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drive efficiency and effectiveness of maximum likelihood inference.
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A FFT-based approximation of tempered stable and
tempered Infinitely divisible distributions

1 Introduction

Portfolio construction and risk management depend on the modeling of the fi-
nancial time series of asset returns. Prior to the pathbreaking Wd@ﬁt
) an3), it was assumed that return distributions follevned-

mal distribution. Since the early 1960s, a considerable number of empiricits
have documented that the assumption that return distributions can betehaeat

by a normal distribution should be rejec@d’.he findings of these studies suggest
that return distributions have heavier tails than the normal distribution (i.ahiexh
leptokurtosis) and have non-zero skewness (i.e., are asymmetric).

Given the overwhelming evidence rejecting the normal distribution, altemativ
distributions for dealing with the stylized facts observed for real-worldnitred
returns were proposed. One such distribution proposed by both Mmatiand
Fama is the stable Paretian distribuﬂ).espite being a significant improvement
in modeling returns in comparison to the normal distribution, the stable Paretian
distribution has two drawbacks: (1) it does not have a closed-formeszjon for
the density function, leading to resource intensive applications and (2atlzece
as well as higher moments are generally infinite. The first drawback leasdver-
come in recent years by using the fast Fourier transform (EFﬁTprovides an effi-
cient density approximation for the stable Paretian distribution and redaogs.e

tational requirements as discussed._in Mitteilal| (1999) and Menn and Rachev
(:ﬁﬁé)

MS) proposed a model dealing with the second drawlaeigence
of higher moments-by using tempered stable distributions. This model was en-

hanced by Boyarchenko and Levendorskii (2000) and &ali (2002). Their

works also mark the first application of such models to the financial market. With
the seminal work of Rofiski (2007) and_Bianchet al! (2010) the family of tem-
pered stable (TS) and the family of tempered infinitely divisible (TID) distrimgio
were introduced. As discussed in Kighal | dZQlﬁb), the tempered stable (TS) and
tempered infinitely divisible (TID) distributions also account for heavy taild a
asymmetry in the empirical data. The improved modeling quality by using these
distributions compared to the normal distribution has been supported by empiri-

cal studies investigating financial returns, e.g. Kinall (20084) and_Kinet al/

'For a review of these studies, $ee Racteal] M).
2Sed Rachev and Mittrik (2000).
3Sed DuMouchkl (1975).




From an implementation perspective, however, two key questions are stil una
swered: (1) how to derive the density function of these distributionsexifiy and
(2) how to ensure the quality of the density approximation, especially for maxi-
mum likelihood estimation (MLE). In this paper, we address these two questions
First, we present a FFT-based approximation of the probability densitgand-
lative distribution function as well as the value-at-risk and average \athnisk of
TS and TID random variables. Second, we show how the FFT appiczache
improved by standardizing the random variable. This standardizationitgeghis
exemplified by the classical tempered stable and the rapidly decreasing éemper
stable distribution. In the following we introduce an approach to calibrateRfie F
method in practice. Finally we apply our findings in the context of MLE.

2 Using FFT in the context of TSand TID distributions

A common drawback the TS and TID distributions share with the stable Pare-
tian distributions is that in general there is no closed-form expressioth&r
density function available. The probability law for these distributions is desdrib
by the Fourier transform of their density function which is called the charitic
function and denoted by. The general idea for an efficient algorithm computing
the density function was suggested|by DuMouchel (1975) for the staipéi&n
distributions and thereafter used and refined in various studies. Baghis@p-
proach, we present here how the probability density function (PDFyuimeilative
distribution function (CDF), and both the value-at-risk (VaR) and avevadue-at-
risk (AvaR) can be computed efficiently using a FFT-based approximatidimate

In our analysis, we assume the probability spRep(R), P), wherep(R)
denotes the Borel set dhand X : R — R as aR-measurable function for which
P(X < z) is differentiable and invertible.

2.1 The probability density function

The PDFfx : R — [0, 1], fx(x)= w of X can be computed from the
characteristic function

¢x(u) == E[e"] )

using the inverse formula of the fourier transform

fx(x) ! /OO e~ T dx(u)du . 2

:% .

