
A FFT-based approximation of tempered stable and
tempered infinitely divisible distributions

Matthias Scherer
Department of Statistics, Econometrics and Mathematical Finance, School of Economics and Busi-
ness Engineering, University of Karlsruhe and KIT
Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany
E-mail: matthias.scherer@alumni.uni-karlsruhe.de

Svetlozar T. Rachev∗

Chair-Professor, Chair of Statistics, Econometrics and Mathematical Finance, School of Economics
and Business Engineering, University of Karlsruhe and KIT, and Department of Statistics and Ap-
plied Probability, University of California, Santa Barbara, and Chief-Scientist, FinAnalytica INC
Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany
Tel.: +49(0721)608 - 7535
Fax.: +49(0721)608 - 3811
E-mail: rachev@statistik.uni-karlsruhe.de

Young Shin Kim
Department of Statistics, Econometrics and Mathematical Finance, School of Economics and Busi-
ness Engineering, University of Karlsruhe and KIT
Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany
E-mail: aaron.kim@statistik.uni-karlsruhe.de

Frank J. Fabozzi
Professor in the Practice of Finance, Yale School of Management
135 Prospect Street, New Haven, CT 06511 USA
E-mail: frank.fabozzi@yale.edu

Abstract There is considerable empirical evidence that financial returns exhibit
leptokurtosis and non-zero skewness. As a result, alternative distributions for mod-
eling a time series of the financial returns have been proposed. A family of distri-
butions that has shown considerable promise for modeling financial returns is the
tempered stable and tempered infinitely divisible distributions. Two representative
distributions are the classical tempered stable and the rapidly decreasing tempered
stable. In this paper, we explain the practical implementation of these two distri-
butions by (1) presenting how the density functions can be computed efficiently
by applying the fast Fourier transform (FFT) and (2) how standardization helps to
drive efficiency and effectiveness of maximum likelihood inference.

Keywords fast Fourier transform, stable Paretian distribution, tempered stable
distribution, tempered infinitely divisible distribution, classical tempered stable
distribution, rapidly decreasing tempered stable distribution

∗Rachev gratefully acknowledges research support by grants from Division of Mathematical, Life
and Physical Sciences, College of Letters and Science, University of California, Santa Barbara, the
Deutschen Forschungsgemeinschaft and the Deutscher Akademischer Austausch Dienst.

1



A FFT-based approximation of tempered stable and
tempered infinitely divisible distributions

1 Introduction

Portfolio construction and risk management depend on the modeling of the fi-
nancial time series of asset returns. Prior to the pathbreaking works of Mandelbrot
(1963) and Fama (1963), it was assumed that return distributions followeda nor-
mal distribution. Since the early 1960s, a considerable number of empirical studies
have documented that the assumption that return distributions can be characterized
by a normal distribution should be rejected.1 The findings of these studies suggest
that return distributions have heavier tails than the normal distribution (i.e., exhibit
leptokurtosis) and have non-zero skewness (i.e., are asymmetric).

Given the overwhelming evidence rejecting the normal distribution, alternative
distributions for dealing with the stylized facts observed for real-world financial
returns were proposed. One such distribution proposed by both Mandelbrot and
Fama is the stable Paretian distribution.2 Despite being a significant improvement
in modeling returns in comparison to the normal distribution, the stable Paretian
distribution has two drawbacks: (1) it does not have a closed-form expression for
the density function, leading to resource intensive applications and (2) thevariance
as well as higher moments are generally infinite. The first drawback has been over-
come in recent years by using the fast Fourier transform (FFT).3 It provides an effi-
cient density approximation for the stable Paretian distribution and reduces compu-
tational requirements as discussed in Mittniket al. (1999) and Menn and Rachev
(2006).

Koponen (1995) proposed a model dealing with the second drawback-divergence
of higher moments-by using tempered stable distributions. This model was en-
hanced by Boyarchenko and Levendorskii (2000) and Carret al. (2002). Their
works also mark the first application of such models to the financial market. With
the seminal work of Rosiński (2007) and Bianchiet al. (2010) the family of tem-
pered stable (TS) and the family of tempered infinitely divisible (TID) distributions
were introduced. As discussed in Kimet al. (2010), the tempered stable (TS) and
tempered infinitely divisible (TID) distributions also account for heavy tails and
asymmetry in the empirical data. The improved modeling quality by using these
distributions compared to the normal distribution has been supported by empiri-
cal studies investigating financial returns, e.g. Kimet al. (2008a) and Kimet al.
(2008b).

