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Abstract

This paper proposes a vector error correction framework for constructing large

consistent spillover networks of nonstationary systems grounded in the network the-

ory of Diebold and Yılmaz (2014). We aim to provide a tailored methodology for

the large non-stationary (macro)economic and financial system application settings

avoiding technical and often hard to verify assumptions for general statistical high-

dimensional approaches where the dimension can also increase with sample size. To

achieve this, we propose an elementwise Lasso-type technique for consistent and nu-

merically efficient model selection of VECM, and relate the resulting forecast error

variance decomposition to the network topology representation. We also derive the

corresponding asymptotic results for model selection and network estimation under

standard assumptions. Moreover, we develop a refinement strategy for efficient esti-

mation and show implications and modifications for general dependent innovations.

In a comprehensive simulation study, we show convincing finite sample performance

of our technique in all cases of moderate and low dimensions. In an application to

a system of FX rates, the proposed method leads to novel insights on the connect-

edness and spillover effects in the FX market among the OECD countries.

JEL classification: C3, C5, F3

Keywords : network, connectedness, cointegration, VECM, exchange rates, adaptive Lasso,

nonstationary, spillover

∗Karlsruhe Institute of Technology, Chair of Econometrics and Statistics, Blücherstr.17, 76185 Karl-
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1 Introduction

In recent years, the analysis of networks over time has become central for understanding

and estimating complex systems in macroeconomics and finance. Generally, links between

the components of the system might act as the carriers of systemic risk transmission

and thus identifying the connectedness structure has become research focus in order to

uncover the spillover effects. For example, Billio et al. (2012) use a Granger causal

network to measure systemic risk across and within different parts of the financial sector;

in the framework of vector autoregressive (VAR) model, Diebold and Yilmaz (2009, 2012)

and later Diebold and Yılmaz (2014) propose a volatility spillover network using the

generalized variance decomposition of Pesaran and Shin (1998).

However many economic and financial systems are dynamic, multi-dimensional and often

contain a large number of non-stationary potentially cointegrated components, the stan-

dard VAR setting does not consider a potential cointegration structure. To handle such

multivariate time-series, we use the VECM as introduced in Engle and Granger (1987).

While already for settings greater than dimension two, standard econometric techniques

(Johansen, 1988, 1991; Xiao and Phillips, 1999; Hubrich et al., 2001; Boswijk et al., 2015)

often fail to provide accurate, testable and computationally tractable estimates, there has

emerged a recent literature on high-dimensional estimation (Liang and Schienle, 2019;

Zhang et al., 2018) in this context. The generality of the latter approaches, however,

comes with a set of technical assumptions which are hard to verify in practice and lacking

asymptotic distributional results which are key for inference. Thus in particular in view

of many macroeconomic applications, there is a need for easy to use practically feasible

techniques with available asymptotic distributions for cases where cross-sectional dimen-

sions are moderately large, i.e. large but not expanding with sample size. We show that

for such settings, not only assumptions simplify and asymptotic confidence regions exist,

but also novel tailored procedures can be designed. Such techniques would not be feasible

in the fully high-dimensional setup, but allow for a more refined identification of non-zero

elements in the moderate dimensional model.

In our setting, the above VECM estimation results can be associated with several net-

work structures such as Dahlhaus (2000), Eichler (2007), Eichler (2012) and Diebold and

Yılmaz (2014). Here we focus on one particular structure, the DY network, following

the work of Diebold and Yılmaz (2014). To estimate the VECM, we propose an adap-

tive shrinkage method that simultaneously allows for model choice and direct estimation.

Model determination is treated as a joint selection problem of cointegrating rank and VAR

lags. Even for moderate cross-section dimensions, the amount of possible combinations

of cointegration relations and VAR lags becomes quite large. In this case, we exploit that

from a large fixed number of potential cointegration relations, in practice, only a few of
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them actually occur in the system. In the same way in practice, a small number of VAR

lags are considered sufficient for a parsimonious model specification, i.e. within a maxi-

mum lag range only a small number of effective lags are relevant, which are not required

to be consecutive. In this sense, the problem is assumed to be “sparse”. In contrast

to a fully high-dimensional set-up, this “sparsity” is not necessary for consistent model

identification but only increases the numerical efficiency and thus the feasibility of our

procedure. We show consistency of the variable selection by the proposed Lasso-VECM

estimator and derive its asymptotic properties for inference. For more efficient estimation

in particular in cases with a small sample for a large cross-section dimension, we provide

a refined estimation strategy and derive its statistical properties. Our presented methods

here are tailored to the moderate fixed-dimensional case where elementwise adaptive lasso

penalization is still numerically feasible. For such cases which are prevalent in macroeco-

nomic applications, the techniques can identify not only the cointegration rank and lag

consistently but also non-zero elements in the structure of the cointegration space. A

simulation study shows the effectiveness of the proposed techniques in finite samples. In

addition, we conduct an empirical study for quarterly floating exchange (FX) data for

a system of 17 OECD countries. There is a sizable literature suggesting that, especially

at short horizons, a random walk forecast of the exchange rate generally outperforms

alternative models (such as Meese and Rogoff (1983)). This indicates that the FX series

contain nonstationary dynamics and VECM is required to handle such large system. Our

FX application illustrates that such refinements can make a difference in practice.

Our theoretical work builds on the vast literature of VECM as summarized e.g. in Lütke-

pohl (2007) as well as on results for adaptive Lasso techniques as in Zou (2006) and Yuan

and Lin (2006) and Medeiros and Mendes (2016). More recently, our technique also relates

to the work of Kock and Callot (2015), Barigozzi and Brownlees (2019) which use Lasso

for model determination in a stationary high-dimensional VAR context but cannot handle

nonstationary components. For non-stationary time series, there also exists some empir-

ical and simulation work employing penalizing algorithms for VECM without proofs, see

e.g. Signoretto and Suykens (2012), Wilms and Croux (2016). Some theoretical results

for a nonlinear penalization criterion in fixed-dimensional VECM have been derived by

Liao and Phillips (2015). However their theoretical results hold only for real eigenvalues

but complex eigenvalues will occur in the numerical and empirical examples. Our pro-

posed linear Lasso approach, however, does not require a symmetric cointegration matrix

and thus provides a feasible solution for general moderate to high dimensional settings.

These non-symmetric cases are the rule rather than the exception where eigenvalue based

methods have not only feasibility problems but fail to get any real-valued solution at all.

In contrast to the general but only group-wise rough high-dimensional shrinkage in Liang

and Schienle (2019), the presented moderate dimensional technique can identify non-zero
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elements in the cointegration space and avoid technical and hard to verify eigenvalue type

assumptions. For applications, this can be key to augmented forecasting results as illus-

trated in the studied FX case. The paper is also related to the high-dimensional factor

model without explicit VECM structure in Lam and Yao (2012), Zhang et al. (2018) and

the high-dimensional distributional results by random matrix theory in Onatski and Wang

(2018). Compared to Lam and Yao (2012), Zhang et al. (2018), we incorporate standard

factor model with VECM structure and apply Lasso to determine the rank. In contrast

to Onatski and Wang (2018), our focus in on consistent model selection rather than the

distribution of eigenvalues.

The paper is organized as follows. Section 2 presents the model setup. Section 3 provides

the determination of underlying dynamics. We first show the lasso-type technique for

consistent and numerically efficient model selection of VECM. Second, we give the main

asymptotic results on model selection consistency and derives the asymptotic distribution

for estimates. We also show strategies for refined estimation and derive results when the

error terms are weakly dependent. Section 5 presents comprehensive simulation results,

as well as the empirical findings for FX rates. All proofs are contained in the Appendix.

2 Model setup

We consider a VECM setup with {Yt} is a nonstationary m-dimensional I(1) process,

∆Yt = Yt − Yt−1 is stationary. Suppose general structure of the true process {Yt} follows

∆Yt = ΠYt−1 +B1∆Yt−1 + · · ·+BP∆Yt−P + ut (1)

for t = 1, . . . , T . Π is an m ×m matrix of rank r with 0 ≤ r < m, marking the number

of cointegration relations in the system. Π can be further decomposed as Π = αβ′,

where β marks the r long-run cointegrating relations and α is a loading matrix of rank r.

Without loss of generality, we set β as orthogonal, i.e. β′β = Ir. Then the decomposition

Π = αβ′ is unique up to an orthonormal H, the cointegration relations β are identified

up to rotation. We set the maximum possible lag length P as sufficiently large but fixed

independent of T , such that it is an upper bound for the true lag p, i.e. p < P . In

this case, Bp+1, . . . , BP are all zero matrices. Additionally we assume that m/r = c1

and P/p = c2 with c1, c2 � 1, i.e. c1, c2 are substantially exceeding 1, meaning that the

number of cointegration relations is small relative to m as well as the effective lag length

p is much smaller than P . Note that in contrast to a fully high-dimensional set-up, this

“sparsity” type assumption is not necessary for consistent model identification but only

increases the numerical efficiency and thus the feasibility of our procedure.
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For the error term ut, we first employ a standard white noise assumption to focus on the

key aspects of our Lasso selection procedure while keeping technical results simple. Later

in Section 3.3.2, we show how this i.i.d assumption can be relaxed allowing linear forms

of weak dependence. Though, we show that such a general setting requires changes in the

Lasso procedure and leads to different statistical properties of the modified technique los-

ing the elementwise advantages. Generally, the normality in the following Assumption 2.1

is not crucial and can be further relaxed to only moment assumptions at the price of more

involved technical arguments which, however, are not specific to our VECM set-up.

Assumption 2.1. The error term ut is i.i.d. N (0,Σu) where Σu is a symmetric, positive

definite m×m matrix.

Following the DY-network, we rely on the variation decomposition tool to evaluate the

effect of a shock in one system variable. The network literature generally characterizes

systemic risk spillover effects as connectedness obtained from a generalized forecast error

variance decomposition (FEVD) of an underlying VAR system. As cointegrated variables

can be generated by a VAR process, rearranging terms in (1) then gives the following

VAR(P + 1) process in levels

Yt = (Im +B1 + αβ′)Yt−1 + (B2 −B1)Yt−2 + . . . (2)

+(BP −BP−1)Yt−P −BPYt−P−1 + ut

and we write model (2) in companion form as

Vt = AVt−1 + ωt (3)

where Vt = [Y ′t , Y
′
t−1 . . . , Y

′
t−p]

′ and ωt = [u′t, 0, . . . , 0]′ and

A =


Im +B1 + αβ′ B2 −B1 · · · Bp −Bp−1 −Bp

Im 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0

 . (4)

We also use the corresponding infinite moving average (MA) representation of the system

(3) in the form

Vt =
∞∑
j=0

Ajωt−j or Yt =
∞∑
j=0

Φjut−j (5)
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where the jth MA coefficient matrices Φj are the elements of the upper left-hand (m×m)

block of Aj, with Φ0 = Im. Using the framework proposed by Koop et al. (1996) and

Pesaran and Shin (1998), we specify the scaled generalized impulse response function

as IRF (j, h) = σ
− 1

2
jj ΦhΣuej which measures the effect of one standard error shock to

the jth equation at time t on expected values of Y at time t + h. σjj is the standard

deviation of the innovation term in j-th equation. ei is a selection vector with unity as

its i-th element and zeros elsewhere. Finally, the H-step ahead generalized forecast error

variance decomposition (GFEVD) θij(H) of elements i and j is given by

θij(H) =
σ−1
jj

∑H−1
h=0 (e′iΦhΣuej)

2∑H−1
h=0 (e′iΦhΣuΦ′hei)

(6)

The DY-network works with the following θ̃ij(H) which are normalized by row sum for

easier interpretability

θ̃ij(H) =
θij(H)∑m
j=1 θij(H)

(7)

Note that by construction (7) we have
∑m

j=1 θ̃ij(H) = 1. Accordingly, for each node i in

the network we work with the following quantities as in the DY-network literature. We

denote the pairwise directional connectedness CH
i←j from j to i by

CH
i←j = θ̃ij(H) (8)

Moreover, aggregating all effects of component i on other elements in the system, we

call the total directional connectedness “to” CH
i←• (others to i) given by CH

i←• = CH
to,i =∑m

j=1 θ̃ij(H)/m, for i 6= j. Analogously, the total directional connectedness “from” CH
•←i

(from i to others) is defined as CH
•←i = CH

from,i =
∑m

i=1 θ̃ij(H)/m, for j 6= i. Each column

refers to a variable that transmits the shock while the rows refer to respective variables

that receive the transmitted shock.

Moreover the net total directional connectedness CH
net,i measures the direction and mag-

nitude of the net spillover impacts of node i in the system as

CH
net,i = CH

from,i − CH
to,i = CH

•←i − CH
i←• (9)

and the total connectedness is given as

CH
total =

m∑
i,j=1

θ̃ij(H)/m, for i 6= j (10)
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Estimates of all connectedness measures are obtained by using the respective plug-in

estimates in the GFEVD (6).

3 Determination of underlying dynamics

3.1 Model determination

For the detection of network spillovers in large nonstationary systems from forecast error

variance decompositions, the determination and pre-estimation of the underlying dynam-

ics is key. Note while direct VAR estimation of cointegrated systems in (2) is consistent, it

is well-known that pre-detection of the cointegration parameters in the VECM specifica-

tion (1) yields finite sample advantages in forecasting (see e.g. Engle and Yoo (1987)). For

this, we propose a sparse and thus numerically efficient Lasso-type VECM determination

technique which scales to general larger systems.

This section contains two parts: we first derive the Lasso objective function for cointe-

grating rank selection and estimation. Then we show the determination of the lag order

in a similar manner. Therefore the model specification amounts to both rank and lag

order determination. Throughout the paper, we use the following notation. For a ∈ Rm,

we write ||a||2A = a′Aa for any non-singular positive definite matrix A. The corresponding

empirical norm is denoted by ||a||2
Ã

= a′Ãa with a consistent pre-estimate Ã of A. ||a||22
denotes the squared l2 norm. For matrices we use the Frobenius norm || · ||F and →d

denotes convergence in distribution.

In addition to the error term assumption 2.1, our analysis also relies on the decomposition

of a transformed Yt into a stationary and a non-stationary component. Its existence is

generally guaranteed by the Granger representation theorem (see Engle and Granger

(1987)) which requires the following assumptions,

Assumption 3.1. 1. The roots for |(1− z)Im −Πz −
∑p

j=1Bj(1− z)zj| = 0 is either

|z| = 1 or |z| > 1.

2. The number of roots lying on the unit circle is m− r.

3. The matrix α′⊥(Im −
∑p

i=1Bi)β⊥ is nonsingular.

For estimation purposes, we rewrite the general VECM defined in (1) in matrix notation

∆Y = ΠY−1 +B∆X + U (11)

where ∆Y = [∆Y1, . . . ,∆YT ], Y−1 = [Y0, . . . , YT−1], B = [B1, . . . , BP ], ∆X = [∆X0, . . . ,∆XT−1]
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with ∆Xt−1 =
[
∆Y ′t−1, . . . ,∆Y

′
t−P
]′

and U = [u1, . . . , uT ]. W.l.o.g, Yk = 0 for k ≤ 0.

