:
According to |Ahn and Reinsel (1990), %UAX’ = 0,(1), FAXAX' = O,y(1) and
\/LTAXt_l = Op(\/if). Therefore we have

[T's]
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The distributions of each block in the matrix would be analyzed as follows

1 1 1
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By the result from Ahn and Reinsel (1990), 1AXZ) | = O,(1), 121, 1AX" = O,(1) and
+71,-1Z% _1 = Op(1). Therefore, the blocks on upper-right and bottom-left converge to
zero in probablity to zero.

1
—Zs 1MZ, |

1
T2

11 1 .
— e AX (FAXAX)

1
—d @22(0/1_5@0@)1/2/ Wi ()W _ (s)ds(a/, Syar )00,
0

522,125 4

1
ITAXZQ,_I

3. Distribution of QUM Z' | D*:
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1
VT
1 1
— [=VAX'(=AXAX')
VT T
1

VT

The last equality follows from TL%AX Zy_1 —p 0 as shown in |Ahn and Reinsel (1990).
Since we have shown that %ZL_lMZ{’_l —p Lzlz1.Azs \/Lfvec(VMZl,_l) —a N(0,X,121.4:®

1

MZ' \D;' =
QU —-1=7T [ T

VMZy_y, =V MZy_i]

1

1 1 1
FAXZ1 0 2 VAX (AXAX) G AX 2, ]

VT T
1

= [=VMZi 1, 5V 2o+ pp(1)]

¥,). Besides, the %VZQ,_l converges in distribution to

1 1
22 / Wi (8)dWin(5)] (o, Zuer ) /200,
0

To derive the desired result, we just need to combine all the separate terms.

O
Proof of Lemma [3.1]
The proof directly follows from Lemma [A.1] O
Proof of Theorem [3.1]

For a general form like y = X 8+ u, where X has dimension n x p, %X ’X has full rank and
converges to ¥ in probability. The solution to ridge regression, i.e., arg ming ||y — X 3| >+
v||B]lh, is Br = (X'X + vI,) ' X"y. Therefore, /n(fr — 8) = —(:X'X + %Ip)_l\%ﬁ +
(+X'X —|—~%Ip)_1\/iﬁX’u. The bias term —(; X'X + 21,)"' =8 —, 0if 2= —, 0. Therefore
limy_,. Br = B holds. L]
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Proof of Theorem 3.2

Let vec(R}) = vec(R') + vec(ErD7'), where Eg is an m x m matrix, and

2

Up(ER) = |lvec(AY) = (Y',S @ I,)vec(R + ErDy?)
Ir®%y!
> =" |R(i,j) + ErD;'(i, j)|
ij=1 |R(i, 7))

where Er = arg min Ur(ER).

We want to minimize AT(ER) = \DT(ER) — \I’T(O)

Ar(Eg) = vee(ErD7") (S'Y_y @ L) (Ir @ S.)(Y!,S @ I, )vec(Er D7)
— 2vec(U) (It ® ;1) (Y, 8 @ I, )vec(Er D7)

m rank
+ N Y (|R(i, §) + ErD7(i,5)| — |R(i, j
i;IR(M)IW(H )+ ErDy (i, 5)| = [R(4, 5)])

= vec(Eg) (D7'S'Y 1 @ L) (Ir ® ;)Y ,SD7" @ Iy )vec(ER)
— 2vec(S;'UY! 5D vec( ER)

m rank
+ 3N T (|R(, §) + ErD7Y, )| — |R(i, j (25)
i;m(m)h(' (4,9) + ErDy (i, j)| — |R(i, 7))

T
= vec(ER)'(Dflg’ZYt_lYt'_lgD}l ® N, Yvec(ER)

t=1

T
— 2’060(2 St Y, SDY vee(ER)
t=1
m rank

—(|R(i, j) + Er D7 (i, )| — |R(i, j
+IJZ:1 |R(i,j)|7(| (i,5) + (¢, 5)] = R 5)])

In Lemma we see that the first 7 rows of S’ is a consistent estimator of 3. Thus El

is a consistent estimate for a.