In the case of stable Paretian, TS, and TID distributions, there existsetlelos
form expression for their characteristic functiong(«). Given a stable Paretian



random variableX ~ S, (a, 8, ¢, m) with a € (0,2], 8 € [-1,1], ¢ € Rsp, and
m € R, ¢x(u) is defined as

exp {imu — ¢® [u|® [1 —iB sign(u) tan(Z2) |} : a#1
exp {imu — c|u| [1 + B sign(u) 2 In[u| |} Da=1.

ox(u) = {

As an example for the TS class, the classical tempered stable (CTS) distributio
with parameters’,, C_, A\, A\~ € R, a € (0,2), m € R has the characteristic
function

d(u;a, Cy, C_; Ay, A, m) =exp {ium —dul(1 — a)(CL AT = Coa>h)
+ CyT(=a)(Ar — i) = A3)
+CT(—a)((A_ + iw)® — )&)} . 3)

For a comprehensive defintion of the TS and TID class and some examges,

refer to Rosski (2007) and Bianchet al| (2010).

It is common knowledge that the Fourier transform can be numerically ap-
proximated by its discrete version: the discrete Fourier transform (DFE) DFT

is a specific mapping which assigns vecfor= (z1,...,zy) € RY to vector
Y = (y1,--- ,yn) € RY based on the equation
al 2m(j—1) (k=1)
(1) (k—
ij:Zyk‘eﬂﬁ.jzl,m,N. (4)
k=1

The FFT is the generally acknowledged computationally efficient implemen-
tation of the DFT which exploits the periodicity of the unit roots. We denote the
FFT mapping byX = FFT[Y| whereX; = FFT;[Y]. Furthermorgyy)i=1.... n
defines the vector” by components. Givea € R+, ¢ € N+, and the following
set of definitions for allj, k € {1,--- , N =29}

2
U = —a+Na(kz—1)
s Uk4+1 T Ug
kem
Nnm «
S e | 5
Zj %a +a(] ) )
. .mw(j—1)
e et

as well as the characteristic functigifu) of a standardized random variablg
‘lL(ZQbG) proved—in the context of stable Paretian digiribthat




by applying FFT the PDF can be approximated at the paints

k_1,~~,N:| '

Parameter. determines the integration limits for the Fourier transform k-
fines the number of integration stepys= 29.

The formula forfMP(acj) makes use of the mid-points; (mid-point rule for
integral approximation). In order to minimize approximation errors,

Menn and RathL(;QbG) resort to the Simpson rule which implies

Loy, ©)

2
flap) 5 PP +

The expressiorfL*’(z;) can be derived in the same mannerf45” (z;) using the
left-point rule

PP =5 [ e dud

— 00
N
~ 3 e 2£
N
k=1

The equationy, - z; = &= — 7(j — 1) — w(k — 1) + 2 (k — 1)(j — 1) then yields

;21 (k=1)

N
FEP(@) ~ Dy Y (—1F T pluy) e TN ™
k=1

— D; -FFT, [(( 1)k-1 qb(uk))

k:l,---,N:|

whereD; := & (—=1)771,

Note that analyzing random variables with zero-mean and unit variana& is s
ficient if the influence of standardization on the distributional parameteris.
Then the method presented is applicable to any random variable from drecis+
tributional family by means of standardization and rescaling. Furthermoregthis a
proximation technique works independently of the specific characteristitiun,



and that is why it can be directly applied to the case of TS and TID distributions
Note that the PDF at arbitrary points= R can be computed by any of the standard
interpolation algorithms—preferably a cubic interpolation such as piecewise c
Hermite interpolatio

2.2 Thecumulative distribution function

We know from Kimet al| (2009) that the CDFF : R — [0,1], Fx(z) =
P(X < z)ofaTS or TID distributed random variablé can be calculated by