Moreover, we denote Γt = [Y ′t−1β,∆Y
′
t−1, . . . ,∆Y

′
t−P ]′. Under Assumptions 2.1 and 3.1, it

holds by Lemma 1 in Toda and Phillips (1993)

1√
T

[Ts]∑
t=1

Γt →p BΓ(s) (12)

where BΓ(s) is a Brownian motion with covariance given as

ΣΓΓ =

(
Σz1z1 Σz1∆x

Σ∆xz1 Σ∆x∆x

)
(13)

Denote the LS estimate for (11) as [Π̃ls, B̃ls], thus we obtain the consistent estimate of Σu

as Σ̃u = 1
T−mP+1

(∆Y − Π̃lsY−1 − B̃ls∆X)(∆Y − Π̃lsY−1 − B̃ls∆X)′ (see e.g. Lütkepohl,

2007).

For model selection, we disentangle the joint lag-rank selection problem by employing the

Frisch-Waugh-idea in (11). Thus we obtain two independent criteria for lag and rank

choice which can be computed separately.

Rank determination For rank selection, the partial LS pre-estimate Π̃ can be obtained

from the corresponding partial model when removing the effect of ∆X in ∆Y and Y−1 by

regressing ∆YM on Y−1M with M = IT −∆X ′(∆X∆X ′)−1∆X. Thus it is

Π̃ =
(

∆YMY ′−1

)(
Y−1MY ′−1

)−1

(14)

and we show that Π̃ is a consistent estimate for Π in Lemma A.1 in the Appendix.

The distribution of Π̃ relies on a Q-transformation of Yt, which allows to disentangle

stationary and nonstationary components. It pre-multiplies all elements in (11) from the

left with the specific matrix Q defined as follows

Q =

[
β′

α′⊥

]
Q−1 =

[
α(β′α)−1 β⊥(α′⊥β⊥)−1

]
where α⊥ and β⊥ denote the orthogonal complement of α and β respectively.1 Note in

particular, that the I(1) assumption on Yt ensures that β′α and α′⊥β⊥ are non-singular

1For m ≥ r, we denote by M⊥ an orthogonal complement of the m × r matrix M with rk(M) = r.
Thus M⊥ is any m× (m− r) matrix with rk(M⊥) = m− r and M ′M⊥ = 0.
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component matrices in r× r and (m− r)× (m− r) respectively, thus appearing inverses

in Q−1 exist and all matrices are well-defined. Thus by Q-transformation, we obtain a

new vector Zt = QYt = [(β′Yt)
′, (α′⊥Yt)

′]′ = [Z ′1,t, Z
′
2,t]
′ decomposed into a distinct sta-

tionary and nonstationary part. In particular by definition, the first component Z1,t of

dimension r is stationary and the (m−r)-dimensional remainder Z2,t is a unit root process.

For determining the cointegration rank, we therefore aim at empirically disentangling the

stationary part Z1,t from the non-stationary Z2,t with the help of a Lasso-type proce-

dure. The basic principle of standard Lasso-type methods is to determine the number

of covariates in a linear model according to a penalized loss-function criterion. Likewise,

the determination of the cointegration rank in (11) amounts to distinguishing the vectors

spanning the cointegration space from the basis of its orthogonal complement. This is

equivalent to separating the non-zero singular values of Π from the zero ones, where the

number of non-zero singular values corresponds to the rank. Thus, the corresponding

loading matrix for β′Yt−1 is α while the remainder β′⊥Yt−1 should get loading zero. We

say the underlying model has a sparse structure with respect to the rank if m/r = c1

and c1 � 1. In this case, which we consider as practically prevalent in the moderate-

dimensional setting, only a very limited number r of cointegration relationships occur

while there are potentially many options m. The problem is more sparse, the larger

c1. In such cases, Lasso-type methods are tailored to detecting corresponding non-zero

loadings. To do so, we require a pre-estimate for β, which we obtain from the following

QR-decomposition

Π̃ = R̃′S̃ ′ (15)

=
[
R̃′1,m×r R̃′2,m×(m−r)

] [ S̃ ′1,r×m

S̃ ′2,(m−r)×m

]

where S̃ is an orthonormal matrix, i.e. S̃ ′S̃ = I. R̃ is an upper triangular matrix 2and

further properties of this decomposition can be found in Stewart (1984). Column-pivoting

orders columns in R according to size putting zero-columns at the end.3 Since Π̃ is a

matrix of full-rank and also a consistent estimate of Π, the lower diagonal elements of

the last (m − r) columns of the matrix R̃′ are expected to be small, converging to zero

asymptotically at unit root speed T . This is shown in the following Lemma where we

derive convergence results of the QR-decomposition components R̃ and S̃ from the least

2Such a decomposition exists for any real squared matrix. It is unique for invertible Π̃ if all diagonal
entries of R̃ are fixed to be positive. There are several numerical algorithms like Gram-Schmidt or the
Householder reflection which yield the numerical decomposition.

3Generally, column pivoting uses a permutation on R such that its final elements R(i, j) fulfill:

|R(1, 1)| ≥ |R(2, 2)| ≥ . . . ≥ |R(m,m)| and R(k, k)2 ≥
∑j

i=k+1R(i, j)2.
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squares pre-estimate Π̃′.

Lemma 3.1. Let Assumptions 2.1 and 3.1 hold for Π̃ in (14). We denote by R̃′1 the first

r and by R̃′2 the last m− r columns of R̃′ in the QR-decomposition (15) of Π̃′ defined in

(14). Let β be orthonormal and H be a (r × r)-orthonormal matrix.

||S̃1 − βH||F = Op(
1

T
)

||R̃2||F = Op(
1

T
)

√
Tvec(R̃′1H − α) →d N(0,Σ−1

z1z1.∆x ⊗ Σu)

where 1
T
β′Y−1MY ′−1β →p Σz1z1.∆x and Σz1z1.∆x is defined as in Lemma A.1.

Thus from Lemma A.1 and 3.1, we can construct a corresponding adaptive Lasso proce-

dure. Hence components R̂(i, j) of R̂ minimize the following criterion over all R(i, j) for

i, j = 1, . . . ,m

‖vec(∆YM)− (MY ′−1S̃ ⊗ Im)vec(R′)‖2
IT⊗Σ−1

u
+

m∑
i,j=1

λranki,j,T

|R̃(i, j)|γ
|R(i, j)| (16)

where R̃(i, j) is from the QR-decomposition of Π̃′ in the partial model (14). We choose

the cointegration rank as r̂ = rank(R̂), where rank(R̂) is the number of non-zero columns

in R̂′ .

Lag order determination Likewise, for independent lag selection, the effect of the

nonstationary term Y−1 in (11) must be filtered out in ∆Y and ∆X for unbiased estimation

in the partial model via regression of ∆Y C on ∆XC with C = IT − Y ′−1(Y−1Y
′
−1)−1Y−1.

Thus we obtain B̂ as minimizing the following objective function over all components

Bk(i, j) for k = 1, . . . , P and i, j = 1, . . . ,m

||vec(∆Y C)− (C∆X ′ ⊗ Im)vec(B)||2
IT⊗Σ−1

u
+

P∑
k=1

m∑
i,j=1

λlag,ki,j,T

|B̌k(i, j)|γ
|Bk(i, j)| (17)

for fixed tuning parameters λlag,ki,j,T , γ, where γ here and in the rank selection (16) might

differ. Moreover, the pre-estimate B̌ in the adaptive Lasso weight can be taken from the

partial least squares estimate B̃ = (∆Y C∆X ′)(∆XC∆X ′)−1 due to consistency. Though

in practice, especially with larger dimensions and lags, multicollinearity effects in ∆X

are quite likely to occur which cause the least squares estimate to become numerically

instable. Therefore we also consider a robust ridge type pre-estimate B̃R as B̌, which can
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be obtained from

B̃R = arg min ‖vec(∆Y C)− (C∆X ′ ⊗ Im)vec(B)‖2 (18)

+νT
∑P

k=1

∑m
i,j=1 |Bk(i, j)|2

The following Theorem 3.1 shows that this pre-estimate is consistent for appropriate

choices of tuning parameters.

Theorem 3.1. If the tuning parameter νT in the ridge regression (18) satisfies νT√
T
→p 0,

then
√
T (B̃R −B) = Op(1) under Assumptions 2.1 and 3.1.

The tuning parameter νT is designed for ridge regression only, and therefore independent of

the rest of the paper. Such choice of tuning parameters has some important implications,

in small sample it will mitigate the multi-collinearity, and in large sample it will achieve

consistency.

As in the case of rank selection, a lag k should be included into the model, whenever

B̂k from the Lasso selection (17) is different from zero. Thus, in contrast to other model

selection criteria, a Lasso-type procedure allows for the inclusion of non-consecutive lags,

which we consider an additional advantage of the procedure. We obtain an estimate p̂ of

the true lag length from (17) as p̂ = max1≤k≤P{k|B̂k 6= 0}.

Note that the residual transformation C in the lag selection criterion (17) is similar to

the second term of the PIC statistics introduced in Chao and Phillips (1999). Moreover,

the lag selection procedure is independent of the unknown rank. Generally, the proposed

Ridge regression pre-step can potentially be further refined, e.g. by elastic net (see Zou

and Hastie (2005)) or sure independence screening (see Fan and Lv (2008)) for a sparse,

consistent and numerically stable pre-estimate. We expect effects on the overall selection

consistency results, however, to be only minor. Morevover, our separate two-step approach

for rank and lag length can help alleviate the numerical instability caused by multi-

collinearity in the lag selection step. The following subsection will show that a larger

than necessary lag P has no effect on model selection consistency which is the main focus

of the paper. Only obtained estimates of β suffer from a corresponding efficiency loss

which can be cured with a refinement (see Subsection 3.3.1 below).

3.2 Model selection consistency

This section states the asymptotic properties of the adaptive Lasso-VECM procedure.

First, we show the result for the cointegrating rank selection according to criterion (16)

which uses the residual transformation M in order to focus on the respective partial effect.
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Theorem 3.2. Suppose that λranki,j,T /
√
T → 0 and T

1
2

(γ−1)λranki,j,T →∞. Under Assumptions

2.1 and 3.1 the objective function (16) yields

1. limT→∞ P(A∗T = A) = 1

where A∗T is index set of the non-zero elements of vec(R̂′) in (16).

2.
√
Tvec(R̂′T −R′)A →d N(0, (Σz1z1.∆x ⊗Σ−1

u )−1
A (Σz1z1.∆x ⊗Σ−1

u )A(Σz1z1.∆x ⊗Σ−1
u )−1
A ) for

r > 0.

Thus Theorem 3.2 yields rank selection consistency. Moreover, for the variance of the

estimates of the non-zero components in R, a smaller P closer to the true p would provide

additional efficiency gains. Using valid restrictions on irrelevant components of ∆Xt−1

variation in Σz1z1.∆x could be reduced. As our focus here is on model selection, however,

this is a secondary concern and we point to Subsection 3.3.1 for refined estimation.

In addition to the rank, for general VECM, we also need to determine the correct lag

in a separate procedure. The following theorem shows the results using the Lasso lag

selection criterion (17) with adaptive weights from a ridge regression pre-estimate B̃R. In

this way, we account for prevalent multicollinearity effects in particular in settings with

higher dimensions and large lag lengths.

Theorem 3.3. Suppose that λlag,ki,j,T /
√
T → 0 and T

1
2

(γ−1)λlag,ki,j,T →∞. Under Assumptions

2.1 and 3.1 the objective function (17) yields:

1. limT→∞ P(B∗T = B) = 1;

where B is the set of indices for the non-zero elements of vec(B), B∗T is the set of

indices for the non-zero elements of vec(B̂) in (17)

2.
√
Tvec(B̂′T −B′)B →d N(0, (Σ∆x∆x.z1 ⊗ Σ−1

u )−1
B (Σ∆x∆x.z1 ⊗ Σ−1

u )B(Σ∆x∆x.z1 ⊗ Σ−1
u )−1
B )

where Σ∆x∆x.z1 = Σ∆x∆x −Σ∆xz1Σ−1
z1z1Σz1∆x with all the component covariance ma-

trices defined in (13).

Thus lag selection is consistent i.e., the true lags are selected with probability 1 even if

they are non-consecutive. For estimation of the coefficients in the relevant lag compo-

nents, as in the case for the rank, we find asymptotic normality and unbiasedness at the

standard stationary speed. Different to the rank selection result in Theorem 3.2, how-

ever, the variance component Σ∆x∆x.z1 only depends on the true rank r automatically

and a pre-estimate for it is not necessary. This results from the different speed of conver-

gence which asymptotically separates the stationary cointegrated component Z1,t−1 and

the nonstationary parts. In this sense, penalized estimates of lag coefficients are more

efficient than the ones for R.
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3.3 Important Refinements and Generalizations

3.3.1 Refined model estimation in higher dimensions

In this section, we show strategies for refined estimation and its corresponding asymp-

totic results when the error terms are weakly dependent. With our proposed adaptive

Lasso techniques, we can select the true model with probability one for sufficiently many

observations. Although both model selection criteria (16) and (17) also yield consistent

estimates for the coefficients of appropriate variables, there is, however, substantial room

for improvement on the estimation side in particular in finite samples for higher dimen-

sions. For pure model estimation in higher dimensions, we therefore suggest a refined

procedure for α and Bk with k ∈ {1, . . . , p} which is still of Lasso type but no longer

adaptive. With a focus on model estimation, given the pre-selected rank and lag, we

propose a pure Lasso procedure rather than an adaptive variant. While the latter is tar-

geted at consistent model selection, a pure Lasso estimate performs better in estimation

and prediction (see Bühlmann and Van De Geer (2011) for the comparison of different

variants of Lasso).

Besides, we use an improved estimate β̃† of β from reduced rank regression (see Ahn and

Reinsel (1990) and Anderson (2002)), which does not suffer from endogeneity bias and

yields improved finite sample performance. Please note, that generally β̃† an efficient

estimate of β̃† relies on a precise estimate for the rank by matrix perturbation theory, as

well as a consistent estimate for the lag p. Therefore in particular in higher-dimensional

sparse settings, it can only be employed in the estimation refinement step and is no option

for the pre-step in model selection.

We thus obtain estimates ˆ̂α,
ˆ̂
B1, . . . ,

ˆ̂
Bp as minimizers of

T∑
t=1

||∆Yt − αβ̃†′Yt−1 −
p∑

k=1

Bk∆Yt−k||2Σ−1
u

+
m∑
i=1

r∑
j=1

λranki,j,T |α(i, j)|+
p∑

k=1

m∑
i,j=1

λlag,ki,j,T |Bk(i, j)| (19)

where λranki,j,T , λ
lag,k
i,j,T are tuning parameters. For no penalty λranki,j,T = λlag,ki,j,T = 0, we recover

the reduced rank regression estimates for α and Bp from (19).