Case 1: 0<r<m
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T
> YiY , =Q'DrD:' > Zi1Z, D7 DrQ

t=1

_ T _ T
— Q—IDT T ! Zt:l Zl,t—IZ{,t_l T 3/2 Zt:l Zl,t—lzé,t—l DTQ/—I
T_3/2 Z;F:I Z2,t—1Z1,t—1 T2 Zle Z2,t—IZ§,t—1

Let S = 18+ Oy(5), §2] and Q7! = [q1, ¢2]. Then, we have

T
DS Y Vv, 305!
t=1
I + Qp(%) ﬁpp(%) T ZtT 1 1t 1Zi -1 T3 23:1 ZLt—lZé,t—l
i LSé(]l Sé‘h T3z Zt 1 Z2a1214 4 T-° Zthl Zo1Z54 4
i \/_ TO (%) Q2S2

(26)

Zzlzl 0

~ 0 -1 ~
0 qu2<([0 I, T]zm(f w, W’ ds)21/2[I ]) >qgs2

For the second term in equation (25)), we have:

T T
vee(=; (3w, )SD5Y) = vec(z;1<2utY;'_l@’D#)DT@'*SD;U
t=1 =

= U@C([ T-1/2 ZE;lutZLt_l T Zzglutzit_l ] \/_O (l) q 52 )
T 2

N(07 Ezlzl ® qul)

1 1 ~ 27
vec{ S QIS ([ Wid W1, )52 [ ] @S2} (#1)

m—r

Next we should pay attention to the last term in eq. .

For the first r columns of matrix R, the convergence rate of the least square estima-

tor is v/T. Therefore, if R(i,j) # 0, w;; = \R(i, 7)™ —, |R(4,7)]77 and \/_(|R(z Jj)+

TE (i,7)|—|R(i,7)|) = sign(R(i, j))|Er(i, j)|. By Slutsky’s theorem, we have N Zai; ;NT(|R (3, 5)

\/T
7B, 5)| - IR 5)]) = 0
If R(i,j) = 0, T35 = O p(1) and VT(|R(i, j) + J7Er(i, j)| — [R(i,)]) = [Er(i, ).
By Slutsky’s theorem, we have AZ?\T;T;TQ “2; VT (| R(i, j 9+ 7= Er(i, )= |R(i, )]) = oo.
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For the last m —r columns of matrix R’, the convergence rate of the least square estimator
rank ~

is T'. Therefore, ifT(\R(i,j)—l—%ER(z',j)]—\R(z',j)\) = |ER(7, )| and —Ai’ji’T TYTR(i,7)]77 =,

o0, where |TR(i, j)| = O,(1).

ThIlS, AT(ER) —d A(ER),Where

vec(Era) Mavec(Er a) — 2Whvec(Egr,4) if vec(Eg)y =0 Vk¢ A

00 otherwise

A(ER) = {

where My = (2,11 @ B4, and Wy ~g N(0, (.11 ® 1) 4). Ag is convex and
the unique minimum of A at vec(Egp)s = MWy ~q N0, (2021 @ 2703 (S0 ®
2;1)-4(2,2121 X 21:1)211)

The proof before shows that the non-zero elements in R’ can be recognized with this
method. However, to prove consistency, we still need to prove that the probability
that zero elements can only be selected as non-zero with probability zero, i.e., Yk ¢
A lim, ., P(K' € A%) =0

Suppose R(i,j) = 0 but Rp(i,j) # 0, ie, k' = jm+1i ¢ A but k' € A%. Then ac-
cording to the Karush-Kuhn-Tucker (KKT for short henceafter) optimality conditions we

have

. 1 Arank R
X (It @ 3,1 ) (vec(AY) — Xvee(Ry)) = —%sign(R’T(i,j)) (28)
2|R(i, j)P
where X =Y’ 1§ ® I,, and X denotes the £’ column of X.
Take Ty = VT if ¥ < r and Ty = T if ¥’ > r. Then divide both sides of the equation
above by Ty we get

rank
1 1 )\T,,],T > »

X (I © 3, (vec(AY) — Xvee(Ry)) = sign(Re(i,7))  (29)

Ty ~ Tw2|R(i,5)p

If we denote Dy = diag(y/T L, TIngn—p), then LHS = =X}, (Ir @ X" vec(U) +
%MX;C,(IT ® XX (vee(R') — vee(R,)).