Fx(z) = “r R {/OOO et ox(utip) du} , (8)

s p— Ui

wherep > 0 and¢x (u) is the characteristic function of with |¢x (v)| < oo, for
all complex numbers withs(v) = p. For simplicity, let us define

glu) = L), (©)

Following/Menn and Rachev (2(106) we can approximate the integral usng th
mid-point rule for the DFT. Givew € R-p, ¢ € Nyg, N = 29, and for all
jke{l,--- N}

2a
% U + Uk41 a
Nnm «
- 4 (i-1
i 2a a (] )

it holds that
/ e—i:z:j u (f)X(U + Zp) du
0

With the equations;; - uj, = —mw 2L -2 221 (5 1) and 2£-L. (- 1) =

“Sed Fritsch and Carlson (1980).




N

it ~ 20 2a i[-m2k=ly 2n 2kl .

E e iUy g(uk) . ﬁ = N E e Z[ N (j— 1)} g(uk)
k=1

*

N
_ %Zeiw%%_e—zf [(e=DG=D+3G-D] . (o)

N
2 . _ Lo
- Na S R ) eV (0D
k=1
T(j-1) | Zezﬂ' T g(ul) et (=1)(-1)
Hence
Fx(z;) = FY'"(2;) (11)

etiP 20 _iwgs
- ) 22 —ig (-1 A Y e O
- afe{Ne % FFT, {(( DL g(uk))klmNH .

The Simpson rule cannot be analogously applied for the CDF approximation.
This is due to the fact that the integrand function in equafidn (8) is asymmetric
which implies that three integrals: mid-point, left-point, and right-point havesto b
evaluated. This is, however, less efficient and therefore we sutigease of the
mid-point rule only.

2.3 TheValue-at-Risk and Aver age Value-at-Risk

The VaR at confidence levél € [0, 1] for a return modeled by a TS or TID
random variableX is given by

VaR;[X] = F'(4) (12)

where ! : [0,1] — R is the inverse CDF. Fronf}(8) the TS and TID CDF can
be calculated and by (lL1) an efficient numerical procedure is giveancéithe
VaR;[X] can also be computed efficiently.

Kim et al! (2009) provide a formula for AvVaR at confidence levet [0, 1]

VaR; [ X] S ,
AVaR;[X] = VaRs[X] — ‘:’T(l_(;;ére { /0 e~ uVaRs[X] W du} .
(13)

The VaR[X] is thereby derived as described above. In practical applications, the
integral in [I3B) is in most cases only evaluated for a restricted numberRyf ¥a

(e.g. corresponding to the confidence leviets 0.9,0.975,0.99). Therefore there

is no efficiency gain in applying the FFT approximation. The numerical integra

in (13) can be dealt with using e.g. the standard trapezoid rule.
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3 Standardizing TSand TID random variables

Before we present the standardization techniques for TS and TID disbrriis,
we briefly motivate the link between FFT and standardization. For the e#eetss
and efficiency of the FFT method, the choice of the paraméfemsnda is crucial.

They both significantly influence the sampling ofida, —a + 2 N0 2 ,a}
and the interpolation gri@—Tg, —Sa o ];’—; - M} which again deter—

mine the size of the apprOX|mat|on error ThIS error can be split into

1. the sampling erro¢; which includes the loss of information due to (a) the
restricted length of the sampling interval and (b) the discretization

2. the interpolation errot, which comprises (a) the error between grid points
and (b) error due to misspecifying the length of the interpolation interval.

Parameter directly influences the size of the sampling interfak, a] and the
interpolation distance. Increasing: can hence reduce errors 1(a) and 2(a). On
the other hand, the rati§ determines the sampling distan% and the size of
the interpolation intervgl- g’;, N”] which means that a low ratio decreases errors
1(b) and 2(b). Given that the size &f is upper-bounded due to computational
efficiency, the optimal choice aof and NV is a trade-off between minimizing the

errors 1(a) and 2(a) on the one hand and the errors 1(b) andr2{b¢ @ther hand.