We show that with appropriate choices of tuning parameters, the penalized estimates

from (19) are consistent and yield the same asymptotic variance as the ones from reduced

rank regression, while its solution is sparse in finite samples and thus improves the mean

squared error in general. Though as the simulations in Section 5.1 will confirm, their

finite-sample performance, however, is superior in particular for estimation but also for
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prediction.

Theorem 3.4. Denote Bp = [B1, . . . , Bp]. If λranki,j,T /
√
T →p 0 and λlag,ki,j,T /

√
T →p 0, then

the solution to problem (19) under Assumptions 2.1 and 3.1 satisfies:

√
T
(
vec([ ˆ̂αT ,

ˆ̂
Bp
T ])− vec([α,Bp])

)
∼d N(0,Σ−1

ΓpΓp ⊗ Σu)

where Γpt = [Y ′t−1β,∆Y
′
t−1, . . . ,∆Y

′
t−p]

′ and 1
T

∑T
t=1 ΓptΓ

p′
t →p ΣΓpΓp.

Theorem 3.4 shows that asymptotically, the penalized estimate has the same distribution

as the reduced rank estimate. This is in contrast to the adaptive estimates in Theorem 3.2

and 3.3. In finite samples, however, the variances of nonzero Lasso estimates are smaller

than those from the reduced rank because variables with small coefficients are excluded

from the model, see Section 5.1 for details. Thus even if Lasso estimates may suffer

from finite-sample bias, the overall mean squared error might still be superior. Secondly,

although reduced rank estimates are consistent, i.e. in finite samples, estimates of irrele-

vant zero components are small but might add up influencing estimation and prediction

significantly. The advantage of the penalized estimate in higher dimensions might result

from the fact that the assumption of sparsity in α and Bj becomes increasingly justified

with dimensions more than 3, i.e. often only a small group of leading variables has impact

on the whole system while many others are irrelevant for the rest. Besides, the tuning

parameter can be chosen in the same manner as in univariate case.

3.3.2 Model selection with dependent error terms

Here we illustrate how Assumption 2.1 on i.i.d. innovations can be relaxed. Generally,

independent error terms help to simplify the theoretical analysis but for real data they

are often hard to justify. Therefore we provide explicit results for more general weak

dependence structures and show in which way they effect and deteriorate estimates for α

and β. We illustrate the main effects in the setting of the special case only.

Assumption 3.2. In the VECM as (1) the error term can admit the following linear

dependence structure

ut =
∞∑
j=0

κjwt−j with
∞∑
j=0

j‖κj‖2 <∞.

where wt
iid∼ N (0,Σw) and Σw is positive definite matrix.
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Here we consider weaker dependence in the residual process, therefore stronger assump-

tion on κj is required in Assumption 3.2, which is a sufficient condition for the absolute

summability assumption on κj, i.e.
∑∞

j=0 ‖κj‖2 <∞.

Lemma 3.2. Under Assumption 3.2, the least squares estimate for Π in (11) is biased

and satisfies

Q(Π̃− Π)Q−1 P→ [QΥΣ−1
z1z1, 0m×(m−r)]

For the exact form of Υ as well as the asymptotic distribution of Π̃ we refer to the Appendix

(see Lemma A.3).

The term Υ measures the correlation between ut and Z1,t−1 due to the auto-correlation

of ut under Assumption 3.2.

Define Ξ =

[
β′

β′⊥

]
, we have

Ξ(Π̃′ − Π′ − βΣ−1
z1z1Υ′) = ΞΠ̃′ −

[
α′ + Σ−1

z1z1Υ′

0

]

By a similar argument as for Lemma 3.1, we can conclude that

Lemma 3.3. By the same notation as in Lemma 3.1 and under Assumption 3.2, the

following results hold:

||S̃1 − βH||F = Op(
1

T
)

||R̃2||F = Op(
1

T
)

√
Tvec(R̃′1H − α−ΥΣ−1

z1z1) →d N(0,Σ−1
z1z1 ⊗ Σw)

Due to the bias term, we can’t expect that the selection result is consistent element-wise,

but consistency in rank could still hold when the penalty term is modified. The estimate

R̂ is obtained by minimizing the follwing objective function row-wise in R(i, ) for i =

1, . . . ,m

T∑
t=1

‖ ∆Yt −R′S̃ ′Yt−1 ‖2
2 +

m∑
i=1

λranki,T

||R̃(i, )||γ2
||R(i, )||2 (20)

Different from before, we penalize each row in R as a group, similar to Yuan and Lin

(2006), Wang and Leng (2008). Therefore, there could be zero and non-zero rows in R̂,

but non-zero rows have no zero elements. By Lemma 3.3, the penalty on the first r rows
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of R would be bounded and the penalty on the last m−r rows explodes. Thus consistency

of the estimate from (20) in rank selection is expected. Besides, the first term in (20) is

equivalent to the ordinary least squares problem rather than a generalized least squares

because we penalize the each row in R as a whole. The statistical property is given in

Proposition 3.1.

Proposition 3.1. Given Assumption 3.2, suppose that λranki,T satisfies
λranki,T√

T
→ 0 and

T γ−1λranki,T →∞, the solution to (20) is consistent in selecting the right rank.

When the dimension is higher, the variance of R̂ from (16) generally increases due to the

non-sparse structure within non-zero rows of R̂.

4 Determination of network effects

In this section, we present the statistical properties for estimates of the impulse responses

and the corresponding forecast error variance decomposition (FEVD) as building blocks

for the network connectedness with an underlying large-dimensional VECM dynamics (1).

As shown in Park and Phillips (1989) and Phillips (1998) the impulse response functions

are then given by the elements of the sequence of matrices Φj or certain linear combina-

tions of the components of Φj in the MA-representation (5), depending on the information

set containing the ordering of the shocks or structural relations among them. We get an

estimate Φ̂j of Φh in (5) from estimates Â of the coefficient matrices A as defined in (4)

with Φ̂h = Âh11 where Â11 where is the upper left-hand (m×m) block of Â. The estimate

Â is obtained from the adaptive lasso procedures (16) and (17) that yield estimates for the

components αβ′ and B1 of A11 in (4). Alternatively, we can also use the refined two-step

version (19) for the components.

Thus the following result holds for each component h of the impulse response function

Theorem 4.1. Under Assumptions 2.1 and 3.1, let estimates Φ̂j of the impulse response

matrices Φj be constructed such that all conditions for Theorem 3.2 and 3.3 are met. Then

we get for each integer j ≥ 0:

‖Φ̂j − Φj‖2 = OP (
1√
T

) .

The above theorem shows that the MA coefficient matrices are
√
T -consistent. The re-

spective rate corresponds to the usual stationary rate as expected given the definition of

A. Note that the result directly generalizes to the case when Φ̂j are obtained from the

refined two-step procedure (19) when the conditions of Theorem 3.4 are met. Moreover,
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general time-dependent innovations as in Assumption 3.2 are admissible if estimates Φ̂j

are produced from (20) and the conditions of Proposition 3.1 hold.

With the T -consistent standard least-squares estimate of Σu, Theorem 4.1 also implies

consistency of the estimates of the impulse response components IRF (j, h) by standard

arguments.

From the MA representation (5), the forecast error of the optimal h-step ahead predictor

Yt,h is Yt+h − Yt =
∑h−1

j=0 Φjut+h−j. Its variance matrix, the h-step ahead forecast-error

variance Fh is then

Fh = E(Yt+h − Yt)(Yt+h − Yt)′ =
h−1∑
j=0

ΦjΣuΦ
′
j . (21)

We employ a consistent plug-in estimator for all components in (21) in order to derive an

estimate F̂h for Fh.

Theorem 4.2. Under the Assumptions of Theorem 4.1 we get for each h, we get

‖F̂h − Fh‖2 = OP (
1

T
) .

The above result shows that the estimated forecast error variance matrices for finite

forecast horizon h are T -consistent. Thus standard results imply
√
T -consistency for each

forecast error variance decomposition (6) and thus consistency for all estimated network

links based on the connectedness measures derived from (7).

5 Simulations and empirical findings

5.1 Simulations

In this section, we investigate the finite-sample performance of the proposed model selec-

tion methodology. We first study the estimation and prediction performance of our refined

Lasso estimates in comparison to reduced rank method, this includes standard settings of

dimension three for comparison with existing low dimensional techniques. Then we focus

on cases up to dimension eight and sixteen with a thorough simulation study of model

selection quality as well as the estimation and forecast fit. Such higher dimensional spec-

ifications are not feasible with available standard techniques and provide a substantial

generalization to the common bivariate illustrations in existing literature.

The results presented in this section are based on independent multivariate Gaussian inno-

vations with covariance matrix Σu = [ρ|i−j|]mi,j=1 for two cases of ρ = 0.0 and ρ = 0.6. Thus
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our specifications also include cases of strong cross-sectional dependence. For example,

the chosen vanishing pattern of correlations may correspond to increasing geographical

distance in the case of the FX application presented in Section 5.2. For these settings,

we use the general FGLS-type empirical versions of the objective functions (16) and (17)

for model selection with least squares estimate Σ̃u for Σu. For each model, we provide

simulation results based on T = 200 and T = 500 observations corresponding to roughly

1 year and 2.5 years of working days in financial data. In each setting, simulation and

model selection are repeated for b = 100 times.

For transparency, we report all results dependent on the choice of tuning parameters γ

and λ in the adaptive Lasso procedure. Thus for each setting, we show all results on a

two-dimensional grid of λ = cT 1/2−ε and γ where ε = 0.1 and c takes all integers from

1 to 3 and γ ranges from 2 to 5 in steps of 1. We focus on the penalties λ and γ for

the rank selection.4 Although lag and rank selections work independently, we find that

choosing p first according to Theorem 3.3 leads to superior finite-sample choices of p

which can then be used in setting P for numerically efficient rank selection in (16). In

the literature, BIC is a standard way to choose tuning parameters. For comparison, we

mark the BIC-selection of (γ, c) in the Tables by underlining respective median values

which actually hardly vary over all simulation runs. They are obtained as minimizing the

following criteria:

BICrank = log |Σres|+
log T

T
r̂(λ, γ)m

BIClag = log |Σres|+
log T

T
p̂(λ, γ)m2

The first term of the criteria is the goodness of fit measured by the determinant of the

covariance matrix of the residuals, and the second terms are the penalty. Because we are

interested in the selection results of how many columns in R′ or lags Bk should be kept

in the model, the number of free coefficients are r̂m or p̂m2 respectively.

Simulations for model selection are done in R. Lasso is implemented with the package

lbfgs (called through Rcpp for faster speed) which can solve the penalized model for a

fixed tuning parameter numerically very efficiently. For pure model estimation part, we

use the R-package grpreg, which works for a sequence of tuning parameters and has the

implemented option to select the optimal tuning parameter by BIC.

In this paper, we consider the following settings:

4For the lag selection, we chose the parameters identical to the rank selection. In practice, this could be
further refined with different tuning parameters for each criterion, where the choice in the rank criterion
is key as dealing with the nonstationary setting while the selection in the lag case is more robust as
comparable to the standard stationary case.
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model 1: m = 3 r = 2 p = 1

model 2: m = 8 r = 4 p = 1

model 3: m = 8 r = 2 p = 2

model 4: m = 16 r = 8 p = 1

Model 1 For this standard three dimensional case, we choose a setting considered in

Chao and Phillips (1999) for comparison purposes. The experiments 7 and 8 in Chao and

Phillips (1999) are a trivariate VAR with one lag and two cointegration vectors entering a

single equation of the system. In their setting, the Monte Carlo study has demonstrated

that their criterion performs well in small samples. In addition to ρ = 0.0, we allow

for strong cross-sectional dependence by choosing ρ = 0.6. Our rank and lag selection

results indicate that lag selection performs well independent of the exact choice of tuning

parameters with almost perfect results. More details are available in the Appendix C.

For the cases of higher dimensions, at each level of model complexity with given dimension,

cointegration rank and lag length, our simulation settings are randomly chosen from all

possible VECM specifications satisfying the Assumption 3.1. In particular, all unknown

elements are drawn independently from U [−1.5, 1.5]. Therefore in the following settings

(Model 2, 3 and 4), the model specifications are randomly chosen, see Appendix C for

more details.

Model 2 and Model 3 These two models are both of dimension m = 8, where tradi-

tional methods cannot be employed either due to inconsistency in theory or because of

numerical inefficiency. Note that for both model 2 and model 3, the results are based on

a ridge regression pre-estimate (18) for the lag selection criterion (17) in order to han-

dle multicollinearity effects. Lag selection results based on adaptive weights from least

squares pre-estimates perform substantially inferior.5

The selection results for model 2 with p = 1 and r = 4 are represented in upper panel

of Table 1. Note that the lag and rank selections work independently. In the table we

report two values in each cell (the absolute numbers of correct rank/lag selections) using

the same tuning parameters. If we take the values reported in different cells, we can easily

compare the rank and lag selection results with different tuning parameters. In general,

the results demonstrate perfect performance in rank and lag selection for a wide range of

tuning parameters when c ≥ 1 and γ ≥ 3. This also holds even for the most difficult case:

ρ = 0.6 and T = 200, while for all other settings the range of acceptable parameters is

even wider. In comparison to the low-dimensional model 1, larger tuning parameters are

preferred both for rank and lag selection due to the higher complexity of the true model.

5Results are not reported here but are available on request.
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Model 2 (m = 8, r = 4, p = 1, Model 2 (m = 8, r = 4, p = 1,
T = 200, ρ = 0.0) T = 500, ρ = 0.0)

c = 1 c = 2 c = 3

γ = 2.0 99/34 100/72 99/84
γ = 3.0 100/97 100/100 100/100
γ = 4.0 100/100 100/100 100/100
γ = 5.0 100/100 100/100 100/100

c = 1 c = 2 c = 3

γ = 2.0 100/45 100/81 100/90
γ = 3.0 100/100 100/100 100/100
γ = 4.0 100/100 100/100 100/100
γ = 5.0 100/100 100/100 100/100

Model 2 (m = 8, r = 4, p = 1, Model 2 (m = 8, r = 4, p = 1,
T = 200, ρ = 0.6) T = 500, ρ = 0.6)

c = 1 c = 2 c = 3

γ = 2.0 92/1 100/14 97/33
γ = 3.0 100/88 100/99 98/99
γ = 4.0 100/100 99/100 99/100
γ = 5.0 100/100 99/100 99/100

c = 1 c = 2 c = 3

γ = 2.0 99/1 100/7 100/16
γ = 3.0 100/88 100/99 100/100
γ = 4.0 100/100 100/100 100/100
γ = 5.0 100/100 100/100 100/100

Model 3 (m = 8, r = 2, p = 2, Model 3 (m = 8, r = 2, p = 2,
T = 200, ρ = 0.0) T = 500, ρ = 0.0)

c = 1 c = 2 c = 3

γ = 2.0 63/91 95/98 100/99
γ = 3.0 100/100 100/100 100/100
γ = 4.0 100/94 100/65 100/41
γ = 5.0 100/41 100/11 100/1

c = 1 c = 2 c = 3

γ = 2.0 100/100 100/100 100/100
γ = 3.0 100/100 100/100 100/100
γ = 4.0 100/100 100/100 100/100
γ = 5.0 100/100 100/91 100/68

Model 3 (m = 8, r = 2, p = 2, Model 3 (m = 8, r = 2, p = 2,
T = 200, ρ = 0.6) T = 500, ρ = 0.6)

c = 1 c = 2 c = 3

γ = 2.0 35/63 80/80 90/92
γ = 3.0 92/100 97/99 99/97
γ = 4.0 98/90 99/48 98/17
γ = 5.0 99/13 99/0 99/0

c = 1 c = 2 c = 3

γ = 2.0 95/69 100/85 100/94
γ = 3.0 100/100 100/100 100/100
γ = 4.0 100/100 100/100 100/100
γ = 5.0 100/99 100/56 100/26

Table 1: Each cell reports two values (the absolute numbers of correct rank/lag selections)
by solving (16) and (17) for b = 100 repetitions for model 2 and 3 with m = 8, r = 2, p =
2. To compare the rank and lag selections with different tuning parameters, we can take
the corresponding values reported in different cells. Underlining marks the choice with
tuning parameters selected according to median BIC.
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For model 3, the larger lag length p = 2 poses challenge in estimating the results. The

selection of the tuning parameter γ = 3.0 results in very high correct estimates of both lag

and rank selection results. In particular, for the case of 200 observations, larger tuning

parameters are preferred for rank selection.