1For a review of these studies, see Rachevet al. (2005).
2See Rachev and Mittnik (2000).
3See DuMouchel (1975).
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From an implementation perspective, however, two key questions are still unan-
swered: (1) how to derive the density function of these distributions efficiently and
(2) how to ensure the quality of the density approximation, especially for maxi-
mum likelihood estimation (MLE). In this paper, we address these two questions.
First, we present a FFT-based approximation of the probability density andcumu-
lative distribution function as well as the value-at-risk and average value-at-risk of
TS and TID random variables. Second, we show how the FFT approachcan be
improved by standardizing the random variable. This standardization technique is
exemplified by the classical tempered stable and the rapidly decreasing tempered
stable distribution. In the following we introduce an approach to calibrate the FFT
method in practice. Finally we apply our findings in the context of MLE.

2 Using FFT in the context of TS and TID distributions

A common drawback the TS and TID distributions share with the stable Pare-
tian distributions is that in general there is no closed-form expression fortheir
density function available. The probability law for these distributions is described
by the Fourier transform of their density function which is called the characteristic
function and denoted byφ. The general idea for an efficient algorithm computing
the density function was suggested by DuMouchel (1975) for the stable Paretian
distributions and thereafter used and refined in various studies. Based on this ap-
proach, we present here how the probability density function (PDF), thecumulative
distribution function (CDF), and both the value-at-risk (VaR) and average value-at-
risk (AVaR) can be computed efficiently using a FFT-based approximation method.

In our analysis, we assume the probability space(R, ℘(R), P ), where℘(R)
denotes the Borel set onR andX : R → R as aR-measurable function for which
P (X < x) is differentiable and invertible.

2.1 The probability density function

The PDFfX : R → [0, 1], fX(x) = dP (X<x)
dx of X can be computed from the

characteristic function

φX(u) := E[eiuX ] , (1)

using the inverse formula of the fourier transform

fX(x) =
1

2π

∫ ∞

−∞
e−iux · φX(u)du . (2)

In the case of stable Paretian, TS, and TID distributions, there exists a closed-
form expression for their characteristic functionsφX(u). Given a stable Paretian
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random variableX ∼ Sα(α, β, c,m) with α ∈ (0, 2], β ∈ [−1, 1], c ∈ R>0, and
m ∈ R, φX(u) is defined as

φX(u) =

{

exp
{

imu− cα |u|α
[

1− iβ sign(u) tan(πα2 )
]}

: α 6= 1
exp

{

imu− c |u|
[

1 + iβ sign(u) 2π ln |u|
]}

: α = 1 .

As an example for the TS class, the classical tempered stable (CTS) distribution
with parametersC+, C−, λ+, λ− ∈ R>0, α ∈ (0, 2), m ∈ R has the characteristic
function

φ(u;α,C+, C−, λ+, λ−,m) = exp
{

ium− iuΓ(1− α)(C+λ
α−1
+ − C−λ

α−1
− )

+ C+Γ(−α)((λ+ − iu)α − λα
+)

+ C−Γ(−α)((λ− + iu)α − λα
−)

}

. (3)

For a comprehensive defintion of the TS and TID class and some examples,we
refer to Rosínski (2007) and Bianchiet al. (2010).

It is common knowledge that the Fourier transform can be numerically ap-
proximated by its discrete version: the discrete Fourier transform (DFT).The DFT
is a specific mapping which assigns vectorX = (x1, . . . , xN ) ∈ R

N to vector
Y = (y1, · · · , yN ) ∈ R

N based on the equation

xj =
N
∑

k=1

yk · e
−i

2π(j−1)(k−1)
N , j = 1, · · · , N . (4)

The FFT is the generally acknowledged computationally efficient implemen-
tation of the DFT which exploits the periodicity of the unit roots. We denote the
FFT mapping byX = FFT[Y ] whereXj = FFTj [Y ]. Furthermore(yk)k=1,··· ,N

defines the vectorY by components. Givena ∈ R>0, q ∈ N>0, and the following
set of definitions for allj, k ∈ {1, · · · , N = 2q}

uk := −a+
2a

N
(k − 1)

u∗k :=
uk+1 + uk

2

xj := −
Nπ

2a
+

π

a
(j − 1) (5)

Cj :=
a

Nπ
(−1)j−1 · ei

π(j−1)
N ,

as well as the characteristic functionφ(u) of a standardized random variableX,
Menn and Rachev (2006) proved–in the context of stable Paretian distribution–that
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by applying FFT the PDF can be approximated at the pointsxj

fMP (xj) =
1

2π

∫ ∞

−∞
e−iuxj · φ(u)du

≈
1

2π

∫ a

−a
e−iuxj · φ(u)du

≈ Cj

N
∑

k=1

(−1)k−1 · φ(u∗k) · e
−i

2π(j−1)(k−1)
N

= Cj · FFTj

[

(

(−1)k−1 · φ(u∗k)
)

k=1,··· ,N

]

.

Parametera determines the integration limits for the Fourier transform andq de-
fines the number of integration stepsN = 2q.