The standardization simplifies parameter selection. To demonstrate this, we
focus on computing the PDF0) of a CTS random variabl&’

10 =5 [ et swdn= 5 [ o

which is up to a constant factor the integral over the characteristic fungtion
The exact definition of a CTS random variable is provided later. We aadtyee
cases to highlight potential pitfalls in the FFT approximation

1. StandardX; ~ CTS(a, C, Ay, A, m) with E[X;] = 0 and V|.X;] =
2. RescaledXs ~ CTSa,c- C, A1, A_,m) withc € (0,1)
3. Shifted: X3 ~ CTS(ar, C, Ay, A_, m + d) with d # 0

In order to avoid any confusion with value-at-risk, we denote the vagiahe ran-
dom variableX by V[X].

Figure[1 illustrates the real part of the corresponding characteristatifumns.
The different curves imply different optimal selection for the FFT pararseteor
the rescaled CTS, the sampling interjsak, a] must be widened to keep sampling
error 1(a) low. Here we assunae< 1 implying V[Xs] = ¢ - V[X;] < 1 because
this is the relevant area of empirical return variances. The shifted Cg&ests,



Standard CTS
— — —Rescaled CTS
ost — - — - Shifted CTS [

0.6

0.4r

0.2

-0.6

Figure 1: Real part of the CTS characteristic functions: standard
((a, C; A4, A—,m) = (1.1,0.0589,0.1,0.1,0)), rescaled4 = 0.5), and shifted
(d=1)

however, that the interpolation inter\,{alf%, %} is relocated by! or sufficiently

increased in order to keep the interpolation error 2(b) small. The trddmeieen
errors (a) and (b) is hence intensified when looking at rescaled afteddsBTS
distributions.

In conclusion, the use of standard CTS for the FFT eliminates the influénce o
the parameter§’, andm on the choice ofV anda and thereby helps practition-
ers to ensure the approximation quality of the PDF. The problem for geD€&fa
distributions can be always reduced to the standard case by commoniw ksitew
tistical means. This procedure is especially relevant in an inference settiege
the distributional parameters are a priori unknown. It is neverthelessriamio
to mention that there is still a dependence between., and\_ and the FFT
parametersV anda.



3.1 Classical tempered stabledistribution
Roshski (2007) and Kinet all (20084) define the CTS distribution by thewy

tupel ¢y, o2, v) with

y=m— xv(dx)
|z|>1
0?2 =0
v(de) = (Cpe M%1,50 + C_e 71 _dw
- + >0 — <0 ’x‘a_;’_l .

whereC,C_, A, A_ € Ryp, a € (0,2), m € R, and1 4 denotes the indicator
function. Using the Evy-Khintchine representation 99) yields

d(u;a, Cq, C_, Ay, A, m) =exp {ium —ul(1 — a)(CL At = Coxe )
+ C4T(=a)(Ay — i) =A%)
+ O_T(—a)((A + iu)® — A%)} . (14)
The expected value and variance of a CTS random variable
X ~CTS, Cy,C_, Ay, A\_,m) are given by
E[X] =m (15)
V[X]=T(2 - a)(CLAT2+ 0_\*72). (16)
As discussed earlier, it is crucial to understand hdwan be standardized in order

to use the FFT efficiently. For our purpose, we consider the simplified GSt6-d
bution withC' = C. = C_. Then we need to answer the question hHowefined

by

17)

is distributed if X ~ CTS(a, C, A1, A_,m). Let us assum¢ is standard CTS
distributedZ ~ stdCTSa, A+, \_)E Then the question reduces to whether or
not there exists a combination af. and\_ such that equatiofi.{17) is true. The
answer is given by the following proposition, which also defines suitabl@Tssd
parameters.