Model 4 For model 4, we consider a nonstationary VAR(2) process like in model 1

but of dimension 16, i.e. m = 16, r = 8 and p = 1. Due to the complexity from

the higher dimensionality of the model we only report results for T = 500. For well-

chosen tuning parameters, both rank and lag selection results are perfect. In particular,

γ = 2 with larger c and γ = 3 with smaller c are crucial for good performance of rank

selection. Given the complexity of the model, however, there is still a range of such

admissible tuning parameters which ensures robust performance in application scenarios

where tuning parameters must be pre-chosen. As for models 2 and 3, we use a ridge

regression estimate for B̌ in the lag selection criterion (17). Generally, the simulation

results show that lag selection works better than rank selection results. The reason lies in

that rank selection problem is based on a pre-estimated cointegrating space, which adds

one more source of finite-sample bias.

Model 4 (T = 500, ρ = 0.0) Model 4 (T = 500, ρ = 0.6)

c = 1 c = 2 c = 3

γ = 2.0 69/98 98/100 100/100
γ = 3.0 100/100 78/100 46/100
γ = 4.0 49/100 11/100 5/100
γ = 5.0 9/100 2/100 0/100

c = 1 c = 2 c = 3

γ = 2.0 11/93 58/100 84/100
γ = 3.0 100/100 95/100 83/100
γ = 4.0 77/100 48/100 19/100
γ = 5.0 28/100 10/100 2/100

Table 2: Absolute numbers of correct rank/lag selections by solving (16) and (17) for
b = 100 repetitions for model 4 with m = 16, r = 8, p = 1. Reporting style is as in Table
1.

For known true model specifications, we estimate all four models above according to the

refined Lasso procedure (19) and compare estimation fits and one-step ahead forecasts to

reduced rank regression. For the case of model 1, we also illustrate their finite-sample

advantage if the model is known to the adaptive Lasso estimates from the model selection

procedure. In particular, we use Π̂adaptive = R̂′rS̃
′
r where R̂′r comprises the first r columns

of the solution to the adaptive Lasso rank selection problem (16) and S̃ ′r consists of the

first r rows of the orthonormal matrix defined in (15). We generally only report the

most difficult case ρ = 0.6. We report pointwise empirical quantiles of squared errors

over all simulation iterations for Π , Bk and the 1−step ahead squared forecast error. In

particular, we evaluate ||Π̂? − Π||22 and the same loss function for Bk, where the norm

denotes the squared l2 norm of vec(Π̂?−Π) divided by m2, in which ? refers to cases where

Π̂ is estimated by Lasso or least squares. We divide by m in order to ensure comparability

21



of results across different dimensions. ∆ŶT+1,? denotes the 1-step ahead forecast based on

method ? and ∆Y ∗T+1 is the forecast based on the true model. Again for comparability

the squared l2 norm is divided by m and the reported forecast error is normalized by Σ
− 1

2
u .

The results for model 1 indicate the refined estimation leads to superior results if the

true model is selected. Besides, refined Lasso estimates of Π and B1 are overall better

than the least squares (LS). In this simple 3-dimensional model, however, the prediction

based on the tailored high-dimensional Lasso procedure is dominated by the one of LS

due to the inherent sample bias. For the more complex model 2 with m = 8 and r = 4,

however, Lasso is substantially superior to LS in both estimation and prediction (see

Table 10). Similar results are reported in Table 11 for model 3 and Table 12 for model 4.

While in the standard low-dimensional model 1, the advantage of using Lasso is not so

significant, we find that the more complicated the model is, the more superior becomes

the Lasso in particular in estimation. Moreover, the obtained simulation results confirm

the advantage of element-wise penalization on the loading matrix over penalization on

eigenvalues/singular values only. In the latter case, e.g. Liao and Phillips (2015), the

“one-step” approach is not able to take the sparse structure of loading matrix in higher

dimension into account. This might also drive the excellent forecasting performance in

all considered model set-ups as the results in Tables 9-12 indicate.

5.2 Empirical results

There exists a sizable literature, such as e.g. Meese and Rogoff (1983) and Cheung

et al. (2005), which concludes that a pure random walk model can hardly be beaten

in forecasting floating exchange rates (FX) between countries by advanced time series

methods. In particular, system information and cointegration structures could not be

shown to yield any prediction advantages. Related work like Engel and West (2005)

and Engel et al. (2015) among others, apply techniques such as panel data and factor

model methods to predict exchange rates also for larger systems. In general, they obtain

promising results which are, however, mixed with regard to beating the random walk

benchmark. From economic theory, however, it is clear that system and equilibrium

cointegration information on different underlying stochastic trends of exchange rates (see

e.g. Baillie and Bollerslev (1989)) do carry valuable information which should provide

performance gains in particular for longer horizons. Thus we use our proposed tailored

lasso technique to estimate VECM for a moderate dimension portfolio consisting of 17

series. By exploiting the potential sparse cointegration relations within the FX market,

we are able to also study the spillover network of the FX system gaining insights into

important channels. Moreover, our method also provides improved forecasts without

inclusion of additional information, where the benchmark is the random walk without
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drift.

Our empirical analysis uses quarterly data from Engel et al. (2015).6 We consider bilateral

exchange rates yit calculated as the end of quarter t logarithmic exchange rate of country i

against the U.S. dollar (USD). We study 17 OECD countries: Australia, Austria, Belgium,

Canada, Denmark, Finland, France, Germany, Japan, Italy, Korea, Netherlands, Norway,

Spain, Sweden, Switzerland, and the United Kingdom. For comparability with the original

results of Engel et al. (2015) we use the same estimation period running from the first

quarter of 1973 to fourth quarter of 2007 for a total of 140 observations.

ADF, yit ADF, ∆yit KPSS, yit KPSS, ∆yit
Australia 0.95 0.01 0.01 0.08

Austria 0.98 0.04 0.01 0.03
Belgium 0.50 0.01 0.10 0.10
Canada 0.39 0.01 0.01 0.10

Denmark 0.38 0.01 0.01 0.10
Finland 0.42 0.01 0.01 0.10
France 0.88 0.01 0.01 0.10

Germany 0.76 0.01 0.01 0.10
Japan 0.07 0.01 0.01 0.10

Italy 0.24 0.01 0.01 0.10
Korea 0.34 0.01 0.05 0.10

Netherlands 0.57 0.01 0.03 0.10
Norway 0.22 0.01 0.01 0.10

Spain 0.69 0.01 0.01 0.09
Sweden 0.71 0.01 0.01 0.05

Switzerland 0.50 0.01 0.01 0.10
United Kingdom 0.29 0.01 0.01 0.10

Table 3: The p-values for the panel unit root tests of FX time series for each country.
For country i, yit is the log value of FX, and ∆yit is the log return of FX. The ADF
(Augmented Dickey-Fuller test) tests the null hypothesis that a unit root is present in a
time series sample, and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) is used for testing
a null hypothesis that an observable time series is stationary.

As a pre-check for the existence of cointegration relations, we apply panel unit root tests

to both original yit and differenced data ∆yit, with the corresponding p-values reported

in Table 3. The results of ADF and KPSS tests indicate clearly that the differenced

data ∆yit are stationary while yit are not. This presence of unit roots in FX-rates was

also documented in e.g. Baillie and Bollerslev (1989) and Diebold et al. (1994) where

low-dimensional subsystems of cointegration were studied.

We start with the general VECM (1) by conducting both rank and lag estimation proce-

dure. The simulation results in the previous section indicate robust model performance

6For a detailed description of the data and their sources we refer to Engel et al. (2015).
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for a wide range of tuning parameters, where γ = 3 and a BIC-based choice of λ in

both cases generally yielded convincing results. We follow this best-practice guidance in

determining the tuning parameters and also set the upper bound for the lag selection as

P = 5. Note that the estimation results are based on a ridge regression pre-estimate

(18) for B̌ in (17) in order to handle multicollinearity effects, with the optimal tuning

parameters selected by BIC. Then we obtain lag length p̂ = 0, and a cointegration rank

of rank(R̂) = r̂ = 2. Therefore the resulting model is as follows,

∆Yt = ΠYt−1 + ut (22)

where Yt is the vector composed of the stacked cross-sectional observations yit, i =

1, . . . , 17. We depict the time evolution of the two resulting cointegration factors in

Figure 5 in the Appendix.

In the following, we illustrate the finite sample prediction performance gain from the

proposed VECM in comparison to standard benchmarks in the last subsection. We also

study how this can be used to study the network spillover effects in connectedness among

FX rates using the network measures based on (7). As a benchmark for the determined

VECM specification (22), we employ connectedness-based networks obtained from the

directly estimated corresponding VAR(p) model in differences. This is of independent

interest as such models have been widely used in the applied literature.

5.2.1 Static network analysis

We further construct the DY-network by computing variance decompositions and cor-

responding connectedness measures at horizon H = 10.7 The graph of our full-sample

FX market network defined in (6) is depicted in Figure 1. We observe a cluster of six

closely interconnected European countries (France, Germany, Spain, Italy, Finland and

the Netherlands) as highlighted by stronger color intensity in this graph, which are now

part of the European monetary union (EMU). This can be explained by the economic

integration among these countries, which involves the coordination of economic and fiscal

policies, a common monetary policy, and a common currency, the euro among these Euro-

zone nations. Based on Figure 1, the network graph in Figure 2 highlights the significant

pairwise directional connectedness among the six EMU countries, in particular for the

countries of France, Germany, Italy, Finland and the Netherlands.

To understand the behavior of networks, there are various approaches for evaluating the

node importance. We employ the centrality measures proposed by Freeman (1978) to

evaluate the relative importance of nine stocks,

7Presented results are robust for H in the range of 8-12.

24



AUS
CAN

DNK

GBR

JPN

KOR

NOR

SWE

CHEAUT

BEL

FRA

DEU

ESP

ITA

FIN

NLD

Figure 1: The graph for full-sample FX market network for 17 OECD countries based on
the estimation of our VECM model (22). In this graph, we select the 90th quantile to cut
the scaling of edges in width and color saturation. Edges with absolute weights over this
value will have the strongest color intensity and become wider the stronger they are, and
edges with absolute weights under this value will have the smallest width and become
vaguer the weaker the weight (see Epskamp et al. (2012)).
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Figure 2: The graph for the FX market network among several European countries. As
before, we select the 90th quantile to cut the scaling of edges in width and color saturation.

• degree centrality deg(V): refers to the number of edges attached to one node. This

is simplest measure of node connectivity, but it is can be interpreted as a form

of popularity. We use “out-degree” centrality outdeg(V), i.e. the number of ties

that the node directs to others to measure the impact of “to”-connectedness, and
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“in-degree” centrality indeg(V) (number of inbound links) to measure the impact

of “from”-connectedness.

• betweenness centrality Bet(V): quantifies the number of times a node lies on the

shortest path between other nodes. Nodes that have a high probability to occur

on a randomly chosen shortest path between two randomly chosen vertices have a

high betweenness. This centrality measure is helpful to decide which nodes act as

“bridges” between nodes in a network, and can potentially influence the spread of

information through the network.

• closeness centrality Clos(V): is defined as the inverse of the sum of its distances

to all other nodes, it scores each node based on their closeness to all other nodes

within the network. Thus we are able to identify the nodes who are best placed to

influence the entire network most quickly. The more central a node is, the closer it

is to all other nodes. This centrality measure will be useful to distinguish influencers

in the network.

Table 4 reports the above four centrality measures and three connectedness measures

defined in (7) and (8) for all the sample countries. We observe higher negative net con-

nectedness for France, Germany, Italy, Finland and Netherland, indicating a net connect-

edness receiver behavior. Besides, Denmark and Sweden have relatively larger positive

levels of net connectedness making these two non-EMU countries net connectedness trans-

mitter for the FX market. Note that the obtained above results for the different network

measures are stable across the a wide range of tuning parameter choices as indicated in

Figures 6, 7, and 8 in the Appendix.

For the estimation of the benchmark VAR specification in differences for large dimensions

we use VAR combined with Lasso. A VAR model with lag length of one was selected

by BIC. The resulting DY-network connectedness and centrality measures are reported

in Table 5. The graph for the full-sample FX market network is shown in Figure 3. The

topology of the graph and the observed spillover effects differ substantially from the VECM

results which are generally known to have higher finite sample accuracy (see e.g. Engle and

Yoo (1987)). The estimation results based on the benchmark VAR-FEVD are mixed. We

also observe strong pairwise connectedness among several European countries which are

also net connectedness receivers, but the components are Denmark, Netherland, Germany,

France, Belgium and Austria. Among them, Denmark is not part of the EMU and retains

its own monetary policy and currency. In addition, two non-European countries Australia

and Japan become net connectedness transmitters.

In the closing part of this section we show that our VECM based connectedness is not sen-

sitive to parameter choices. The results presented in Figure 2 show the network topology
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CH
from,i CH

to,i CH
net,i indeg(i) outdeg(i) Bet(i) Clos(i)

Australia 0.97 0.45 0.52 0.01 0.01 0.00 0.02
Canada 5.23 5.33 -0.10 0.45 0.52 16.00 0.07

Denmark 3.05 1.71 1.34 0.05 0.05 29.00 0.02
UK 5.15 4.78 0.37 0.39 0.38 0.00 0.06

Japan 5.30 6.17 -0.87 0.52 0.52 0.00 0.07
Korea 5.17 4.94 0.23 0.41 0.41 0.00 0.07

Norway 5.23 5.44 -0.21 0.46 0.40 26.00 0.07
Sweden 4.66 2.81 1.85 0.22 0.23 40.00 0.06

Switzerland 5.15 4.76 0.39 0.40 0.39 0.00 0.06
Austria 5.00 3.85 1.15 0.32 0.29 0.00 0.06

Belgium 1.80 0.95 0.85 0.02 0.01 0.00 0.01
France 5.32 6.38 -1.06 0.53 0.56 0.00 0.07

Germany 5.32 6.40 -1.08 0.54 0.56 0.00 0.07
Spain 5.20 5.26 -0.06 0.43 0.38 0.00 0.07
Italy 5.33 6.43 -1.10 0.54 0.56 2.00 0.07

Finland 5.32 6.43 -1.11 0.54 0.54 2.00 0.07
Netherlands 5.33 6.43 -1.10 0.54 0.56 0.00 0.07

Table 4: The “from”, “to” and “net” connectedness for the sample countries based on the
estimation of our VECM model (22).