The formula forfMP (xj) makes use of the mid-pointsu∗k (mid-point rule for
integral approximation). In order to minimize approximation errors,
Menn and Rachev (2006) resort to the Simpson rule which implies

f(xj) ≈
2

3
· fMP (xj) +

1

3
· fLP (xj) , (6)

The expressionfLP (xj) can be derived in the same manner asfMP (xj) using the
left-point rule

fLP (xj) =
1

2π

∫ ∞

−∞
e−iuxj · φ(u)du

≈
N
∑

k=1

e−iukxj · φ(uk) ·
2a

N
.

The equationuk · xj = Nπ
2 − π(j − 1)− π(k− 1)+ 2π

N (k− 1)(j − 1) then yields

fLP (xj) ≈ Dj

N
∑

k=1

(−1)k−1 · φ(uk) · e
−i

2π(j−1)(k−1)
N (7)

= Dj · FFTj

[

(

(−1)k−1 · φ(uk)
)

k=1,··· ,N

]

,

whereDj :=
a

Nπ (−1)j−1.

Note that analyzing random variables with zero-mean and unit variance is suf-
ficient if the influence of standardization on the distributional parameters is known.
Then the method presented is applicable to any random variable from the given dis-
tributional family by means of standardization and rescaling. Furthermore this ap-
proximation technique works independently of the specific characteristic function,
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and that is why it can be directly applied to the case of TS and TID distributions.
Note that the PDF at arbitrary pointsx ∈ R can be computed by any of the standard
interpolation algorithms—preferably a cubic interpolation such as piecewise cubic
Hermite interpolation.4

2.2 The cumulative distribution function

We know from Kimet al. (2009) that the CDFFX : R → [0, 1], FX(x) =
P (X < x) of a TS or TID distributed random variableX can be calculated by

FX(x) =
exρ

π
· ℜ

{
∫ ∞

0
e−ixu φX(u+ iρ)

ρ− ui
du

}

, (8)

whereρ > 0 andφX(u) is the characteristic function ofX with |φX(v)| < ∞, for
all complex numbers withℑ(v) = ρ. For simplicity, let us define

g(u) :=
φX(u+ iρ)

ρ− ui
. (9)

Following Menn and Rachev (2006) we can approximate the integral using the
mid-point rule for the DFT. Givena ∈ R>0, q ∈ N>0, N = 2q, and for all
j, k ∈ {1, · · · , N}

uk :=
2a

N
(k − 1) (10)

u∗k :=
uk + uk+1

2
=

a

N
(2k − 1)

xj := −
Nπ

2a
+

π

a
(j − 1)

it holds that
∫ ∞

0
e−ixj u ·

φX(u+ iρ)

ρ− ui
du ≈

∫ a

0
e−ixj u ·

φX(u+ iρ)

ρ− ui
du

≈

N
∑

k=1

e−ixju
∗

k · g(u∗k) ·
2a

N
.

With the equationsxj ·u∗k = −π 2k−1
2 + 2π

N
2k−1
2 (j− 1) and 2k−1

2 · (j− 1) =

4See Fritsch and Carlson (1980).
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(k − 1 + 1
2) · (j − 1) = (k − 1)(j − 1) + 1

2(j − 1) it follows that

N
∑

k=1

e−ixju
∗

k · g(u∗k) ·
2a

N
=

2a

N

N
∑

k=1

e−i[−π 2k−1
2

+ 2π
N

2k−1
2

(j−1)] · g(u∗k)

=
2a

N

N
∑

k=1

eiπ
2k−1

2 · e−i 2π
N [(k−1)(j−1)+ 1

2
(j−1)] · g(u∗k)

=
2a

N

N
∑

k=1

eiπ
2k−1

2 · e−i π
N
(j−1) · g(u∗k) · e

−i 2π
N

(k−1)(j−1)

=
2a

N
e−i π

N
(j−1) ·

N
∑

k=1

eiπ
2k−1

2 · g(u∗k) · e
−i 2π

N
(k−1)(j−1) .

Hence

FX(xj) ≈ FMP
X (xj) (11)

=
exjρ

π
· ℜ

{

2a

N
e−i π

N
(j−1) · FFTj

[

(

(−1)k−1 · i · g(u∗k)
)

k=1,··· ,N

]}

.

The Simpson rule cannot be analogously applied for the CDF approximation.
This is due to the fact that the integrand function in equation (8) is asymmetric
which implies that three integrals: mid-point, left-point, and right-point have to be
evaluated. This is, however, less efficient and therefore we suggestthe use of the
mid-point rule only.

2.3 The Value-at-Risk and Average Value-at-Risk

The VaR at confidence levelδ ∈ [0, 1] for a return modeled by a TS or TID
random variableX is given by

VaRδ[X] = F−1
X (δ) , (12)

whereF−1
X : [0, 1] → R is the inverse CDF. From (8) the TS and TID CDF can

be calculated and by (11) an efficient numerical procedure is given. Hence the
VaRδ[X] can also be computed efficiently.