Proposition 1. Let X be CTSdistributed with X ~ CTS«, C, A, A, m), then
the standardized random variable

5Sed Kimet al] (2008h) for definition of the stdCTS.
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follows the distributional law
Z ~ stdCTS(ar, Ay, A_), (18)

wherethe standard deviation of X iso := /V[X], A := A_-cand A_ := A_-0.
The PDFsof X and Z are linked by

1 xr—m
fx(@) = 1z ( ) . (19)
ag ag
Proof. The distribution of a CTS random variah} can be written as
PIX < 2) = / Fe(t)dt .
By standardizing and substituting= thm we obtain

P(X<9:):P<X_m<x_m>:P<Z<m_m>

g g o

z—m

Z/Ufz(s)d32/1f2<t;m> ‘%'dt-

o0 —

Consequently, a random variabteis the standardization oX if and only if its
PDF satisfies

fz <$_m> =0 fx(x).

ag

Let ¢z (u) be the characteristic anfl;(z) the corresponding density function of
the random variabl& ~ stdCTSa, A4, A_). Using the definition ofy(u) we can
write

®

fz(z) = 1/00 TE gz (u)du

27 J_

ThenZ = 2= yields

- 1 [ o am
12 (m om> :27r/ e” e - ¢z (u)du.

—00

By substitutingu = s - o and‘jli; = o we obtain

I3 <SL‘ — m) 1 /OO e isaFism ¢Z(8 . g)ads. (20)

o 2 J_

11



Since we know thaZ ~ stdCTSa, A4, A_) we can write

b7(s- o) =exp {z soCT(1—a) (A2 = 3ol 1)
+ CT(~a) [(X+ —iso)® — A% + (A +is0)* — Xi} }
—exp {z s CT(1—a) (A — )
+ 0% CT(~a) [(Ay —i5)® — A% + (A_ +is)® — xz]}
= exp {z sCT(1—a) (A& — x>
+CT(—a) [\ — i) = A3 + (A +is)" = 2] }
=e 5. ¢X(5)1

whereg x (s) is the characteristic function €. In the calculation above we made

use ofc® - C' = C'. This can be seen from the following equations

C = [r(z —a)(\T? + %1‘2)} o (22)
= [P(2—-0a) o 2(AT 2+ A*"2)] " and
0% =CD(2—a) A2+ 2172 (23)
Combining [2B) and(22) yields
o C = o =C

[(2—a)(A372 + 2272

In conclusion, we obtain

[z (gc m) =o0- e e T px(s)ds

o 27 J_
=0 fx(z),
which proves that the standardizatiéhof X is stdCTS$a, Ay, A_) distributed.

O
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3.2 Rapidly decreasing tempered stable distribution

Similar results can be derived for the RDTS distribution. As a represeatativ
of the family of TID distributions introduced in Biancki al/ (201(1)), the RDTS is
well-defined by the Bvy tupel(y, o2, v(dx)) with

|z|>1
0?2 =0
22 o2 d
v(dr) = (C+e)‘i21x>o + C_eA2_21x<0> meH ) (24)

whereC,C_, Ay, A_ € Ryp, a € (0,2), andm € R. For our purpose we
consider the simplified RDTS distribution withh = C, = C_. Using the levy-
Khintchine representation, the characteristic function of a RDTS randoiable
X ~ RDTS«, C, A\, \_, m) takes the form

o(u) = exp {zum — zu/ - zv(dr) + / (e —1— il <) V(dx)}

R

= exp {zum + / (e™* —1—jux) u(dw)} . (25)

R

In|Kim et al dZQld)) this result was reformulated using the confluent hypergeomet-
ric function M (a, b; 2)

d(u;a, Cy Ay, A, m) =exp {z’um + C - [Gliu;a, Ay ) + G(—iu; o, A)] },
(26)

whereG(z; o, \) is defined as

The mean and variance of a RDTS distributed random variable
X ~RDTS«, C, Ay, A_,m) are given by

E[X]=m (27)

22—«

V[X]=2"92T ( ) C (A2 +272) . (28)

The following proposition provides the corresponding result to Propogitio
for the RDTS distribution.