CH
from,i CH

to,i CH
net,i indeg(i) outdeg(i) Bet(i) Clos(i)

Australia 3.27 1.75 1.52 0.06 0.06 43.00 0.03
Canada 2.29 1.05 1.24 0.03 0.02 0.00 0.02

Denmark 5.34 6.41 -1.07 0.54 0.54 3.00 0.07
UK 5.03 3.94 1.09 0.32 0.28 0.00 0.06

Japan 4.77 2.89 1.88 0.24 0.25 15.00 0.06
Korea 0.77 0.56 0.21 0.01 0.01 0.00 0.01

Norway 5.25 5.54 -0.29 0.46 0.40 33.00 0.07
Sweden 5.18 4.93 0.25 0.40 0.39 0.00 0.07

Switzerland 5.24 5.23 0.01 0.45 0.53 8.00 0.07
Austria 5.33 6.35 -1.02 0.54 0.56 0.00 0.07

Belgium 5.33 6.35 -1.02 0.54 0.57 0.00 0.07
France 5.32 6.22 -0.90 0.52 0.52 0.00 0.07

Germany 5.33 6.32 -0.99 0.54 0.56 0.00 0.07
Spain 5.19 4.97 0.22 0.41 0.39 0.00 0.06
Italy 5.22 5.14 0.08 0.43 0.43 0.00 0.07

Finland 5.24 5.42 -0.18 0.44 0.41 14.00 0.07
Netherlands 5.34 6.38 -1.04 0.54 0.56 0.00 0.07

Table 5: The “from”, “to” and “net” connectedness for the sample countries based on
VAR(1)-Lasso estimation.

when we consider alternative specifications.

27



AUS
CAN

DNK

GBR

JPN

KOR

NOR

SWE

CHEAUT

BEL

FRA

DEU

ESP

ITA

FIN

NLD

Figure 3: The graph for full-sample FX market network for 17 OECD countries, based
on VAR(1)-Lasso estimation. We select the 90th quantile to cut the scaling of edges in
width and color saturation.

5.2.2 Dynamic network analysis

We now study the dynamic network using rolling estimation, and compare the dynamic

total connectedness from our VECM-FEVD with the one based on the VAR model es-

timated over the same rolling window. The number of observations used in the rolling

sample to compute prediction is 120 or correspondingly thirty years, and we examine

dynamic evolution of the network for the following five years (20 observations). In each

window, we repeat model selection and conduct the proposed technique to obtain the

sparse estimates.

We first calculate full sample system-wide connectedness for each window by summing up

the total directional connectedness whether “from” or “to”. In general, the full sample

system-wide connectedness reflects the overall uncertainty that has arisen in the system.

The dynamic pattern of the system-wide connectedness is shown in the left panel of Figure

4. The VECM based system-wide connectedness is larger than the VAR based system-

wide connectedness. We interpret this result as the VECM based connectedness capturing

the impact of long-run relationships that affected the FX market, particularly the EMU

and non-EMU countries.

To assess the system-wide interaction, we further decompose the full sample system-wide

connectedness into two parts: cross-EMU connectedness and within-EMU connectedness

as shown in the right panel of Figure 4. In both cases the within-EMU spillovers generally

exceed cross-EMU values at all time-points. The differences between the two parts are
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Figure 4: The time-varying network for the system-wide connectedness from April 2003 to
January 2008, based on the the estimation of the VECM (black) and VAR (grey) models.
The left panel is the time-varying full sample connectedness, it can be decomposed into
two parts: the within-EMU connectedness (upper dotted curves in the right panel) and
the respective cross-EMU connectedness (lower dashed curves in the right panel).

much more pronounced and smoothed over time in the VAR, while the VECM compo-

nents indicate substantial variation in time in opposite directions. As a plausiblity check,

we have compared the within-EMU-connectedness to the EUR/USD exchange rates and

found an overall correlation of 0.315 for the VECM-based component dominating the

VAR.

5.2.3 Out-of-sample forecasting performance

We compare the out-of-sample forecasting performance of our model (22) to two bench-

mark models, the simple random walk and VAR(1)-Lasso. We use the first 120 observa-

tions (i.e. 30 years) in our sample for estimation and the remaining 20 observations for

evaluation.

We already have Yt as the actual data series, let Ŷ h
i,t denote the ith competing h-step

forecasting series and the out-of-sample forecasting errors from the ith competing models

are defined as εhi,t = Yt − Ŷ h
i,t. In this paper, h is set to be 1, and the superscript h is

omitted in the following context. Table 6 compares the mean µ and the corresponding

5% confidence interval, and standard deviation sd for the out-of-sample forecast errors
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εi,t
8 of our model (left panel) and the random walk benchmark (middle panel) and the

VAR benchmark (right panel). The results clearly show the superiority of our technique

throughout all countries in the sample. We observe not only smaller values of forecast

errors, but also narrower confidence intervals for our VECM model.

µ(εV ECM,t) sd(εV ECM,t) µ(εRW,t) sd(εRW,t) µ(εV AR,t) sd(εV AR,t)
Australia 0.02 (-0.01 0.05) 0.01 0.17 (-0.11 0.48) 0.12 0.11 (-0.75 0.88) 0.45

Canada 0.10 (0.04 0.17) 0.03 0.14 (0.00 0.30) 0.05 0.15 (-0.36 0.71) 0.35
Denmark 0.07 (-0.03 0.16) 0.04 0.09 (-0.26 0.45) 0.27 0.09 (-0.65 0.77) 0.40

UK 0.05 (-0.07 0.19) 0.06 0.13 (-0.18 0.46) 0.19 0.06 (-0.42 0.68) 0.33
Japan 0.07 (-0.08 0.22) 0.07 -0.01 (-0.37 0.32) 0.41 0.02 (-0.47 0.71) 0.39
Korea 0.15 (-0.02 0.33) 0.08 0.22 (-0.15 0.57) 0.16 0.11 (-0.34 0.82) 0.31

Norway 0.09 (-0.09 0.29) 0.10 0.13 (-0.19 0.44) 0.20 0.10 (-0.59 0.83) 0.45
Sweden 0.02 (-0.19 0.23) 0.11 0.14 (-0.20 0.47) 0.21 0.05 (-0.92 0.77) 0.54

Switzerland 0.00 (-0.22 0.24) 0.12 0.02 (-0.36 0.42) 0.38 0.06 (-0.68 0.84) 0.41
Austria -0.03 (-0.28 0.22) 0.13 0.06 (-0.30 0.42) 0.31 0.10 (-0.64 0.84) 0.43

Belgium -0.01 (-0.27 0.26) 0.14 0.08 (-0.28 0.46) 0.30 0.10 (-0.64 0.84) 0.43
France 0.02 (-0.25 0.31) 0.14 0.11 (-0.24 0.47) 0.25 0.09 (-0.64 0.85) 0.40

Germany 0.01 (-0.29 0.31) 0.15 0.06 (-0.30 0.43) 0.32 0.11 (-0.64 0.84) 0.43
Spain 0.04 (-0.29 0.36) 0.16 0.15 (-0.19 0.48) 0.20 0.09 (-0.68 0.82) 0.43
Italy 0.04 (-0.30 0.38) 0.17 0.16 (-0.20 0.51) 0.21 0.06 (-0.67 0.80) 0.42

Finland 0.04 (-0.30 0.40) 0.17 0.11 (-0.21 0.43) 0.22 0.08 (-0.66 0.80) 0.42
Netherlands 0.08 (-0.27 0.45) 0.18 0.06 (-0.30 0.43) 0.31 0.10 (-0.64 0.84) 0.43

Table 6: Comparison of the out-of-sample forecast errors εi,t, with our model on the left
panel, the random walk benchmark in the middle and the VAR benchmark on the right
panel.

We also compute the mean squared prediction error MSEi,t =
1

T

∑T
t=1 ε

2
i,t for each sample

country, and apply a one sided hypothesis test on H0 : MSEV ECM,t ≥ MSERW,t against

H1 : MSEV ECM,t < MSERW,t. The p-value of the t-test is 0.00026. We therefore

reject the null hypothesis, indicating that there is strong evidence of smaller MSE for

our technique.

In addition to the comparative MSE evaluation, we further use the Diebold and Mariano

(DM) test (see Diebold and Mariano (2002) and Diebold (2015)) for comparing predictive

accuracy. Denote the loss associated with forecast error εi,t by L(εi,t); here we consider

the squared-error (SE) loss function L1(εi,t) =
∑T

t=1 ε
2
i,t and the absolute-error (AE) loss

function L2(εi,t) =
∑T

t=1 |εi,t|. Table 7 shows that generally V ECM clearly outperforms

the RW and V AR where the RW is the runner-up.

6 Conclusion

In this paper, we provide a novel technique for estimating large spillover networks of

nonstationary systems in VECM framework. This elementwise Lasso-type technique does

8We use the standard bootstrap (Hubrich and West (2010) and Engel et al. (2015)) with 1000 rsepe-
titions for each point.
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H0 : E{L(εV ECM)} < E{L(εRW )} H0 : E{L(εV ECM)} < E{L(εV AR)} H0 : E{L(εV AR)} < E{L(εRW )}
DM-AE DM-SE DM-AE DM-SE DM-AE DM-SE

Australia 1.000 0.999 1.000 0.994 0.021 0.017
Canada 0.999 0.998 1.000 0.998 0.009 0.006

Denmark 0.999 0.994 1.000 0.998 0.000 0.003
UK 1.000 1.000 1.000 0.995 0.023 0.016

Japan 0.968 0.862 1.000 0.999 0.000 0.001
Korea 1.000 1.000 0.998 0.949 0.458 0.247

Norway 1.000 0.997 1.000 0.999 0.000 0.002
Sweden 1.000 0.999 1.000 0.999 0.000 0.001

Switzerland 0.010 0.005 1.000 0.995 0.000 0.004
Austria 0.905 0.897 1.000 0.998 0.000 0.002

Belgium 0.999 0.993 1.000 0.998 0.000 0.003
France 1.000 0.998 1.000 0.998 0.001 0.004

Germany 0.962 0.946 1.000 0.998 0.000 0.002
Spain 1.000 0.999 1.000 0.998 0.006 0.007
Italy 1.000 0.999 1.000 0.998 0.006 0.007

Finland 1.000 0.997 1.000 0.998 0.001 0.003
Netherlands 0.981 0.967 1.000 0.998 0.000 0.002

Table 7: The p-values for the Diebold-Mariano tests based on different models for each
country. For country i, we compare the forecasting two models using both the Diebold-
Mariano test by absolute-error loss (DM-AE) and the Diebold-Mariano test by squared-
error loss (DM-SE).

not only determine cointegration rank and autoregressive lags of the large nonstationary

system, but also allows to directly assess the non-zero elements in the cointegration vector,

the resulting VECM estimation is then associated with network structure. The tailoring of

the procedure to moderate large but fixed dimensions also keeps the technical prerequisites

for statistical validity to the standard low dimensional assumptions, making the technique

easily accessible for practitioners in most relevant application cases.

We report results on model selection consistency, derive the asymptotic distribution of

estimates and propose refinements under general assumptions on the innovation. We

also report the statistical properties for network estimation under standard assumptions.

The excellent finite sample performance of the proposed technique is demonstrated in a

comprehensive simulation study. In an application to a system of FX rates, we study the

spillover effects in the FX market among 17 OECD countries.
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A Proofs

Lemma A.1. Under Assumptions 2.1 and 3.1, the partial least squares estimate Π̃ defined

in (14) satisfies

vec[Q(Π̃− Π)Q−1DT ]

→d

[
N(0,Σ−1

z1z1.∆x ⊗ Σv)

vec
{

Σ
1/2
v (
∫ 1

0
W †
m−rdW

′
m)′(

∫ 1

0
W †
m−rW

†′
m−rds)

−1(α′⊥Σuα⊥)−
1
2 Θ−1

22

]

where DT = diag(
√
TIr, T Im−r), Σv = QΣuQ

′, Z−1 = β′Y−1, 1
T
Z−1MZ ′−1 →p Σz1z1.∆x =

Σz1z1 − Σz1∆xΣ
−1
∆x∆xΣ∆xz1 with all the component covariance matrices defined in (13);

W †
m−r = (α′⊥Σuα⊥)−

1
2 [0(m−r)×r, Im−r]Σ

1
2
vWm, and W †

m−r,Wm are standard Brownian mo-

tions with dimension m− r,m respectively and the exact from of Θ is defined as (23) and

(24) in the proof.

Here we have Σz1z1.∆x instead of Σz1z1 in the variance part of the stationary component

due to the partial estimation problem and the residual maker M . In the non-stationary

component, the term Θ appears due to the lagged differenced term ∆X.

Lemma A.2. With the notation defined in Section 3.1, we have

1

T
∆XC∆X ′ →p Σ∆x∆x.z1

1√
T
vec(UC∆X ′) →p N(0,Σ∆x∆x.z1 ⊗ Σu)

1

T
UCU ′ →p Σu

where Σ∆x∆x.z1 = Σ∆x∆x − Σ∆xz1Σ−1
z1z1Σz1∆x.
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1

T
∆XC∆X ′

=
1

T

T∑
t=1

∆Xt−1∆X ′t−1 −
1

T
∆XY ′−1(Y−1Y

′
−1)−1Y−1∆X ′

=
1

T

T∑
t=1

∆Xt−1∆X ′t−1

− 1
T

[ 1√
T

∑T
t=1 ∆Xt−1Z′1,t−1,

1
T

∑T
t=1 ∆Xt−1Z′2,t−1]

( 1
T
Z1,−1Z

′
1,−1

1

T3/2
Z1,−1Z

′
2,t−1

1

T3/2
Z2,t−1Z

′
1,−1

1
T2 Z2,t−1Z

′
2,t−1

)−1[ 1√
T

∑T
t=1 Z1,t−1∆X′t−1

1
T

∑T
t=1 Z2,t−1∆X′t−1

]

=
1

T

T∑
t=1

∆Xt−1∆X ′t−1

− [ 1
T

∑T
t=1 ∆Xt−1Z′1,t−1,

1

T3/2

∑T
t=1 ∆Xt−1Z′2,t−1]

( 1
T
Z1,−1Z

′
1,−1

1

T3/2
Z1,−1Z

′
2,t−1

1

T3/2
Z2,t−1Z

′
1,−1

1
T2 Z2,t−1Z

′
2,t−1

)−1[ 1
T

∑T
t=1 Z1,t−1∆X′t−1

1

T3/2

∑T
t=1 Z2,t−1∆X′t−1

]

Because 1
T

∑T
t=1 ∆Xt−1Z

′
1,t−1 →p Σ∆xz1, 1

T 3/2

∑T
t=1 ∆Xt−1Z

′
2,t−1 →p 0. Thus the first re-

sult follows.