From the previous derivation of the asymptotic distribution of X’ (I7®3; ') X and X'(Ir®
Y. Hvee(U), we can conclude that LHS is finite in probability.
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h f )\ra_nj]fT%(W*1> f "."a.”j]fT'Y_l
i< 4,5, T ~ 1 T [T S
For the RHS, if j < r, TR —o0. If 5 >, TR — 00

By KKT condition, if a zero element is estimated to be nonzero, then the equation (29)
musts hold. However, the LHS is finite in probability but RHS converges to infinity.

Therefore we can exclude this possibility with probability one.

Case 2: r=0
In this case, only the second part of the proof in Case 1, i.e. by KKT condition R’ can

be estimated as non-zero with zero probability.

Case 3: r=m
Contrary to Case 2, for this case, only the first part of the proof in Case 1 is necessary.
[

Proof of Theorem [3.3]
Define vec(B) = vec(B) + vec(\/iTEB) and
. 2
Ur(Eg) = |lvec(AYC) — (C'AX' & I,,)vec(B + —=Fp)
VT Ir@sy!
+ = |(By(4,§) + —=FEpx(i,])|
k=11i,j=1 | Br (i, 7)1 VT

where Eg = [Epa, ..., Epp]. BEach Epy, k=1,..., P is an m X m matrix.

We want to find Ep so as to minimize W (Ep). This is equivalent to minimize

Ur(Ep) — ¥r(0) = UBC(%EB)/(AXCAX' & Eul)vec(%EB)

1
(3,1 U0) (C'AX' ® Im)vec(ﬁEB)
)\l‘ag,k

F Y (B + %EB,k(iajﬂ — |Bu(i j)])

=1 i1 | Bri(i, )

|
N
S
@
o

We have shown the asymptotics of ZAXCAX’ and zUCAX’ in Lemma . Besides
every element in Brp converges to the true value with rate v/7', so oracle property argument
of adaptive Lasso in Zou| (2006) follows. O

44



Distribution of II under Assumption (3.2

Lemma A.3. If error terms u; in equation are defined in Assumption then the

least squares estimate for 11 is distributed as

vecKQ(ﬁ M - [QTST, 0]>DT}

T T 1 T / 1 T /
o 1 / 1 / T Zt:l Zl,t—lZl,tfl T372 Zt:1 Zl,t—lzz,tq
= wvec|l—=)» QwZi, 1,= Y QuZy, |
\/T 1,t 1 T 2,t 1 1 T Z Z/ L T Z Z/
t=1 T3/2 Zt:l 2,t—141t—1 T2 Zt:l 214211

t=1

-1

[ N(07 E,;11,21 ® Zv)

vee{ (A J} W, Py + £, 1)) [ o

—d y J—
1 y ’ Orx(m—r) -1
(| Opnerrer e | Ay WaaWids)A ; )
TI, 0
where W, is m-dimensional Brownian motion, Dy = \/g T ), Y, 18 the co-

variance matriz of v, = Quwy, A = QD(1)P with P satisfying ¥, = PP’ and T'(h) =
>0 @D, DiQ)".

When the error terms are dependent, the stochastic part {u,;Z], ;} is no longer a mar-
tingale difference sequence. Thus consistency of the least squares estimate does not hold.
To calculate the bias term, we first transform the stationary AR(1) process of {Z;;} into

MA (00) representation. Due to the stationarity of {Z; .}, we can derive from
G(L)Z1, = fw, where G(L) = I, — f'aL
that
Z1p=G(L) ' Buy = G(L) ' B'R(L)wy = X(L)wy
Therefore,

T T T

1 1 1

T Z QUtZ{,t—l -7 Z thZLt—l + T Z Q(r(L) — H(O))th{’t_l
t=1 t=1 t=1

with %Zthl Q(K(L) = K(ONwi Zy 4y —p D252 QX X]_y = QY. Y is thus the measure
of the correlation between w, and Z;;_;, which is also the source of bias. Its existence is

ensured by the assumption on (L) and the stationarity of Z ;.
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This result leads to a modified version of asymptotic normality as

T
1
\/Tvec(f ZutZ{,t,l —T) =4 N(0,%X.1:1 @ Xy)

After being corrected for the bias term, the asymptotic distribution has similar form with
the 7.i.d error case. The asymptotics of the unit root process under Assumption can
be referred to |Lutkepohl (2007)

Proof of Proposition

The proof is similar to the proof of Theorem except that the coefficient matrix R is
from the QR decomposition of IT + YX '3, the biased counterpart. The argument with
respect to the penalty should be modified as follows.