13



Proposition 2. Let X be RDTS distributed with X ~ RDTS(«, C, A1, A_, m),
then the standardized random variable

X —E[X]
-~ JVIX]
follows the distributional law
Z ~ stdRDTS(ar, A, M), (29)

wherethe standard deviation of X iso := /V[X], A := A -cand \_ := \_-0.
The PDFsof X and Z arelinked by

fete) = 22 (257 (30

g

Proof. The proposition can be proved in the same manner as Propdsition 1. Hence
it is left to show that the following equation holds

¢z(s-0) = ™™ - ¢x(s)

Using the formulation of the characteristic function[inl(25) we can write

¢z(s-0) =exp {/ (eis‘” —1-— isam) V(dx)} )

R

Then the definition of the RDTSédvy measure (dx) in (24) and the substitution
y=x-oYyield

o(s ) :exp{ [l —1-isy) .

R

(e—x3y2/20211>0+e—5\3y2/20211<0) dy _O_a+1 )
o lylott

Using the defining expressions far. and)_ results in

¢z(s-0) =exp {/(e"sy—l—isy).c.

R

|y|a+1

= exp { — ism} - exp {ism + / (eisy -1~ isy) y(dy)}
R

= exp { - ism} ~px(s) .

d
(21 png + V021, ) 2 }

14



Approximation error

0 500 1000 1500 2000 2500
Integration limit a

Figure 2: Logarithm of smoothed approximation ey, (e (a, ¢)) with ¢ = 13
anda € {60, 80, 100, ..., 2500} for different standard CTS distributions

Again the equatioit’ - v = C holds because

C = [26”2 r <2 ; O‘) (X‘i‘Q + Z\‘i‘z)} -

~1
= [2a/2 r (2;Q> o (N2 4+ )&‘2)} and

o> =272 (2;a) C (AT2 4222,

4 Minimizing the approximation error

For practical application of the FFT approach presented, the selectithe of
parameterg (and therebyV), a, andp is crucial because it determines the effi-
ciency and the quality of the approximation. In the following, we focus on the
standard CTS distribution and present a methodology for a potential ¢edibcd
the FFT-based PDF approximation.

15
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5000 -
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3000 -

Optimal integration lim|

N
[=}
o
o

1000

0 1 2 3 4 5 6 7
Number of integration steps % 10*

Figure 3: Optimal integration limitg*(q) for varying parametey and different
standard CTS distributions

In general the FFT parameterandq should be chosen in a trade-off between
computational complexity and required accuracy of PDF values. The cgityple
is determined by the numbeé¥ of integration steps in the FFT. The accuracy can
be measured by the approximation empk (a, ¢) which is defined as

erx(a,q) = sup {fEET () — fNvm(2)} (31)

where X is a stdCTS random variablg, /" (z) and fV“™(z) denote the PDF
calculated by either the FFT method or numerical integration. We conclude that
the quality of the approximation depends both on the FFT parameters and-the dis
tributional parameters. Figuké 2 shows that the approximation error andrtne e
minimizing «* for a given parametey vary with the CTS parameters. In figure

[3 the linear correlation betweerf andq is displayed. For MLE the exact CTS
parameters are often unknown and that is why it is reasonable to estimafe the a

proximation error based on the FFT parameters and the sample moments only.

In order to keep the optimization of the FFT parameters simple and robust, we
suggest estimating anda sequentially.q is determined first because it is closely
related to the computational capacity and has a strong influence on tha@cotir
the FFT method. That is why we need (1) a rough estirdgtg) of the dimension
of the approximation error based grand (2) the optimal parameteft (¢) given