The second claim follows naturally because we have already proved the covariance matrix

of ∆XC.

1

T
UCU

=
1

T

T∑
t=1

utu
′
t −

1

T
UY ′−1(Y−1Y

′
−1)−1Y−1U

′

=
1

T

T∑
t=1

utu
′
t

− 1
T

[ 1√
T

∑T
t=1 utZ

′
1,t−1,

1
T

∑T
t=1 utZ

′
2,t−1]

( 1
T
Z1,−1Z

′
1,−1

1

T3/2
Z1,−1Z

′
2,t−1

1

T3/2
Z2,t−1Z

′
1,−1

1
T2 Z2,t−1Z

′
2,t−1

)−1[ 1√
T

∑T
t=1 Z1,t−1u

′
t

1
T

∑T
t=1 Z2,t−1u

′
t

]

=
1

T

T∑
t=1

utu
′
t +Op(

1

T
)→p Σu
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Proof for Lemma A.1

By the same argument as that for the special case, we have

Q(Π̃− Π)Q−1DT

= QUMY ′−1Q
′D−1

T (D−1
T QY−1MY −1

T Q′D−1
T )−1

= QUMZ ′−1D
−1
T (D−1

T Z−1MZ ′−1D
−1
T )−1

where Z ′−1 = [Z ′1,−1, Z
′
2,t−1] and Z ′1,−1, Z

′
2,t−1 satisfy the following process

∆Z1,−1M = β′αZ1,−1M + β′ξ

Z2,−1M = Z2,−1M + α′⊥ξ

where ξ = U − U∆X ′(∆X∆X ′)−1∆X.

In order to derive the asymptotic distributions, we also need some notations as follows:

By pre-multiply all the terms of general VECM by Q

∆Yt = ΠYt−1 +B∆Xt−1 + ut

We have

∆Zt = QΠQ−1Zt−1 + ψt (23)

where ψt = QB∆Xt−1 + vt, vt = Qut with covariance matrix Σv and

ψt = Θ(L)vt (24)

Define Θ = Θ(1) and Θ22 as the bottom-right (m− r)× (m− r) submatrix of Θ.

1. Distribution of Error Terms:

According to Ahn and Reinsel (1990), 1√
T
U∆X ′ = Op(1), 1

T
∆X∆X ′ = Op(1) and

1√
T

∆Xt−1 = Op(
1√
T

). Therefore we have

1√
T

[Ts]∑
t=1

ξt ⇒d Σ
1
2
uWm(s)
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since 1
T

∑T
t=1 ∆Xt−1 →p 0.

1

T

T∑
t=1

ξtξ
′
t =

1

T
UU ′ − 1

T
U∆X(∆X∆X ′)−1∆XU ′

=
1

T
UU ′ − 1

T
(

1√
T
U∆X)(

1

T
∆X∆X ′)−1(

1√
T

∆XU ′)

→p Σu

2. Distribution of D−1
T Z−1MZ ′−1D

−1
T :

D−1
T Z−1MZ ′−1D

−1
T =

[
1
T
Z1,−1MZ ′1,−1

1
T 3/2Z1,−1MZ ′2,−1

1
T 3/2Z2,−1MZ ′1,−1

1
T 2Z1,−1MZ ′2,−1

]

The distributions of each block in the matrix would be analyzed as follows

1

T
Z1,−1MZ ′1,−1 =

1

T
Z1,−1Z

′
1,−1 −

1

T
Z1,−1∆X ′(∆X∆X)−1∆XZ ′1,−1

=
1

T
Z1,−1Z

′
1,−1 −

1

T
Z1,−1∆X ′(

1

T
∆X∆X)−1 1

T
∆XZ ′1,−1

→p Σz1z1 − Σz1∆xΣ
−1
∆x∆xΣ∆xz1

1

T 3/2
Z1,−1MZ ′2,−1 =

1

T 3/2
Z1,−1Z

′
2,−1 −

1

T 3/2
Z1,−1∆X ′(∆X∆X)−1∆XZ ′2,−1

=
1

T 3/2
Z1,−1Z

′
2,−1 −

1

T 3/2
Z1,−1∆X ′(

1

T
∆X∆X)−1 1

T
∆XZ ′2,−1

By the result from Ahn and Reinsel (1990), 1
T

∆XZ ′2,−1 = Op(1), 1
T
Z1,−1∆X ′ = Op(1) and

1
T
Z1,−1Z

′
2,−1 = Op(1). Therefore, the blocks on upper-right and bottom-left converge to

zero in probablity to zero.

1

T 2
Z2,−1MZ ′2,−1 =

1

T 2
Z2,−1Z

′
2,−1 −

1

T

1

T
Z2,−1∆X ′(

1

T
∆X∆X)−1 1

T
∆XZ ′2,−1

→d Θ22(α′⊥Σuα⊥)1/2

∫ 1

0

Wm−r(s)W
′
m−r(s)ds(α

′
⊥Σuα⊥)1/2Θ′22

3. Distribution of QUMZ ′−1D
−1
T :
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QUMZ ′−1D
−1
T = [

1√
T
VMZ1,−1,

1

T
VMZ2,−1]

− [
1√
T
V∆X ′(

1

T
∆X∆X ′)

1

T
∆XZ1,−1,

1√
T
V∆X ′(

1

T
∆X∆X ′)

1

T
3
2

∆XZ2,−1]

= [
1√
T
VMZ1,−1,

1

T
V Z2,−1 + ρp(1)]

The last equality follows from 1

T
3
2

∆XZ2,−1 →p 0 as shown in Ahn and Reinsel (1990).

Since we have shown that 1
T
Z1,−1MZ ′1,−1 →p Σz1z1.∆x,

1√
T
vec(VMZ1,−1)→d N(0,Σz1z1.∆x⊗

Σv). Besides, the 1
T
V Z2,−1 converges in distribution to

Σ
1
2
v [

∫ 1

0

Wm−r(s)dWm(s)′]′(α′⊥Σuα⊥)1/2Θ′22

To derive the desired result, we just need to combine all the separate terms.

Proof of Lemma 3.1

The proof directly follows from Lemma A.1.

Proof of Theorem 3.1

For a general form like y = Xβ+u, where X has dimension n×p, 1
n
X ′X has full rank and

converges to Σ in probability. The solution to ridge regression, i.e., arg minβ ||y−Xβ||2 +

v||β||1, is βR = (X ′X + νIp)
−1X ′y. Therefore,

√
n(βR − β) = −( 1

n
X ′X + ν

n
Ip)
−1 ν√

n
β +

( 1
n
X ′X+ ν

n
Ip)
−1 1√

n
X ′u. The bias term −( 1

n
X ′X+ ν

n
Ip)
−1 ν√

n
β →p 0 if ν√

n
→p 0. Therefore

limT→∞ B̃R = B holds.
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Proof of Theorem 3.2

Let vec(R̂′T ) = vec(R′) + vec(ERD
−1
T ), where ER is an m×m matrix, and

ΨT (ER) =

∥∥∥∥∥vec(∆Y )− (Y ′−1S̃ ⊗ Im)vec(R′ + ERD
−1
T )

∥∥∥∥∥
2

IT⊗Σ−1
u

+
m∑

i,j=1

λranki,j,T

|R̃(i, j)|γ
|R(i, j) + ERD

−1
T (i, j)|

where ÊR = arg min ΨT (ER).

We want to minimize ∆T (ER) = ΨT (ER)−ΨT (0).

∆T (ER) = vec(ERD
−1
T )′(S̃ ′Y−1 ⊗ Im)(IT ⊗ Σ−1

u )(Y ′−1S̃ ⊗ Im)vec(ERD
−1
T )

− 2vec(U)′(IT ⊗ Σ−1
u )(Y ′−1S̃ ⊗ Im)vec(ERD

−1
T )

+
m∑

i,j=1

λranki,j,T

|R̃(i, j)|γ
(|R(i, j) + ERD

−1
T (i, j)| − |R(i, j)|)

= vec(ER)′(D−1
T S̃ ′Y−1 ⊗ Im)(IT ⊗ Σ−1

u )(Y ′−1S̃D
−1
T ⊗ Im)vec(ER)

− 2vec(Σ−1
u UY ′−1S̃D

−1
T )′vec(ER)

+
m∑

i,j=1

λranki,j,T

|R̃(i, j)|γ
(|R(i, j) + ERD

−1
T (i, j)| − |R(i, j)|)

= vec(ER)′(D−1
T S̃ ′

T∑
t=1

Yt−1Y
′
t−1S̃D

−1
T ⊗ Σ−1

u )vec(ER)

− 2vec(
T∑
t=1

Σ−1
u utY

′
t−1S̃D

−1
T )′vec(ER)

+
m∑

i,j=1

λranki,j,T

|R̃(i, j)|γ
(|R(i, j) + ERD

−1
T (i, j)| − |R(i, j)|)

(25)

In Lemma 3.1 we see that the first r rows of S̃ ′ is a consistent estimator of β′. Thus R̃1

is a consistent estimate for α.

Case 1: 0 < r < m
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T∑
t=1

Yt−1Y
′
t−1 = Q−1DTD

−1
T

T∑
t=1

Zt−1Z
′
t−1D

−1
T DTQ

′−1

= Q−1DT

(
T−1

∑T
t=1 Z1,t−1Z

′
1,t−1 T−3/2

∑T
t=1 Z1,t−1Z

′
2,t−1

T−3/2
∑T

t=1 Z2,t−1Z
′
1,t−1 T−2

∑T
t=1 Z2,t−1Z

′
2,t−1

)
DTQ

′−1

Let S̃ = [β +Op(
1
T

), S̃2] and Q−1 = [q1, q2]. Then, we have

D−1
T S̃ ′

T∑
t=1

Yt−1Y
′
t−1S̃D

−1
T

=

[
Ir +Op(

1
T

)
√
TOp(

1
T

)
1√
T
S̃ ′2q1 S̃ ′2q2

](
T−1

∑T
t=1 Z1,t−1Z

′
1,t−1 T−3/2

∑T
t=1 Z1,t−1Z

′
2,t−1

T−3/2
∑T

t=1 Z2,t−1Z
′
1,t−1 T−2

∑T
t=1 Z2,t−1Z

′
2,t−1

)
[
Ir +Op(

1
T

) 1√
T
q′1S̃2√

TOp(
1
T

) q′2S̃2

]
(26)

→d

 Σz1z1 0

0 S̃ ′2q2

((
[0 Im−r]Σ

1/2
v (
∫ 1

0
WmW

′
mds)Σ

1/2
v

[
0

Im−r

])−1
)
q′2S̃2



For the second term in equation (25), we have:

vec(Σ−1
u (

T∑
t=1

utY
′
t−1)S̃D−1

T ) = vec(Σ−1
u (

T∑
t=1

utY
′
t−1Q

′D−1
T )DTQ

′−1S̃D−1
T )

= vec(
[
T−1/2

∑
Σ−1
u utZ

′
1,t−1 T−1

∑
Σ−1
u utZ

′
2,t−1

] [ Ir +Op(
1
T

) 1√
T
q′1S̃2√

TOp(
1
T

) q′2S̃2

]
)

→d

 N(0,Σz1z1 ⊗ Σ−1
u )

vec{Σ−1
u Q−1Σ

1
2
v (
∫ 1

0
WmdW

′
m)′Σ

1
2
v

[
0

Im−r

]
q′2S̃2}

 (27)

Next we should pay attention to the last term in eq. (25).

For the first r columns of matrix R′, the convergence rate of the least square estima-

tor is
√
T . Therefore, if R(i, j) 6= 0, ŵi,j = |R̃(i, j)|−γ →p |R(i, j)|−γ and

√
T (|R(i, j) +

1√
T
ER(i, j)|−|R(i, j)|)→ sign(R(i, j))|ER(i, j)|. By Slutsky’s theorem, we have

λranki,j,T√
T
ŵi,j
√
T (|R(i, j)+

1√
T
ER(i, j)| − |R(i, j)|)→p 0.

If R(i, j) = 0, T−
γ
2 ŵi,j = Op(1) and

√
T (|R(i, j) + 1√

T
ER(i, j)| − |R(i, j)|) → |ER(i, j)|.

By Slutsky’s theorem, we have
λranki,j,T T

γ
2

√
T

T−
γ
2 ŵi,j
√
T (|R(i, j)+ 1√

T
ER(i, j)|−|R(i, j)|)→p ∞.
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For the last m−r columns of matrix R′, the convergence rate of the least square estimator

is T . Therefore, if T (|R(i, j)+ 1
T
ER(i, j)|−|R(i, j)|) = |ER(i, j)| and

λranki,j,T

T
T γ|TR̃(i, j)|−γ →p

∞, where |TR̃(i, j)| = Op(1).

Thus, ∆T (ER)→d ∆(ER),where

∆(ER) =

{
vec(ER,A)′MAvec(ER,A)− 2W ′

Avec(ER,A) if vec(ER)k = 0 ∀k /∈ A
∞ otherwise

where MA = (Σz1z1 ⊗ Σ−1
u )A, and WA ∼d N(0, (Σz1z1 ⊗ Σ−1

u )A). ∆T is convex and

the unique minimum of ∆ at vec(ÊR)A = M−1
A WA ∼d N(0, (Σz1z1 ⊗ Σ−1

u )−1
A (Σz1z1 ⊗

Σ−1
u )A(Σz1z1 ⊗ Σ−1

u )−1
A ).

The proof before shows that the non-zero elements in R′ can be recognized with this

method. However, to prove consistency, we still need to prove that the probability

that zero elements can only be selected as non-zero with probability zero, i.e., ∀k′ /∈
A, limn→∞ P (k′ ∈ A∗T ) = 0

Suppose R(i, j) = 0 but R̂T (i, j) 6= 0, i.e., k′ = jm + i /∈ A but k′ ∈ A∗T . Then ac-

cording to the Karush-Kuhn-Tucker (KKT for short henceafter) optimality conditions we

have

X ′k′(IT ⊗ Σ−1
u )(vec(∆Y )−Xvec(R̂′T )) =

1

2

λranki,j,T

|R̃(i, j)|γ
sign(R̂′T (i, j)) (28)

where X = Y ′−1S̃ ⊗ Im and Xk′ denotes the k′ column of X.

Take Tk′ =
√
T if k′ ≤ r and Tk′ = T if k′ > r. Then divide both sides of the equation

above by Tk′ we get

1

Tk′
X ′k′(IT ⊗ Σ−1

u )(vec(∆Y )−Xvec(R̂′T )) =
1

Tk′

1

2

λranki,j,T

|R̃(i, j)|γ
sign(R̂′T (i, j)) (29)

If we denote D̃T = diag[
√
TImr, T Im(m−r)], then LHS = 1

Tk′
X ′k′(IT ⊗ Σ−1

u )vec(U) +
1
Tk′
X ′k′(IT ⊗ Σ−1

u )X(vec(R′)− vec(R̂′T )).