Kim et al. (2009) provide a formula for AVaR at confidence levelδ ∈ [0, 1]

AVaRδ[X] = VaRδ[X]−
eVaRδ[X]ρ

π(1− δ)
ℜ

{
∫ ∞

0
e−iuVaRδ [X] φX(u+ iρ)

(u+ iρ)2
du

}

.

(13)

The VaRδ[X] is thereby derived as described above. In practical applications, the
integral in (13) is in most cases only evaluated for a restricted number of VaRδ[X]
(e.g. corresponding to the confidence levelsδ = 0.9, 0.975, 0.99). Therefore there
is no efficiency gain in applying the FFT approximation. The numerical integration
in (13) can be dealt with using e.g. the standard trapezoid rule.
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3 Standardizing TS and TID random variables

Before we present the standardization techniques for TS and TID distributions,
we briefly motivate the link between FFT and standardization. For the effectiveness
and efficiency of the FFT method, the choice of the parametersN anda is crucial.
They both significantly influence the sampling grid{−a,−a+ 2a

N , · · · , a− 2a
N , a}

and the interpolation grid{−Nπ
2a ,−

Nπ
2a + π

a , · · · ,
Nπ
2a − π

a ,
Nπ
2a } which again deter-

mine the size of the approximation error. This error can be split into

1. the sampling errorǫ1 which includes the loss of information due to (a) the
restricted length of the sampling interval and (b) the discretization

2. the interpolation errorǫ2 which comprises (a) the error between grid points
and (b) error due to misspecifying the length of the interpolation interval.

Parametera directly influences the size of the sampling interval[−a, a] and the
interpolation distancesπa . Increasinga can hence reduce errors 1(a) and 2(a). On
the other hand, the ratioaN determines the sampling distance2aN and the size of
the interpolation interval[−Nπ

2a ,
Nπ
2a ] which means that a low ratio decreases errors

1(b) and 2(b). Given that the size ofN is upper-bounded due to computational
efficiency, the optimal choice ofa andN is a trade-off between minimizing the
errors 1(a) and 2(a) on the one hand and the errors 1(b) and 2(b) on the other hand.

The standardization simplifies parameter selection. To demonstrate this, we
focus on computing the PDFf(0) of a CTS random variableX

f(0) =
1

2π

∫ ∞

−∞
e−i·u·0 · φ(u)du =

1

2π

∫ ∞

−∞
φ(u)du ,

which is up to a constant factor the integral over the characteristic functionφ(u).
The exact definition of a CTS random variable is provided later. We analyze three
cases to highlight potential pitfalls in the FFT approximation

1. Standard:X1 ∼ CTS(α,C, λ+, λ−,m) with E[X1] = 0 and V[X1] = 1

2. Rescaled:X2 ∼ CTS(α, c · C, λ+, λ−,m) with c ∈ (0, 1)

3. Shifted:X3 ∼ CTS(α,C, λ+, λ−,m+ d) with d 6= 0

In order to avoid any confusion with value-at-risk, we denote the variance of a ran-
dom variableX by V[X].

Figure 1 illustrates the real part of the corresponding characteristic functions.
The different curves imply different optimal selection for the FFT parameters. For
the rescaled CTS, the sampling interval[−a, a] must be widened to keep sampling
error 1(a) low. Here we assumec < 1 implying V[X2] = c · V[X1] < 1 because
this is the relevant area of empirical return variances. The shifted CTS suggests,
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Figure 1: Real part of the CTS characteristic functions: standard
((α,C, λ+, λ−,m) = (1.1, 0.0589, 0.1, 0.1, 0)), rescaled (c = 0.5), and shifted
(d = 1)

however, that the interpolation interval[−Nπ
2a ,

Nπ
2a ] is relocated byd or sufficiently

increased in order to keep the interpolation error 2(b) small. The trade-off between
errors (a) and (b) is hence intensified when looking at rescaled and shifted CTS
distributions.

In conclusion, the use of standard CTS for the FFT eliminates the influence of
the parametersC, andm on the choice ofN anda and thereby helps practition-
ers to ensure the approximation quality of the PDF. The problem for general CTS
distributions can be always reduced to the standard case by commonly known sta-
tistical means. This procedure is especially relevant in an inference setting, where
the distributional parameters are a priori unknown. It is nevertheless important
to mention that there is still a dependence betweenα, λ+, andλ− and the FFT
parametersN anda.
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3.1 Classical tempered stable distribution

Rosínski (2007) and Kimet al. (2008a) define the CTS distribution by the Lévy
tupel (γ, σ2, ν) with

γ = m−

∫

|x|>1
xν(dx)

σ2 = 0

ν(dx) =
(

C+e
−λ+x

1x>0 + C−e
−λ−x

1x<0

) dx

|x|α+1
.

whereC+, C−, λ+, λ− ∈ R>0, α ∈ (0, 2), m ∈ R, and1A denotes the indicator
function. Using the Ĺevy-Khintchine representation in Sato (1999) yields