16



CalM [ AT KX ¢ allogy(esx(aq)) |

05|15| 0.8 7.6841| 11| 240 -3.8932
15|15 0.8} 3.8180| 11| 300 -4.8747
08| 1.5 1| 5.0816| 11| 260 -4.5904
03| 1 2| 6.7798| 11| 260 -4.0448
16| 1.1 1.05| 5.0931| 11| 280 -5.3083
05|15| 0.8} 7.6841| 12| 500 -4.6696
15|15 0.8} 3.8180| 12| 520 -5.5324
08|15 1] 5.0816| 12| 460 -5.2018
03| 1 2 6.7798| 12| 520 -4.7613
16| 1.1 1.05| 5.0931| 12| 520 -6.2735
05|15| 0.8] 7.6841 13| 760 -5.2499
15(15| 0.8| 3.8180| 13| 800 -6.2868
08| 1.5 1| 5.0816| 13| 900 -6.2082
03| 1 2 6.7798| 13 | 920 -5.6326
16| 1.1| 1.05]| 5.0931| 13 | 1040 -6.9148
05|15] 0.8| 7.6841| 14| 1600 -5.9663
15|15 08| 3.8180| 14 | 1660 -7.4091
08|15 1] 5.0816| 14 | 1620 -7.2649
03| 1 2 || 6.7798| 14 | 1600 -6.7678
16| 11| 1.05] 5.0931| 14 | 1880 -7.7314
05| 15| 0.8] 7.6841| 15| 2840 -6.9696
15|15 0.8] 3.8180| 15| 2940 -8.3406
08|15 1] 5.0816| 15| 2860 -8.1683
03| 1 2| 6.7798| 15 | 2860 -7.6024
16| 1.1| 1.05]| 5.0931| 15| 3240 -8.8701
05| 15| 0.8| 7.6841| 16 | 4980 -7.8939
15|15 0.8]| 3.8180| 16 | 5100 -90.1084
08|15 1] 5.0816| 16 | 5280 -8.9881
03| 1 2| 6.7798| 16 | 5280 -8.394
16| 11| 1.05] 5.0931| 16 | 5900 -9.4468

Table 1: Logarithm of approximation errer x (a,q) given parameter of FFT
transform and standard CTS distribution
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q. We use the following regression models for (1) and (2), whdr€|Klenotes the
kurtosis of X :

log1o(é(q)) = ao + a1 - ¢ + az - K[X] (32)
a*(q) =bo+by-27. (33)

In order to reduce the risk of finding a local optimum, we smoothed the errars
with window size 5.

For the data in tablg 1, the optimal parameters for madé! (32):gre: 3.0558,
a1 = —0.8628, anday, = 0.3478. The R? of 0.9525 indicates a strong correlation
and adding information, e.g. the skewne&& 5 does not result in a significant im-
provement of the explanatory qualitig? = 0.9538). For model[(3B) the optimal
parameters ar& = 229.1045 andb; = 0.0767 with a R? of 0.9951.

Consequently the following two-step procedure provides a FFT parametriz
tion (¢*, a*) minimizing the approximation error.

1. Choose &* such that the dimension @f(q) is smaller or equal to the re-
quired accuracy. I§* exceeds the computationally feasible limit,.. than

useq” = ¢maz-
2. Computez*(¢*) using the regression formula{33).

Due to the use of the regression formula ép(q) anda*(q), the derived pa-
rameters may not represent the global optimum. The advantage of thelprede
nevertheless its robustness due to its independence of the CTS paraandtéss
simplicity. The convexity of the curves in figué 2 furthermore suggestsilian
q*, we find a near-optimal solution.

The parameter selection problem for the CDF is more complex because of the
additional parametep and the slower convergence of the integral which should
be approximated. Further research should be conducted to defimagtaration
rules for the CDF and VaR cases in the same manner as we outlined in this paper

5 Empirical resultsfor S& P 500 data

In this section, we present the MLE results for a simple CTS model based on
S&P 500 return data. Therefore, we define four different data samaled-year
data from 26 June 2005 to 26 June 2009, (b) 6-year data from 2620@3eto 26
June 2009, (c) 8-year data from 26 June 2001 to 26 June 2009 )ph@tyear data
from 26 June 1999 to 26 June 2009. For each sample we perform §Qsimg
randomized starting parameters and then we select the CTS parameters with the
best fit. The log-likelihood function is approximated using two methods: method
| (the FFT method with standardized CTS distribution presented in sédtiord3) an
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Data set| M Method | | Method II
4 years | 1008 | logLHggt 2,973.560| 2,975.087
logLHNum 2,973.798| 2,972.374
Relative error] 0.008% 0.091%
6 years | 1511 | logLHggt 4,685.228| 4,692.750
logLHNum 4,682.393| 4,675.536
Relative error] 0.061% 0.368%
8years | 2011 | logLHgg 6,040.171| 6,036.312
logLHNum 6,038.343| 6,038.048
Relative error]  0.030% 0.029%
10 years| 2516 | logLHget 7,493.580| 7,497.565
logLHNum 7,493.295| 7,493.064
Relative error]  0.004% 0.060%