From the previous derivation of the asymptotic distribution of X ′(IT⊗Σ−1
u )X and X ′(IT⊗

Σ−1
u )vec(U), we can conclude that LHS is finite in probability.
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For the RHS, if j ≤ r,
λranki,j,T T

1
2 (γ−1)

|
√
TR̃(i,j)|γ

→∞. If j > r,
λranki,j,T T

γ−1

|TR̃(i,j)|γ
→∞

By KKT condition, if a zero element is estimated to be nonzero, then the equation (29)

musts hold. However, the LHS is finite in probability but RHS converges to infinity.

Therefore we can exclude this possibility with probability one.

Case 2: r = 0

In this case, only the second part of the proof in Case 1, i.e. by KKT condition R′ can

be estimated as non-zero with zero probability.

Case 3: r = m

Contrary to Case 2, for this case, only the first part of the proof in Case 1 is necessary.

Proof of Theorem 3.3

Define vec(B̂) = vec(B) + vec( 1√
T
EB) and

ΨT (EB) =

∥∥∥∥∥vec(∆Y C)− (C ′∆X ′ ⊗ Im)vec(B +
1√
T
EB)

∥∥∥∥∥
2

IT⊗Σ−1
u

+
P∑
k=1

m∑
i,j=1

λlag,ki,j,T

|B̃R,k(i, j)|γ
|(Bk(i, j) +

1√
T
EB,k(i, j)|

where EB = [EB,1, . . . , EB,P ]. Each EB,k, k = 1, . . . , P is an m×m matrix.

We want to find EB so as to minimize ΨT (EB). This is equivalent to minimize

ΨT (EB)−ΨT (0) = vec(
1

T
EB)′(∆XC∆X ′ ⊗ Σ−1

u )vec(
1

T
EB)

− 2vec(Σ−1
u UC)′(C ′∆X ′ ⊗ Im)vec(

1√
T
EB)

+
P∑
k=1

m∑
i,j=1

λlag,ki,j,T

|B̃R,k(i, j)|γ
(
|Bk(i, j) +

1√
T
EB,k(i, j)| − |Bk(i, j)|

)

We have shown the asymptotics of 1
T

∆XC∆X ′ and 1
T
UC∆X ′ in Lemma A.2. Besides

every element in B̃R converges to the true value with rate
√
T , so oracle property argument

of adaptive Lasso in Zou (2006) follows.
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Distribution of Π̃ under Assumption 3.2

Lemma A.3. If error terms ut in equation (1) are defined in Assumption 3.2, then the

least squares estimate for Π is distributed as

vec
[(
Q(Π̃− Π)Q−1 − [QΥΣ−1

z1 , 0]
)
DT

]
= vec

[
[

1√
T

T∑
t=1

QwtZ
′
1,t−1,

1

T

T∑
t=1

QwtZ
′
2,t−1]

[
1
T

∑T
t=1 Z1,t−1Z

′
1,t−1

1
T 3/2

∑T
t=1 Z1,t−1Z

′
2,t−1

1
T 3/2

∑T
t=1 Z2,t−1Z

′
1,t−1

1
T 2

∑T
t=1 Z2,t−1Z

′
2,t−1

]−1 ]

→d


N(0,Σ−1

z1z1 ⊗ Σv)

vec
{(

(Λ
∫ 1

0
WmdW

′
mP

′)′ +
∑∞

j=1 Γ(j)
)[ 0r×(m−r)

Im−r

]

×
( [

0(m−r)×r Im−r

]
Λ(
∫ 1

0
WmW

′
mds)Λ

′

[
0r×(m−r)

Im−r

])−1}



where Wm is m-dimensional Brownian motion, DT =

( √
TIr 0

0 TIm−r

)
, Σv is the co-

variance matrix of vt = Qwt, Λ = QD(1)P with P satisfying Σw = PP ′ and Γ(h) =∑∞
j=0 QDj+hΣwD

′
jQ
′.

When the error terms are dependent, the stochastic part {utZ ′1,t−1} is no longer a mar-

tingale difference sequence. Thus consistency of the least squares estimate does not hold.

To calculate the bias term, we first transform the stationary AR(1) process of {Z1,t} into

MA(∞) representation. Due to the stationarity of {Z1,t}, we can derive from

G(L)Z1,t = β′ut, where G(L) = Ir − β′αL

that

Z1,t = G(L)−1β′ut = G(L)−1β′κ(L)wt ≡ X (L)wt

Therefore,

1

T

T∑
t=1

QutZ
′
1,t−1 =

1

T

T∑
t=1

QwtZ
′
1,t−1 +

1

T

T∑
t=1

Q(κ(L)− κ(0))wtZ
′
1,t−1

with 1
T

∑T
t=1Q(κ(L)− κ(0))wtZ

′
1,t−1 →p

∑∞
j=1QκjΣwX ′j−1 ≡ QΥ. Υ is thus the measure

of the correlation between ut and Z1,t−1, which is also the source of bias. Its existence is

ensured by the assumption on κ(L) and the stationarity of Z1,t.
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This result leads to a modified version of asymptotic normality as

√
Tvec(

1

T

T∑
t=1

utZ
′
1,t−1 −Υ)→d N(0,Σz1z1 ⊗ Σw)

After being corrected for the bias term, the asymptotic distribution has similar form with

the i.i.d error case. The asymptotics of the unit root process under Assumption 3.2 can

be referred to Lütkepohl (2007)

Proof of Proposition 3.1

The proof is similar to the proof of Theorem 3.2 except that the coefficient matrix R is

from the QR decomposition of Π + ΥΣ−1
z1 β

′, the biased counterpart. The argument with

respect to the penalty should be modified as follows.

If at least one element in R(i, ) is non-zero, then

λranki,T

||R̃(i, )||γ
(||R(i, ) +

1√
T
ER(i, )|| − ||R(i, )||)

=
λranki,T

||R̃(i, )||γ
(||R(i, ) +

1√
T
ER(i, )|| − ||R(i, )||)

=
λranki,T

||R̃(i, )||γ
||R(i, ) + 1√

T
ER(i, )||2 − ||R(i, )||2

||R(i, ) + 1√
T
ER(i, )||+ ||R(i, )||

=
λranki,T /

√
T

||R̃(i, )||γ

∑m
j=1(2R(i, j) + 1√

T
ER(i, j))(ER(i, j))

||R(i, ) + 1√
T
ER(i, )||+ ||R(i, )||

→p 0

If all the elements in R(i, ) are zero, then

λranki,T

||R̃(i, )||γ
(||R(i, ) +

1

T
ER(i, )|| − ||R(i, )||)

=
λranki,T T γ

||TR̃(i, )||γ
|| 1
T
ER(i, )||

=
λranki,T T γ−1

||TR̃(i, )||γ
||ER(i, )||

→ ∞

The left can be finished similar to Wang and Leng (2008).
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Proof of Theorem 3.4

As in the proof of Theorem 3.2, we define such an objective function:

ΨT (E) =
∥∥∥vec(∆Y )− (

[
Y ′−1β̂

† ∆Xp′
]
⊗ Im)vec(

[
α Bp

]
+

1√
T
E)
∥∥∥2

IT⊗Σ−1
u

+
m∑
i=1

r∑
j=1

λranki,j,T |α(i, j) +
1√
T
E0(i, j)| (30)

+

p∑
k=1

m∑
i=1

m∑
j=1

λlag,ki,j,T |Bk(i, j) +
1√
T
Ek(i, j)|

where ∆Xp is the first mp rows of ∆X, Bp = [B1, . . . , Bp] and E = [E0, E1, . . . , Ep], E0

has dimension m× r and E1, . . . , Ep are square matrix of dimension m.

As before, we want to minimize

∆T (E) = ΨT (E)−ΨT (0) (31)

= vec(
1√
T
E)′(

[
β̂†′Y−1

∆Xp

]
⊗ Im)(IT ⊗ Σ−1

u )(
[
Y ′−1β̂

† ∆Xp′
]
⊗ Im)vec(

1√
T
E)

− 2vec(U)′(IT ⊗ Σ−1
u )(

[
Y ′−1β̂ ∆Xp′

]
⊗ Im)vec(

1√
T
E)

+
m∑
i=1

r∑
j=1

λranki,j,T (|α(i, j) +
1√
T
E0(i, j)| − |α(i, j)|)

+

p∑
k=1

m∑
i=1

m∑
j=1

λlag,ki,j,T (|Bk(i, j) +
1√
T
Ek(i, j)| − |Bk(i, j)|)

Case 1 : 0 < r < m

Because β̂† converges to β at the rate of T , we can thus derive the asymptotic distribution

of this term:

1

T

[
β̂†Y−1

∆Xp

] [
Y ′−1β̂

† ∆Xp′
]
→p ΣΓpΓp

Based on the proof of Theorem 3.2, we can similarly show that
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(
1√
T

[
β̂†Y−1

∆Xp

]
⊗ Σ−1

u )vec(U)

= vec(
1√
T

Σ−1
u U

[
Y ′−1β̂

† ∆Xp′
]
)

→d N(0,ΣΓpΓp ⊗ Σ−1
u )

For the penalty imposed on matrix α,
∑m

i=1

∑r
j=1 λ

rank
i,j,T (|α(i, j)+ 1√

T
E0(i, j)|− |α(i, j)|) =∑m

i=1

∑r
j=1

λranki,j,T√
T

(E0(i, j)sgn(α(i, j))I(α(i, j) 6= 0)+|E0(i, j)|I(α(i, j) = 0)). By assumption,
λranki,j,T√

T
→

0. Therefore, asymptotically, the penalty on α disappears and the estimate is consistent.

The same argument works for Bk, k = 1, . . . , p.

We have shown that the empirical covariance matrix of the regressors and that between

regressor and error terms are all standard as stationary case. The asymptotic distribution

in Theorem 3.4 follows naturally.

The proof for Case 2 when r = 0 and Case 3 when r = m are also omitted here.

Proof of Theorem 4.1

According to (5), the impulse responses matrices Φj are the elements of the upper left-

hand (m×m) block of Aj. Therefore it is equivalent to show Âj are consistent estimates in

the MA representation. With the notations defined in Section 2, the estimated coefficient

matrices Â are

Â =


Im + B̂1 + Π̂ B̂2 − B̂1 · · · B̂p − B̂p−1 −B̂p

Im 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0


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In Lemma 3.1 we see that S̃1 is a consistent estimator of β′, and according to Theorem

3.2, R̂′T is a consistent rank estimator. Then

‖Π̂− Π‖2 = ‖R̂′T S̃ ′1 − αβ′‖2

= ‖R̂′T S̃ ′1 − αHH ′β′‖2

= ‖R̂′T S̃ ′1 − R̂′TH ′β′ + R̂′TH
′β′ − αHH ′β′‖2

= ‖R̂′T (S̃ ′1 −H ′β′) + (R̂′T −R′)H ′β′‖2

≤ ‖R̂′T‖2 · ‖S̃ ′1 −H ′β′‖2 + ‖R̂′T −R′‖2‖H ′β′‖2 = OP (
1√
T

)

according to Theorem 3.2 and Theorem 3.3 and ‖B̂k − Bk‖2 = OP ( 1√
T

) for k = 1, . . . , p

by Theorem 3.3. Thus we have ‖Â− A‖2OP ( 1√
T

).

In order to show ‖Âj − Aj‖2 →p 0, we start with p = 2 as follows

‖Â2 − A2‖2 = ‖Â2 − ÂA+ ÂA− A2‖2

= ‖Â(Â− A) + (Â− A)A‖2

≤ ‖Â‖2 · ‖Â− A‖2 + ‖Â− A‖2‖A‖2

= Op(‖Â− A‖2)→p 0

where ‖A‖2 = 1. Now assume that ‖Âj−1 − Aj−1‖2 = Op(‖Â− A‖2) for finite j, then we

have,

‖Âj − Aj‖2 = ‖Âj−1Â− Âj−1A+ Âj−1A− Aj−1A‖2

= ‖Âj−1(Â− A) + (Âj−1 − Aj−1)A‖2

= Op(‖Â− A‖2)

Since Φ̂j are the elements of the upper left-hand (m × m) block of Âj, it follows that

‖Φ̂j − Φj‖2 →p 0.
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Proof of Theorem 4.2

In Lemma 3.1 we see that Φ̂j is a consistent estimator of Φj, and consistent estimate of

Σu is given by Σ̂u.With the notation from (21),

‖F̂h − Fh‖2 =
h−1∑
j=0

‖Φ̂jΣ̂uΦ̂
′
j − ΦjΣuΦ

′
j‖2

= Op(‖Φ̂j − Φj‖2
2) +OP (‖Σ̂u − Σu‖2)

= OP (
1

T
)

The last equality follows from Theorem 4.1 and T -consistency of Σ̂u.

B Additional Results

The following lemma recalls the asymptotic distribution of reduced rank regression (see

e.g. Lütkepohl (2007) and Anderson (2002)).

Lemma B.1. In special vector error correction model, suppose β′ = [Ir β′0], where β′0 is

of dimension (m − r) × r. The estimate from canonical correlation analysis β̂†′ has the

form [β̂′1, β̂
′
2], where β̂′1 are the first r columns of β̂†′.

T (β̂2β̂
−1
1 − β0)→d (

∫ 1

0

W ∗
m−rdW

∗
r )′(

∫ 1

0

W ∗
m−rW

∗′
m−rds)

−1 (32)

where

W ∗
m−r = Q22

[
0 Im−r

]
Σ

1
2
vWm

W ∗
r = (α′Σ

1
2
uα)α′Σ

1
2
uQ
−1Σ

1
2
vWm

in which Q22 denotes the lower right-hand (m− r)× (m− r) block of Q−1.