φ(u;α,C+, C−, λ+, λ−,m) = exp
{

ium− iuΓ(1− α)(C+λ
α−1
+ − C−λ

α−1
− )

+ C+Γ(−α)((λ+ − iu)α − λα
+)

+ C−Γ(−α)((λ− + iu)α − λα
−)

}

. (14)

The expected value and variance of a CTS random variable
X ∼ CTS(α,C+, C−, λ+, λ−,m) are given by

E[X] = m (15)

V[X] = Γ(2− α)(C+λ
α−2
+ + C−λ

α−2
− ). (16)

As discussed earlier, it is crucial to understand howX can be standardized in order
to use the FFT efficiently. For our purpose, we consider the simplified CTS distri-
bution withC = C+ = C−. Then we need to answer the question howZ defined
by

Z :=
X − E[X]
√

V[X]
(17)

is distributed ifX ∼ CTS(α,C, λ+, λ−,m). Let us assumeZ is standard CTS
distributedZ ∼ stdCTS(α, λ̃+, λ̃−).5 Then the question reduces to whether or
not there exists a combination ofλ̃+ andλ̃− such that equation (17) is true. The
answer is given by the following proposition, which also defines suitable stdCTS
parameters.

Proposition 1. Let X be CTS distributed with X ∼ CTS(α,C, λ+, λ−,m), then
the standardized random variable

Z :=
X − E[X]
√

V[X]

5See Kimet al. (2008a) for definition of the stdCTS.
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follows the distributional law

Z ∼ stdCTS(α, λ̃+, λ̃−), (18)

where the standard deviation of X is σ :=
√

V[X], λ̃+ := λ+ ·σ and λ̃− := λ− ·σ.
The PDFs of X and Z are linked by

fX(x) =
1

σ
fZ

(

x−m

σ

)

. (19)

Proof. The distribution of a CTS random variableX can be written as

P (X < x) =

∫ x

−∞
fX(t)dt .

By standardizing and substitutings = t−m
σ we obtain

P (X < x) = P
(X −m

σ
<

x−m

σ

)

= P
(

Z <
x−m

σ

)

=

∫ x−m
σ

−∞
fZ(s)ds =

∫ x

−∞
fZ

( t−m

σ

)

·
1

σ
· dt .

Consequently, a random variableZ is the standardization ofX if and only if its
PDF satisfies

fZ

(

x−m

σ

)

= σ · fX(x) .

Let φZ(u) be the characteristic andfZ(z) the corresponding density function of
the random variableZ ∼ stdCTS(α, λ̃+, λ̃−). Using the definition ofφ(u) we can
write

fZ(z) =
1

2π

∫ ∞

−∞
e−i·u·z · φZ(u)du .

ThenZ = X−m
σ yields

fZ

(

x−m

σ

)

=
1

2π

∫ ∞

−∞
e−i·u·x−m

σ · φZ(u)du.

By substitutingu = s · σ and du
ds = σ we obtain

fZ

(

x−m

σ

)

=
1

2π

∫ ∞

−∞
e−isx+ism · φZ(s · σ)σds. (20)
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Since we know thatZ ∼ stdCTS(α, λ̃+, λ̃−) we can write

φZ(s · σ) = exp
{

i s σ C̃ Γ(1− α) (λ̃α−1
+ − λ̃α−1

− ) (21)

+ C̃Γ(−α)
[

(λ̃+ − isσ)α − λ̃α
+ + (λ̃− + isσ)α − λ̃α

−

]}

=exp
{

i s σα C̃ Γ(1− α) (λα−1
+ − λα−1

− )

+ σα C̃Γ(−α)
[

(λ+ − is)α − λα
+ + (λ− + is)α − λα

−

]

}

=exp
{

i sC Γ(1− α) (λα−1
+ − λα−1

− )

+ CΓ(−α)
[

(λ+ − is)α − λα
+ + (λ− + is)α − λα

−

]

}

=e−i sm · φX(s),

whereφX(s) is the characteristic function ofX. In the calculation above we made
use ofσα · C̃ = C. This can be seen from the following equations

C̃ =
[

Γ(2− α) (λ̃α−2
+ + λ̃α−2

− )
]−1

(22)

=
[

Γ(2− α)σα−2(λα−2
+ + λα−2

− )
]−1

and

σ2 = C Γ(2− α) (λα−2
+ + λα−2

− ) (23)

Combining (23) and (22) yields

σα · C̃ =
σ2

Γ(2− α)(λα−2
+ + λα−2

− )
= C

In conclusion, we obtain

fZ

(

x−m

σ

)

= σ ·
1

2π

∫ ∞

−∞
e−isx · φX(s)ds

= σ · fX(x) ,

which proves that the standardizationZ of X is stdCTS(α, λ̃+, λ̃−) distributed.
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3.2 Rapidly decreasing tempered stable distribution