Table 2. Comparison of optimal logLH values from MLE for CTS distribution
using four different S&P 500 data samples

method Il (the FFT method without standardization). The goodness-oi-fihe
estimated distributions is assessed with the help of the log-likelihood value calcu-
lated by numerical integration as well as by the corresponding FFT aippatan,
thep-value for the Kolmogorov-Smirnov statistic (Kﬂ}and the Crarar-von Mises
statistic (CvMﬂ The tail fit is measured by the squared Anderson-Darling statistic
(ADZ)E According to the FFT parameter selection procedure presented, weechoo
¢* = 13 anda*(¢*) = 800 for both FFT methods | and II.

A comparison of the optimal log-likelihood (logLH) values in table 2 reveals
that the relative errof9-Heer=100Hum /o0 1 for method | is less tha.07%.
For method Il the maximum relative error observed.id8%, which is five times
higher than for the MLE with standardization.

Table[3 shows that the goodness-of-fit results of method | are in desgra
rior to method Il: the logLH ang-values are higher and the ARnd CvM statis-
tics are lower—both indicating a better fit. The exception for the 6-year éata s
where thep-value of method | is worse, can be explained with the specifics of the
KS statistic. It measures the maximum deviation which might be due to an outlier
in the data set. The CvM statistic nevertheless coincides with the gener$.resu
The empirical findings support the theory that standardization leads tibea ap-
proximation quality because the optimal FFT parameiérand¢* do not depend
on the sample mean and variance which reduces the risk of misspecification.

SSee Kolmogorav (1933).
’Sed Crarél (1928).
8See Anderson and Darling (1952).
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Data set| M Method | | Method Il | A;_;;
4years | 1008 | logLHy,m | 2,973.798| 2,972.374| 1.4244
p-value 0.911 0.896| 0.0154
AD? 0.267 0.370| -0.1032
CvM 0.042 0.050| -0.0075
6 years | 1511 logLHy,, | 4,682.393| 4,675.536| 6.8572
p-value 0.711 0.841| -0.1297
AD? 0.431 0.601| -0.1706
CvM 0.056 0.061| -0.0049
8 years | 2011 | logLHy,, | 6,038.343| 6,038.048| 0.2947
p-value 0.834 0.751| 0.0825
AD? 0.408 0.661| -0.2535
CvM 0.047 0.110| -0.0622
10 years| 2516 | logLHy,m | 7,493.295| 7,493.064| 0.2306
p-value 0.831 0.424| 0.4078
AD? 0.420 0.765| -0.3450
CvM 0.057 0.118| -0.0613

Table 3: Goodness-of-fit results from MLE for CTS distribution usingyfdiffer-

ent S&P 500 data samples

6 Conclusion

In this paper we outlined an efficient approximation for the PDF, CDF, VaR,
and AvaR of TS and TID distributions. Based on knowledge of the clberiatic
function, the FFT method is used to compute the density and distribution functions
As|Menn and Rachev (2006) argued for the stable Paretian case,dhedipre is
computationally efficient. We explained why standardization is important for the
parameter choice of the FFT and presented how the standardized CR®aI®I
can be used to derive PDF values for any parameterization. For ptacijga-
mentation purposes, this means reducing the risk of misspecifying the integratio
limit and the number of integration steps and thereby improving the effectigene
of the proposed FFT-based method. For the PDF of the CTS distributioprawve
posed a two-step procedure for a near-optimal FFT parameter selebktieach
step, a regression model is used to determine one optimal parameter. Empirical
results using S&P 500 return data supported our two main theoretical results f
the CTS case: applying the FFT method to the CTS distribution delivers geod ap
proximation quality and using standardization improves the effectivenddt bf
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