If at least one element in R(7,) is non-zero, then

SE1RG) + i Bali |~ 1RG)I)
mp v |
)\(’ank 1

= = (IR() + —=Ex(i,)|| - |IRG,
T I1R6) + el = IRGI)

Nk ||R(i,) + = Er(i,)|* - IR,
1RG,)|[" IRG,) + F=Er(i, >|\+||R< )]
gk [ TS (2R(i, §) + <= Er(i, 5)) (Erl(i, 5))

|1 RG, )] |’R<7)‘|’fER( N+ 112G
—p 0

If all the elements in R(i,) are zero, then

Arank 1
———(||R(i,) + = Er(i,)|| — [|R(i,)]])
1R[] T
T
= H— r(i, )]
TR, T
gt
= =R
TR,
— o0
The left can be finished similar to Wang and Leng (2008)). O
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Proof of Theorem [3.4]

As in the proof of Theorem [3.2] we define such an objective function:

2

. 1
Ur(E) = |lvec(AY) — ([ Y’ BT AXP ] ®Im)vec([ a BP } + ﬁE) -
m T 1
+ A\ (i, §) + —=Fo (i 30
> D NHali) + Bl 30
P
a 1
T ZZZ)‘Z 9| B i, j +7Ek(2 ,3)]
k=1 =1 j=1 T
where AX? is the first mp rows of AX, B? = [By,...,B,| and E = [Ey, E1,..., E,], Ey
has dimension m x r and Ej, ..., E, are square matrix of dimension m.
As before, we want to minimize
Ar(E) = Yr(E)—Ur(0) (31)
1 BT/Y 1 N 1
— vee(—=E) ® 1) (Ir ® 221 [Y’ i AXP’]®Imvec—E
(=B e | @t eS| v Jvee(—=E)

E)

3 -

Case 1: 0<r<m

Because BT converges to [ at the rate of T', we can thus derive the asymptotic distribution

of this term:

Ay,

v [YLIBT AXP ] ) Srers

Based on the proof of Theorem [3.2] we can similarly show that
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® S, Hvee(U)

u

3=

1 i
= vee =8, [v,or axe])
—d N(O, Yirere & E;l)

For the penalty imposed on matrix o, Y 30 N9 (Jeu(i, §) + %Eo(z', D= leli,)]) =
rank

D 2 f (B (i, §)sgn(ali, j)I(ali, j) # 0)+|Ey(i, ) I(a(i, j) = 0)). By assumption, o
0. Therefore, asymptotically, the penalty on « disappears and the estimate is consistent.

The same argument works for By, k=1,...,p.

We have shown that the empirical covariance matrix of the regressors and that between
regressor and error terms are all standard as stationary case. The asymptotic distribution

in Theorem [3.4] follows naturally.

The proof for Case 2 when r = 0 and Case 8 when r = m are also omitted here.

Proof of Theorem 4.1

According to , the impulse responses matrices ®; are the elements of the upper left-
hand (m xm) block of A7. Therefore it is equivalent to show A7 are consistent estimates in
the MA representation. With the notations defined in Section [2] the estimated coefficient

matrices A are

Lt Bi4ll By— By - BB, -B,

A I, 0 0 0
A= . | |

0 0 I, 0
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In Lemma we see that §1 is a consistent estimator of ', and according to Theorem
m, R’T is a consistent rank estimator. Then

-1l = [[R5S] - af|l2
= |[RpS) —aHH'B
RS, — RL.H'B' + RL.H'B — aHH'B|
IR;(S — H'B') + (R — RH'B||2
SH%MW@—FMMW%—HMWWMZ%Q%)

according to Theorem and Theorem and || By, — Byl = Op(\/if) fork=1,...,p
by Theorem . Thus we have ||A — A,0p