Similar results can be derived for the RDTS distribution. As a representative
of the family of TID distributions introduced in Bianchiet al. (2010), the RDTS is
well-defined by the Ĺevy tupel(γ, σ2, ν(dx)) with

γ = m−

∫

|x|>1
xν(dx)

σ2 = 0

ν(dx) =

(

C+e
−λ2

+
x2

2 1x>0 + C−e
−λ2

−

x2

2 1x<0

)

dx

|x|α+1
, (24)

whereC+, C−, λ+, λ− ∈ R>0, α ∈ (0, 2), andm ∈ R. For our purpose we
consider the simplified RDTS distribution withC = C+ = C−. Using the Ĺevy-
Khintchine representation, the characteristic function of a RDTS random variable
X ∼ RDTS(α,C, λ+, λ−,m) takes the form

φ(u) = exp







ium− iu

∫

|x|>1
xν(dx) +

∫

R

(

eiux − 1− iux1|x|<1

)

ν(dx)







= exp







ium+

∫

R

(

eiux − 1− iux
)

ν(dx)







. (25)

In Kim et al. (2010) this result was reformulated using the confluent hypergeomet-
ric functionM(a, b; z)

φ(u;α,C, λ+, λ−,m) = exp
{

ium+ C · [G(iu;α, λ+) +G(−iu;α, λ−)]
}

,

(26)

whereG(x;α, λ) is defined as

G(x;α, λ) :=2−
α
2
−1 λα Γ

(

−
α

2

)

[

M

(

−
α

2
,
1

2
;
x2

2λ2

)

− 1

]

+

+ 2−
α
2
− 1

2 λα−1 x Γ

(

1− α

2

) [

M

(

1− α

2
,
3

2
;
x2

2λ2

)

− 1

]

.

The mean and variance of a RDTS distributed random variable
X ∼ RDTS(α,C, λ+, λ−,m) are given by

E[X] = m (27)

V[X] = 2−α/2 Γ

(

2− α

2

)

C
(

λα−2
+ + λα−2

−

)

. (28)

The following proposition provides the corresponding result to Proposition 1
for the RDTS distribution.
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Proposition 2. Let X be RDTS distributed with X ∼ RDTS(α,C, λ+, λ−,m),
then the standardized random variable

Z :=
X − E[X]
√

V[X]

follows the distributional law

Z ∼ stdRDTS(α, λ̃+, λ̃−), (29)

where the standard deviation of X is σ :=
√

V[X], λ̃+ := λ+ ·σ and λ̃− := λ− ·σ.
The PDFs of X and Z are linked by

fX(x) =
1

σ
fZ

(

x−m

σ

)

. (30)

Proof. The proposition can be proved in the same manner as Proposition 1. Hence
it is left to show that the following equation holds

φZ(s · σ) = eism · φX(s)

Using the formulation of the characteristic function in (25) we can write

φZ(s · σ) = exp







∫

R

(

eisσx − 1− isσx
)

ν(dx)







.

Then the definition of the RDTS Ĺevy measureν(dx) in (24) and the substitution
y = x · σ yield

φZ(s · σ) = exp

{

∫

R

(

eisy − 1− isy
)

· C̃ ·

(

e−λ̃2
+y2/2σ2

1x>0 + e−λ̃2
−
y2/2σ2

1x<0

) dy

σ · |y|α+1
· σα+1

}

.

Using the defining expressions forλ̃+ andλ̃− results in

φZ(s · σ) = exp

{

∫

R

(

eisy − 1− isy
)

· C ·

(

e−λ2
+y2/2

1x>0 + e−λ2
−
y2/2

1x<0

) dy

|y|α+1

}

= exp
{

− ism
}

· exp







ism+

∫

R

(

eisy − 1− isy
)

ν(dy)







= exp
{

− ism
}

· φX(s) .
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Figure 2: Logarithm of smoothed approximation errorlog10(ǫf (a, q)) with q = 13
anda ∈ {60, 80, 100, ..., 2500} for different standard CTS distributions

Again the equatioñC · σα = C holds because

C̃ =

[

2−α/2 Γ

(

2− α

2

)

(

λ̃α−2
+ + λ̃α−2

−

)

]−1

=

[

2−α/2 Γ

(

2− α

2

)

σα−2
(

λα−2
+ + λα−2

−

)

]−1

and

σ2 = 2−α/2 Γ

(

2− α

2

)

C
(

λα−2
+ + λα−2

−

)

.