The key point in Lemma B.1 is that W ∗
r and W ∗

m−r are two independent Wiener pro-

cesses. Thus compared with the term Σ
1/2
v (
∫ 1

0
WmdW

′
m)′Σ

1/2
v

[
0r×(m−r)

Im−r

]
in Result 1 on

page 273 of Lütkepohl (2007), we can see that the distribution in Lemma B.1 is more

concentrated around 0. For general VECM, a similar result applies.
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C Model estimation and specifications for simula-

tions

C.1 Simulation result for model 1

Model 1: The experiments 7 and 8 in Chao and Phillips (1999) are a trivariate VAR

with one lag and two cointegration vectors entering a single equation of the system. In

their setting, the Monte Carlo study has demonstrated that their criterion performs well

in small samples. Our model 1 is based on the same specification as the experiment 8,

but consider different error structure. In addition to ρ = 0.0, we allow for strong cross-

sectional dependence by choosing ρ = 0.6. Therefore we have the following specification

which satisfies the standard assumptions,

∆Yt = αβ′Yt−1 +B1∆Yt−1 + ut (33)

with

αβ′ =

 −0.25 0

1.2 0

0 0.5

[ 1 0 0

0 1 −0.5

]

and

B1 =

 0.25 0 0

−1.2 0.1 0

0 −0.5 0.25


Table 8 reports the comparison of rank and lag selection results based on Model 1. The

results indicate that lag selection performs well independent of the exact choice of tuning

parameters with almost perfect results. For rank selection in this simplest case, the

penalty term should not be too large i.e. we require c = 1 with γ = 2 for good finite-

sample performance.
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Model 1 (T = 200, ρ = 0.0) Model 1 (T = 500, ρ = 0.0)
c = 1 c = 2 c = 3

γ = 2.0 100/95 100/100 96/100
γ = 3.0 98/100 80/100 59/100
γ = 4.0 80/100 50/100 24/100
γ = 5.0 57/100 22/99 10/98

c = 1 c = 2 c = 3

γ = 2.0 100/99 100/100 100/100
γ = 3.0 100/100 100/100 99/100
γ = 4.0 100/100 87/100 62/100
γ = 5.0 88/100 50/100 20/100

Model 1 (T = 200, ρ = 0.6) Model 1 (T = 500, ρ = 0.6)
c = 1 c = 2 c = 3

γ = 2.0 100/86 100/100 92/100
γ = 3.0 98/100 80/100 58/100
γ = 4.0 79/100 48/100 27/100
γ = 5.0 54/100 27/100 14/100

c = 1 c = 2 c = 3

γ = 2.0 100/81 100/99 100/100
γ = 3.0 100/100 100/100 97/100
γ = 4.0 98/100 89/100 66/100
γ = 5.0 89/100 55/100 28/100

Table 8: Absolute numbers XX/Y Y of correct model selections by solving (16) and (17)
for b = 100 repetitions of model 1 with m = 3, r = 2, p = 1. For each parameter
specification, XX denotes the number of correct rank selections while Y Y is the number
of correct lag length identifications. Underlining marks the choice with tuning parameters
selected according to BIC.

C.2 Model specifications

Model 2 (m = 8, r = 4 and p = 1):

α =



−1.47 −1.3 0 −1.26

0 0.97 0 0

0 0 −0.74 0

−1.19 0.85 0 0

−0.55 0.78 −1 −1.37

0.8 0.75 0 0

0 −0.74 −1.26 −0.78

0 −1.4 0 0



β =


1 0 0 0 0 0 −0.87 1.45

0 1 0 0 0 0 0 1.48

0 0 1 0 0 −1.29 −0.53 0.9

0 0 0 1 0.8 1.49 −0.82 −0.69


and B1 = diag(−0.1852968, 0.4258125,−0.1638084, 0.07833603,−0.5304448,

− 0.06855371,−0.7495951, 0.5052671).
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Model 3 (m = 8, r = 2, p = 2):

α =



−0.1608246 0.291117

−0.4309348 −0.2267309

0.7295761 0.7436813

0.07949743 −0.5752491

−0.808063 0.3370188

−0.9472972 0.6852261

−0.8611832 0.6208253

0.8499345 −0.8429375



β =

[
1 0 0.1137227 −0.1445802 0.955692 −0.01119379 −0.1954843 −0.9958803

0 1 −0.4215756 0.1502944 −0.9341822 −0.5203012 0.4701862 0.1764804

]

and B1 = diag(0.5013845, 0.1583768, 0.5494133,−0.3385856, 0.2190922, 0.7720483,

0.4980826, 0.02718882),

B2 = diag(−0.4011076,−0.1267015,−0.4395306, 0.2708685,−0.1752738,−0.6176387,

− 0.3984661,−0.02175106).

Model 4 (m = 16, r = 8 and p = 1):

B1 = diag(−0.6148991, 0.168343, 0.3511661,−0.001352618, 0.1055825,

0.05016321, 0.7834411,−0.2399435,−0.1913784, 0.3762232, 0.5340184,

0.4320375,−0.05925948,−0.4302867, 0.6217901, 0.6814101)

and
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Π =



−0.2045456 0.127218 −0.1044799 0.04996874 −0.05324593 0.1565453 0.332533 −0.457871

−0.4443822 −0.08324072 −0.0994021 −0.006434139 0.8885221 0.7546155 0.0222507 −0.417577

0.02561123 −0.2445912 −1.076358 0.8504335 0.1481624 0.6820225 0.6595054 −1.188968

−0.6543165 0.2423194 0.2819167 −0.1265963 1.482206 0.5994158 −0.4464372 0.2431477

0.2654349 −0.07548686 −1.339042 0.2375221 −0.2709482 0.2829385 0.4697307 −0.7166703

−0.3424121 0.2241369 0.6579697 0.3476774 0.6523763 0.03524423 −0.6483029 0.2463741

0.5500683 −0.1995099 −1.636145 −0.05230706 0.8620913 2.380207 0.5911425 −0.5798727

−1.777504 0.1451031 1.090046 −2.125592 2.355909 −0.1184615 −0.3810751 −0.07006646

0.03690864 0.2959453 0.4596786 −0.08504518 −0.8577548 −0.3276708 −0.04811136 0.1974386

0.1274685 0.3188476 −0.158153 0.865952 −0.5238296 0.3224605 0.1759896 −0.1743132

0.6877773 −0.267961 −1.200547 0.9718812 0.741968 1.127951 0.3476049 −0.6302973

−1.599591 0.08954511 0.6427153 −2.008208 1.474142 −0.9021317 −0.2037194 0.05227726

−0.5995118 0.325451 1.266808 −0.6414344 −1.09789 −1.814652 −0.4953283 0.4147672

2.089613 0.109772 −0.6641995 2.750278 −2.385913 0.4911569 0.05740444 0.3117873

0.381465 −0.04985673 −1.095212 0.1829222 0.28933 0.9338472 0.2275248 −0.8367844

−0.5197874 0.2886798 0.7498826 −0.510993 0.5903355 −0.4764813 −0.5320649 0.4731749

0.4759285 0.02027912 −0.4462453 0.8765776 0.3538885 1.604166 0.3237477 −0.9067662

−1.827018 0.3025833 0.1609587 −1.733295 1.83846 −0.07487888 0.102428 −0.09694286

−1.103659 0.3535146 1.854295 −1.316152 −1.050559 −3.093349 −0.7909543 1.054735

2.908839 −0.6697658 −1.253489 3.332786 −3.031778 0.6463785 0.1908991 −0.06797553

0.6142871 −0.4385424 −1.777284 0.4888148 0.8513589 1.79723 0.4217885 −0.7512186

−1.715195 −0.1673982 0.6688248 −2.041544 2.3071 −0.5986828 −0.5627274 0.3049924

0.4991491 −0.3568571 −1.473497 −0.03773816 1.083164 1.840999 0.4384005 −0.1480544

−1.143913 0.1124378 1.153012 −1.989919 1.528975 −0.4958258 −0.3311991 0.06841005

0.3286244 0.1224148 0.2050542 −0.06528752 −0.2779508 −0.1944027 −0.4047749 0.200832

0.4729683 0.3524514 0.2237484 0.347894 −1.312519 −0.9115838 −0.06049354 0.5031275

0.179212 −0.06148401 −0.2682591 0.002612084 0.2562654 0.6027553 0.06573209 0.06074722

−0.9053709 −0.281054 −0.04361244 −1.034311 1.04103 −0.09367657 0.06775278 −0.2801906

−0.7085927 0.09905573 1.315568 −0.7422261 0.3070841 −1.067854 −0.4093839 0.7709888

1.028702 −0.6319483 −0.7613088 0.3946705 −0.9016278 0.4049568 0.4971999 −0.4592194

−0.6739596 0.5794677 1.985851 −0.7148621 −1.103973 −1.672337 −0.4095454 0.8435712

1.520876 0.133889 −0.8365487 2.135475 −2.056529 0.9585998 0.6852929 −0.5481826


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C.3 Comparison of different estimation methods

T = 200 25% 50% 75%

|| ˆ̂Πlasso −Π||22 7.974e−4 1.376e−3 2.588e−3

|| ˆ̂Πls −Π||22 7.536e−4 1.424e−3 3.004e−3

||Π̂adaptive −Π||22 3.902e−3 1.807e−2 3.370e−2

|| ˆ̂B1,lasso −B1||22 1.606e−3 2.759e−3 4.206e−3

|| ˆ̂B1,ls −B1||22 2.246e−3 3.561e−3 6.258e−3

||∆ŶT+1,lasso −∆Y ∗T+1||22 1.617e−2 4.527e−2 1.032e−1

||∆ŶT+1,ls −∆Y ∗T+1||22 1.818e−2 3.928e−2 1.062e−1

T = 500 25% 50% 75%

|| ˆ̂Πlasso −Π||22 3.502e−4 5.562e−4 9.509e−4

|| ˆ̂Πls −Π||22 3.759e−4 6.413e−4 1.131e−3

||Π̂adaptive −Π||22 1.771e−3 1.131e−2 2.919e−2

|| ˆ̂B1,lasso −B1||22 7.979e−4 1.195e−3 1.990e−3

|| ˆ̂B1,ls −B1||22 9.162e−4 1.471e−3 2.268e−3

||∆ŶT+1,lasso −∆Y ∗T+1||22 1.442e−2 2.917e−2 5.725e−2

||∆ŶT+1,ls −∆Y ∗T+1||22 1.257e−2 2.605e−2 4.507e−2

Table 9: Comparison of different estimation methods for Model 1

T = 200 25% 50% 75%

|| ˆ̂Πlasso −Π||22 8.293e−3 1.339e−2 2.068e−2

|| ˆ̂Πls −Π||22 3.569e−2 5.100e−2 7.193e−2

|| ˆ̂B1,lasso −B1||22 4.396e−3 8.778e−3 1.333e−2

|| ˆ̂B1,ls −B1||22 2.964e−2 3.946e−2 5.289e−2

||∆ŶT+1,lasso −∆Y ∗T+1||22 2.998 5.872 15.150

||∆ŶT+1,ls −∆Y ∗T+1||22 4.332 10.510 16.390

T = 500 25% 50% 75%

|| ˆ̂Πlasso −Π||22 3.035e−3 4.384e−3 5.882e−3

|| ˆ̂Πls −Π||22 1.021e−3 1.532e−2 2.107e−2

|| ˆ̂B1,lasso −B1||22 2.302e−3 3.537e−3 4.676e−3

|| ˆ̂B1,ls −B1||22 9.562e−3 1.302e−2 1.784e−2

||∆ŶT+1,lasso −∆Y ∗T+1||22 6.553e−1 2.279 5.329

||∆ŶT+1,ls −∆Y ∗T+1||22 1.208 2.908 6.604

Table 10: Comparison of different estimation methods for Model 2
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T = 200 25% 50% 75%

|| ˆ̂Πlasso −Π||22 5.365e−3 7.092e−3 9.005e−3

|| ˆ̂Πls −Π||22 3.655e−2 4.578e−2 5.861e−2

|| ˆ̂B1,lasso −B1||22 2.694e−3 3.813e−3 4.911e−3

|| ˆ̂B1,ls −B1||22 3.809e−2 4.769e−2 6.229e−2

|| ˆ̂B2,lasso −B2||22 1.633e−2 1.683e−2 1.740e−2

|| ˆ̂B2,ls −B2||22 3.183e−2 3.183e−2 3.720e−2

||∆ŶT+1,lasso −∆Y ∗T+1||22 1.467e−1 3.232e−1 6.040e−1

||∆ŶT+1,ls −∆Y ∗T+1||22 5.232e−1 1.179 2.824

T = 500 25% 50% 75%

|| ˆ̂Πlasso −Π||22 1.939e−3 2.357e−3 2.888e−3

|| ˆ̂Πls −Π||22 1.175e−2 1.641e−2 2.248e−2

|| ˆ̂B1,lasso −B1||22 1.046e−3 1.404e−3 1.696e−3

|| ˆ̂B1,ls −B1||22 1.329e−2 1.741e−2 2.318e−2

|| ˆ̂B2,lasso −B2||22 1.635e−2 1.667e−2 1.688e−2

|| ˆ̂B2,ls −B2||22 1.909e−2 2.197e−2 2.343e−2

||∆ŶT+1,lasso −∆Y ∗T+1||22 8.695e−2 1.481e−1 2.495e−1

||∆ŶT+1,ls −∆Y ∗T+1||22 2.527e−1 5.200e−1 1.013

Table 11: Comparison of different estimation methods for Model 3

25% 50% 75%

|| ˆ̂Πlasso −Π||22 5.654e−2 6.065e−2 6.540e−2

|| ˆ̂Πls −Π||22 9.650e−2 1.159e−1 1.374e−1

|| ˆ̂B1,lasso −B1||22 1.718e−2 2.032e−2 2.374e−2

|| ˆ̂B1,ls −B1||22 8.274e−2 1.004e−1 1.185e−2

||∆ŶT+1,lasso −∆Y ∗T+1||22 7.623 17.190 39.280

||∆ŶT+1,ls −∆Y ∗T+1||22 16.940 33.020 61.280

25% 50% 75%

|| ˆ̂Πlasso −Π||22 5.297e−2 5.506e−2 5.859e−2

|| ˆ̂Πls −Π||22 7.435e−2 8.232e−2 9.599e−2

|| ˆ̂B1,lasso −B1||22 2.223e−2 2.381e−2 2.519e−2

|| ˆ̂B1,ls −B1||22 5.705e−2 6.479e−2 7.428e−2

||∆ŶT+1,lasso −∆Y ∗T+1||22 7.078 12.900 26.600

||∆ŶT+1,ls −∆Y ∗T+1||22 9.052 17.210 36.290

Table 12: Comparison of different estimation methods for Model 4
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D Additional Empirical Results

α̂ =



−1.753 0.047 0 . . . 0

−0.170 −1.405 0 . . . 0

−0.185 −0.339

−0.445 −0.825

−0.301 −1.002

−0.219 −0.819

−0.256 −0.909

−0.232 −0.822
...

. . .
...

−0.382 −0.719

−0.500 −0.791

−0.253 0.044

−0.370 −0.991

−0.386 −0.999

−0.224 −0.736

−0.422 −0.975

−0.421 −0.966

−0.380 −0.981 0 . . . 0



Figure 5: The time-varying pattern of two cointegration factors, with η1 in black and η2

in gray.
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Figure 6: This figure graphically shows seven network measures numbered as follows:
1.Cfrom,i, 2.Cto,i, 3.Cnet,i, 4.indeg(i), 5.outdeg(i), 6.Bet(i), 7.Clos(i) for a range of tuning
parameters. 58



Figure 7: This figure graphically shows seven network measures numbered as follows:
1.Cfrom,i, 2.Cto,i, 3.Cnet,i, 4.indeg(i), 5.outdeg(i), 6.Bet(i), 7.Clos(i) for a range of tuning
parameters.
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Figure 8: This figure graphically shows seven network measures numbered as follows:
1.Cfrom,i, 2.Cto,i, 3.Cnet,i, 4.indeg(i), 5.outdeg(i), 6.Bet(i), 7.Clos(i) for a range of tuning
parameters.
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