(L)
In order to show ||A7 — A7, —, 0, we start with p = 2 as follows

A2 — A%, = ||A?2 - AA+ AA— A%,

IA(A = A) + (A= A)A|

[All2 - |A = Allz + [| A — A2 All2
= Op(|A—All2) =, 0

IN

where ||Al; = 1. Now assume that ||47~! — 471, = O,(||A — Al|5) for finite j, then we

have,

|40 = Ay = ATA- AL A4 - AT
= AN A=A+ (A = AL
= Oyl A4l)

Since qA)]’ are the elements of the upper left-hand (m x m) block of A it follows that
| = ®;ll2 = 0. O
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Proof of Theorem 4.2

In Lemma we see that é)j is a consistent estimator of ®;, and consistent estimate of
Y, is given by 32,.With the notation from ,

h—1
[ Fy — Fyllz = [©;2, 2] — ©;5, P
=0
= Op([|®; = ®[I3) + Op([2u — Zull2)
1
= Op(7)

The last equality follows from Theorem and T-consistency of S

B Additional Results

The following lemma recalls the asymptotic distribution of reduced rank regression (see
e.g. [Liitkepohl (2007) and |Anderson| (2002))).

Lemma B.1. In special vector error correction model, suppose ' = [I,  [5}], where B} is
of dimension (m —r) x r. The estimate from canonical correlation analysis BT’ has the
form [B;,B;], where B{ are the first v columns of B7.

1 1
T(Boby" — fo) —a ( / W LAWY ( / We W ds)! (32)
0 0
where
1
Wi = Q2|0 L, |SiW,

1 1 1
Wr = (&/X2a)dS2Q 'S2W,,

T

in which Q** denotes the lower right-hand (m —r) x (m — 1) block of Q.

The key point in Lemma is that W} and W}

m—r

are two independent Wiener pro-

O’I" m—r .
cesses. Thus compared with the term X,/ “( fol Wi dW, ) i IX( " | in Result 1 on
page 273 of [Liitkepohl (2007), we can see that the distribution in Lemma is more

concentrated around 0. For general VECM, a similar result applies.
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C Model estimation and specifications for simula-

tions

C.1 Simulation result for model 1

Model 1: The experiments 7 and 8 in |Chao and Phillips (1999) are a trivariate VAR
with one lag and two cointegration vectors entering a single equation of the system. In
their setting, the Monte Carlo study has demonstrated that their criterion performs well
in small samples. Our model 1 is based on the same specification as the experiment 8,
but consider different error structure. In addition to p = 0.0, we allow for strong cross-
sectional dependence by choosing p = 0.6. Therefore we have the following specification

which satisfies the standard assumptions,

AY, = af'Y,.1 + BIAY, 1 + w (33)
with
—0.25 0 L 0 0
af = 1.2 0
01 —-0.5
0 0.5
and
0.25 0 0
Bi=| -12 01 0
0 —0.5 0.25

Table |8 reports the comparison of rank and lag selection results based on Model 1. The
results indicate that lag selection performs well independent of the exact choice of tuning
parameters with almost perfect results. For rank selection in this simplest case, the
penalty term should not be too large i.e. we require ¢ = 1 with v = 2 for good finite-

sample performance.
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Model 1 (T = 200, p = 0.0) Model 1 (T = 500, p = 0.0)
c=1 c=2 c=3 c=1 c=2 c=3
~v=2.0|100/95 100/100 96/100 v=2.0| 100/99 100/100 100/100
~v=3.098/100 80/100 59/100 ~v=3.0 | 100/100 100/100 99/100
~v=4.0 | 80/100 50/100 24/100 ~v=4.0|100/100 87/100 62/100

v=5.0|57/100 22/99 10/98 v=>5.0| 8/100 50/100 20/100
Model 1 (T =200, p = 0.6) Model 1 (T =500, p = 0.6)
c=1 c=2 c=3 c=1 c=2 c=3

~ =20 100/8 100/100 92/100 ~ =20 100/81 100/99 100/100
v=3.098/100 80/100 58/100 ~=3.0|100/100 100/100 97/100
v =4.0179/100 48/100 27/100 ~v=4.01 98/100 89/100  66/100
v =5.054/100 27/100 14/100 v=50/ 89/100 55/100  28/100

Table 8: Absolute numbers X X/Y'Y of correct model selections by solving and
for b = 100 repetitions of model 1 with m = 3, »r = 2, p = 1. For each parameter
specification, X X denotes the number of correct rank selections while Y'Y is the number
of correct lag length identifications. Underlining marks the choice with tuning parameters
selected according to BIC.