4 Minimizing the approximation error

For practical application of the FFT approach presented, the selection ofthe
parametersq (and therebyN ), a, andρ is crucial because it determines the effi-
ciency and the quality of the approximation. In the following, we focus on the
standard CTS distribution and present a methodology for a potential calibration of
the FFT-based PDF approximation.
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Figure 3: Optimal integration limitsa∗(q) for varying parameterq and different
standard CTS distributions

In general the FFT parametersa andq should be chosen in a trade-off between
computational complexity and required accuracy of PDF values. The complexity
is determined by the numberN of integration steps in the FFT. The accuracy can
be measured by the approximation errorǫf,X(a, q) which is defined as

ǫf,X(a, q) = sup
x∈R

{

fFFT
a,q (x)− fNum(x)

}

, (31)

whereX is a stdCTS random variable,fFFT
a,q (x) andfNum(x) denote the PDF

calculated by either the FFT method or numerical integration. We conclude that
the quality of the approximation depends both on the FFT parameters and the dis-
tributional parameters. Figure 2 shows that the approximation error and the error-
minimizing a∗ for a given parameterq vary with the CTS parameters. In figure
3 the linear correlation betweena∗ andq is displayed. For MLE the exact CTS
parameters are often unknown and that is why it is reasonable to estimate the ap-
proximation error based on the FFT parameters and the sample moments only.

In order to keep the optimization of the FFT parameters simple and robust, we
suggest estimatingq anda sequentially.q is determined first because it is closely
related to the computational capacity and has a strong influence on the accuracy of
the FFT method. That is why we need (1) a rough estimateǫ̂f (q) of the dimension
of the approximation error based onq and (2) the optimal parametera∗(q) given

16



α λ+ λ− K[X] q a log10(ǫf,X(a, q))

0.5 1.5 0.8 7.6841 11 240 -3.8932
1.5 1.5 0.8 3.8180 11 300 -4.8747
0.8 1.5 1 5.0816 11 260 -4.5904
0.3 1 2 6.7798 11 260 -4.0448
1.6 1.1 1.05 5.0931 11 280 -5.3083
0.5 1.5 0.8 7.6841 12 500 -4.6696
1.5 1.5 0.8 3.8180 12 520 -5.5324
0.8 1.5 1 5.0816 12 460 -5.2018
0.3 1 2 6.7798 12 520 -4.7613
1.6 1.1 1.05 5.0931 12 520 -6.2735
0.5 1.5 0.8 7.6841 13 760 -5.2499
1.5 1.5 0.8 3.8180 13 800 -6.2868
0.8 1.5 1 5.0816 13 900 -6.2082
0.3 1 2 6.7798 13 920 -5.6326
1.6 1.1 1.05 5.0931 13 1040 -6.9148
0.5 1.5 0.8 7.6841 14 1600 -5.9663
1.5 1.5 0.8 3.8180 14 1660 -7.4091
0.8 1.5 1 5.0816 14 1620 -7.2649
0.3 1 2 6.7798 14 1600 -6.7678
1.6 1.1 1.05 5.0931 14 1880 -7.7314
0.5 1.5 0.8 7.6841 15 2840 -6.9696
1.5 1.5 0.8 3.8180 15 2940 -8.3406
0.8 1.5 1 5.0816 15 2860 -8.1683
0.3 1 2 6.7798 15 2860 -7.6024
1.6 1.1 1.05 5.0931 15 3240 -8.8701
0.5 1.5 0.8 7.6841 16 4980 -7.8939
1.5 1.5 0.8 3.8180 16 5100 -9.1084
0.8 1.5 1 5.0816 16 5280 -8.9881
0.3 1 2 6.7798 16 5280 -8.394
1.6 1.1 1.05 5.0931 16 5900 -9.4468

Table 1: Logarithm of approximation errorǫf,X(a, q) given parameter of FFT
transform and standard CTS distribution
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q. We use the following regression models for (1) and (2), where K[X] denotes the
kurtosis ofX:

log10(ǫ̂f (q)) = a0 + a1 · q + a2 · K[X] (32)

a∗(q) = b0 + b1 · 2
q . (33)

In order to reduce the risk of finding a local optimum, we smoothed the errorsǫ̂f (q)
with window size 5.

For the data in table 1, the optimal parameters for model (32) are:a0 = 3.0558,
a1 = −0.8628, anda2 = 0.3478. TheR2 of 0.9525 indicates a strong correlation
and adding information, e.g. the skewness S[X], does not result in a significant im-
provement of the explanatory quality (R2 = 0.9538). For model (33) the optimal
parameters areb0 = 229.1045 andb1 = 0.0767 with aR2 of 0.9951.

Consequently the following two-step procedure provides a FFT parametriza-
tion (q∗, a∗) minimizing the approximation error.

1. Choose aq∗ such that the dimension of̂ǫf (q) is smaller or equal to the re-
quired accuracy. Ifq∗ exceeds the computationally feasible limitqmax than
useq∗ = qmax.

2. Computea∗(q∗) using the regression formula (33).

Due to the use of the regression formula forǫ̂f (q) anda∗(q), the derived pa-
rameters may not represent the global optimum. The advantage of the procedure is
nevertheless its robustness due to its independence of the CTS parametersand its
simplicity. The convexity of the curves in figure 2 furthermore suggests thatgiven
q∗, we find a near-optimal solution.