C.2 DModel specifications

Model 2 (m =8, r =4 and p = 1):

[ 147 13 0 —1.26

0 097 0 0

0 0 —0.74 0

| -119 085 0 0

“T | —os5 078 -1 —137

0.8 075 0 0

0 —0.74 —1.26 —0.78

0 14 0 0|
1000 0 0 —087 145
o100 o0 0 0 148
b= 0010 0 —1.29 —053 09
000108 149 —0.82 —0.69

and By = diag(—0.1852968, 0.4258125, —0.1638084, 0.07833603, —0.5304448,
—0.06855371, —0.7495951, 0.5052671).
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Model 3 (m=8,r=2, p=2):

[ 0.1608246  0.291117 |
—0.4309348  —0.2267309
0.7295761  0.7436813
0.07949743  —0.5752491
—0.808063  0.3370188
09472972 0.6852261
—0.8611832  0.6208253
0.8499345 —0.8429375

1 0 01137227 —0.1445802 0.955692 —0.01119379 —0.1954843 —0.9958803
0 1 —0.4215756  0.1502944 —0.9341822 —0.5203012  0.4701862  0.1764804

and By = diag(0.5013845,0.1583768, 0.5494133, —0.3385856, 0.2190922, 0.7720483,
0.4980826, 0.02718882),

By = diag(—0.4011076, —0.1267015, —0.4395306, 0.2708685, —0.1752738, —0.6176387,
—0.3984661, —0.02175106).

Model 4 (m =16, r =8 and p = 1):

By = diag(—0.6148991, 0.168343,0.3511661, —0.001352618, 0.1055825,
0.05016321,0.7834411, —0.2399435, —0.1913784, 0.3762232, 0.5340184,
0.4320375, —0.05925948, —0.4302867, 0.6217901, 0.6814101)

and
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[ —0.2045456 0.127218 —0.1044799 0.04996874 —0.05324593 0.1565453 0.332533 —0.457871
—0.4443822 —0.08324072 —0.0994021 —0.006434139 0.8885221 0.7546155 0.0222507 —0.417577
0.02561123 —0.2445912 —1.076358 0.8504335 0.1481624 0.6820225 0.6595054 —1.188968
—0.6543165 0.2423194 0.2819167 —0.1265963 1.482206 0.5994158 —0.4464372 0.2431477
0.2654349 —0.07548686 —1.339042 0.2375221 —0.2709482 0.2829385 0.4697307 —0.7166703
—0.3424121 0.2241369 0.6579697 0.3476774 0.6523763 0.03524423 —0.6483029 0.2463741
0.5500683 —0.1995099 —1.636145 —0.05230706 0.8620913 2.380207 0.5911425 —0.5798727
—1.777504 0.1451031 1.090046 —2.125592 2.355909 —0.1184615 —0.3810751 —0.07006646
0.03690864 0.2959453 0.4596786 —0.08504518 —0.8577548 —0.3276708 —0.04811136 0.1974386
0.1274685 0.3188476 —0.158153 0.865952 —0.5238296 0.3224605 0.1759896 —0.1743132
0.6877773 —0.267961 —1.200547 0.9718812 0.741968 1.127951 0.3476049 —0.6302973
—1.599591 0.08954511 0.6427153 —2.008208 1.474142 —0.9021317 —0.2037194 0.05227726
—0.5995118 0.325451 1.266808 —0.6414344 —1.09789 —1.814652 —0.4953283 0.4147672
2.089613 0.109772 —0.6641995 2.750278 —2.385913 0.4911569 0.05740444 0.3117873
0.381465 —0.04985673 —1.095212 0.1829222 0.28933 0.9338472 0.2275248 —0.8367844
—0.5197874 0.2886798 0.7498826 —0.510993 0.5903355 —0.4764813 —0.5320649 0.4731749
0.4759285 0.02027912 —0.4462453 0.8765776 0.3538885 1.604166 0.3237477 —0.9067662
—1.827018 0.3025833 0.1609587 —1.733295 1.83846 —0.07487888 0.102428 —0.09694286
—1.103659 0.3535146 1.854295 —1.316152 —1.050559 —3.093349 —0.7909543 1.054735
2.908839 —0.6697658 —1.253489 3.332786 —3.031778 0.6463785 0.1908991 —0.06797553
0.6142871 —0.4385424 —1.777284 0.4888148 0.8513589 1.79723 0.4217885 —0.7512186
—1.715195 —0.1673982 0.6688248 —2.041544 2.3071 —0.5986828 —0.5627274 0.3049924
0.4991491 —0.3568571 —1.473497 —0.03773816 1.083164 1.840999 0.4384005 —0.1480544
—1.143913 0.1124378 1.153012 —1.989919 1.528975 —0.4958258 —0.3311991 0.06841005
0.3286244 0.1224148 0.2050542 —0.06528752 —0.2779508 —0.1944027 —0.4047749 0.200832
0.4729683 0.3524514 0.2237484 0.347894 —1.312519 —0.9115838 —0.06049354 0.5031275
0.179212 —0.06148401 —0.2682591 0.002612084 0.2562654 0.6027553 0.06573209 0.06074722
—0.9053709 —0.281054 —0.04361244 —1.034311 1.04103 —0.09367657 0.06775278 —0.2801906
—0.7085927 0.09905573 1.315568 —0.7422261 0.3070841 —1.067854 —0.4093839 0.7709888
1.028702 —0.6319483 —0.7613088 0.3946705 —0.9016278 0.4049568 0.4971999 —0.4592194
—0.6739596 0.5794677 1.985851 —0.7148621 —1.103973 —1.672337 —0.4095454 0.8435712

L1.520876 0.133889 —0.8365487 2.135475 —2.056529 0.9585998 0.6852929 —0.5481826
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C.3 Comparison of different estimation methods

T = 200 25% 50% 75%
| Mass0 — 11| |2 7.974e~* 1.376e73  2.588¢ 3
I, — 11|12 7.536e%  1.424¢3  3.004e”3

I p

| Madaptive — 1|3 3.902¢2 1.807e"2 3.370e"2
|| B1.1asso — Bul[3 1.606e3  2.759¢=%  4.206e3
||B1is — Bil|3 2.246¢73  3.561e™%  6.258¢ 3
|AYT 41 ass0 — AYF: 3 | 1.617e72 4.527¢7%  1.032¢ !
|AY 7y — AV ]3| 1.818e72 3.928¢7%  1.062¢*

T = 500 25% 50% 75%

M550 — I1) |3 3.502¢*  5.562e~*  9.509¢*

|11, — 11) |3 3.759¢*  6.413¢~* 1.131e73

[ Madaptive — 11| 2 1.771e™3 1.131e72 2.919¢ 2

|B1.1asso — Bil[3 7.979¢~*  1.195¢7%  1.990e?

|B1.1s — Bil|3 9.162¢* 1.471e™3  2.268¢~3

|AY7 1110550 — A7 L1ll3 | 1.442¢72 2.917e72  5.725¢ 2

AYri1gs — AYE 3 | 1.257e72 2.605¢72  4.507¢ 2
+1, T+1112

Table 9: Comparison of different estimation methods for Model 1

T = 200 25% 50% 75%
| Mass0 — 11| |3 8.293¢73 1.339¢™2 2.068¢ 2
|1, — 11| 3 3.569¢72  5.100e2 7.193e 2
1B1asso — Bill3 4.396e=%  8.778¢3 1.333e2
|| B1is — Bil|3 2.964e=2  3.946e2 5.289¢ 2
|AYT 41 0550 — AV 13| 2.998 5.872 15.150
|AY 410 — AY 13 4.332 10.510 16.390

T =500 25% 50% 75%
jasso — |2 3.035¢73  4.384e¢7®  5.882¢3
b 2
|11, — 11) |3 1.021e7%  1.532¢72 2.107e 2
Bi 1ass0 — Bi1l)2 2.302¢3  3.537¢™3  4.676¢3
A7 2
|B1.1s — Bil|3 9.562¢ 3 1.302¢72 1.784¢2
|AYT 41 10550 — AY7 L1ll3 | 6.553¢71 2.279 5.329
|AY 7y, — AYE |3 1.208 2.908 6.604

Table 10: Comparison of different estimation methods for Model 2
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T =200 25% 50% 75%

M550 — T1]13 5.365¢7%  7.092¢7%  9.005¢ 3
|ITL,, — 103 3.655¢72  4.578¢2  5.861e >

1 BLiasso — Bill3 2.694¢% 3.813¢73 4.911e73
|B1s — B3 3.809¢ 2 4.769¢ 2  6.229¢ 2
1 Baasso — Ball3 1.633¢72  1.683e2 1.740e~2
||Ba,s — Bol|3 3.183¢"2 3.183e72  3.720e>

|AY 74110550 — AV, ]3| 146771 3.232¢7! 6.040e
AYpr s — AYE |12 | 5.232¢71  1.179 2.824
+1, T+1112

T =500 25% 50% 75%
1 Miasso — 11113 1.939¢=3  2.357¢=3  2.888¢73
|11 — 113 1.175¢=2  1.641e”2  2.248¢72
1B11asso — Bill3 1.046e=3  1.404e3  1.696e~°
|B1s — Bil|3 1.329¢72  1.741e% 2.318e~2
| B2 gasso — Bal |3 1.635¢72  1.667¢~2  1.688¢2
||Ba,is — Bol|3 1.909¢72  2.197e2  2.343¢~2

AY 741 1ass0 — AV 4|3 | 8.695¢72  1.481le™!  2.495¢ !
AYr s —AYE |12 | 2.527e71 5.200e!  1.013
+1, TH+1112

Table 11: Comparison of different estimation methods for Model 3

25% 50% 75%
1 Tasso — T1]|2 5.654¢~2  6.065¢ 2 6.540¢ 2
11T, — T/ 2 9.650¢~2 1.159¢~ 1.374¢!
1B1asso — Bill3 1.718e72  2.032e 2 2.374e 2
||B1ss — Bil|3 8.274¢72 1.004e~! 1.185¢ 2

AY 741 1ass0 — AV 4|3 | 7.623 17.190 39.280
AYriqs — AYS 2 16.940 33.020 61.280
+1, T+1112

25% 50% 75%
| Mass0 — 11| |2 5.297¢~2  5.506e2 5.859¢ 2
11T, — T 2 7.435¢2 8.232¢2 9.599¢2
|| B.1asso — Bil[3 2.223¢72 2.38le72 2.519¢?
|1Bris — Bilf2 5.705¢2  6.479¢~2  7.428¢2

|AY 741 1ass0 — AV ]15 | 7.078 12.900 26.600
|[AY s — AYE 3 9.052 17.210 36.290

Table 12: Comparison of different estimation methods for Model 4
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D Additional Empirical Results
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Figure 5: The time-varying pattern of two cointegration factors, with 7; in black and 7,
in gray.
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Figure 6: This figure graphically shows seven network measures numbered as follows:
1.Cromyis 2.Ctoi, 3.Cheti, 4.indeg (i), 5.outdeg(i), 6.Bet (i), 7.Clos(i) for a range of tuning
parameters. 58
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Figure 7: This figure graphically shows seven network measures numbered as follows:
1.Clromyir 2.Cto4, 3.Creri, 4.1ndeg (i), 5.outdeg(i), 6.Bet (i), 7.Clos(i) for a range of tuning
parameters.
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Netherlands

Figure 8: This figure graphically shows seven network measures numbered as follows:
1.Clromyir 2.Cto4, 3.Cheri, 4.1ndeg (i), 5.outdeg(i), 6.Bet (i), 7.Clos(i) for a range of tuning
parameters.
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