The parameter selection problem for the CDF is more complex because of the
additional parameterρ and the slower convergence of the integral which should
be approximated. Further research should be conducted to define parametrization
rules for the CDF and VaR cases in the same manner as we outlined in this paper.

5 Empirical results for S&P 500 data

In this section, we present the MLE results for a simple CTS model based on
S&P 500 return data. Therefore, we define four different data samples: (a) 4-year
data from 26 June 2005 to 26 June 2009, (b) 6-year data from 26 June2003 to 26
June 2009, (c) 8-year data from 26 June 2001 to 26 June 2009, and (d) 10-year data
from 26 June 1999 to 26 June 2009. For each sample we perform 10 runs using
randomized starting parameters and then we select the CTS parameters with the
best fit. The log-likelihood function is approximated using two methods: method
I (the FFT method with standardized CTS distribution presented in section 3) and
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Data set M Method I Method II
4 years 1008 logLHFFT 2,973.560 2,975.087

logLHNum 2,973.798 2,972.374
Relative error 0.008% 0.091%

6 years 1511 logLHFFT 4,685.228 4,692.750
logLHNum 4,682.393 4,675.536
Relative error 0.061% 0.368%

8 years 2011 logLHFFT 6,040.171 6,036.312
logLHNum 6,038.343 6,038.048
Relative error 0.030% 0.029%

10 years 2516 logLHFFT 7,493.580 7,497.565
logLHNum 7,493.295 7,493.064
Relative error 0.004% 0.060%

Table 2: Comparison of optimal logLH values from MLE for CTS distribution
using four different S&P 500 data samples

method II (the FFT method without standardization). The goodness-of-fitfor the
estimated distributions is assessed with the help of the log-likelihood value calcu-
lated by numerical integration as well as by the corresponding FFT approximation,
thep-value for the Kolmogorov-Smirnov statistic (KS),6 and the Craḿer-von Mises
statistic (CvM).7 The tail fit is measured by the squared Anderson-Darling statistic
(AD2).8 According to the FFT parameter selection procedure presented, we choose
q∗ = 13 anda∗(q∗) = 800 for both FFT methods I and II.

A comparison of the optimal log-likelihood (logLH) values in table 2 reveals
that the relative errorlogLHFFT−logLHNum/logLHNum

for method I is less than0.07%.
For method II the maximum relative error observed is0.368%, which is five times
higher than for the MLE with standardization.

Table 3 shows that the goodness-of-fit results of method I are in general supe-
rior to method II: the logLH andp-values are higher and the AD2 and CvM statis-
tics are lower–both indicating a better fit. The exception for the 6-year data set,
where thep-value of method I is worse, can be explained with the specifics of the
KS statistic. It measures the maximum deviation which might be due to an outlier
in the data set. The CvM statistic nevertheless coincides with the general results.
The empirical findings support the theory that standardization leads to a better ap-
proximation quality because the optimal FFT parametersa∗ andq∗ do not depend
on the sample mean and variance which reduces the risk of misspecification.

6See Kolmogorov (1933).
7See Craḿer (1928).
8See Anderson and Darling (1952).
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Data set M Method I Method II ∆I−II

4 years 1008 logLHNum 2,973.798 2,972.374 1.4244
p-value 0.911 0.896 0.0154
AD2 0.267 0.370 -0.1032
CvM 0.042 0.050 -0.0075

6 years 1511 logLHNum 4,682.393 4,675.536 6.8572
p-value 0.711 0.841 -0.1297
AD2 0.431 0.601 -0.1706
CvM 0.056 0.061 -0.0049

8 years 2011 logLHNum 6,038.343 6,038.048 0.2947
p-value 0.834 0.751 0.0825
AD2 0.408 0.661 -0.2535
CvM 0.047 0.110 -0.0622

10 years 2516 logLHNum 7,493.295 7,493.064 0.2306
p-value 0.831 0.424 0.4078
AD2 0.420 0.765 -0.3450
CvM 0.057 0.118 -0.0613

Table 3: Goodness-of-fit results from MLE for CTS distribution using four differ-
ent S&P 500 data samples

6 Conclusion

In this paper we outlined an efficient approximation for the PDF, CDF, VaR,
and AVaR of TS and TID distributions. Based on knowledge of the characteristic
function, the FFT method is used to compute the density and distribution functions.
As Menn and Rachev (2006) argued for the stable Paretian case, this procedure is
computationally efficient. We explained why standardization is important for the
parameter choice of the FFT and presented how the standardized CTS andRDTS
can be used to derive PDF values for any parameterization. For practical imple-
mentation purposes, this means reducing the risk of misspecifying the integration
limit and the number of integration steps and thereby improving the effectiveness
of the proposed FFT-based method. For the PDF of the CTS distribution, wepro-
posed a two-step procedure for a near-optimal FFT parameter selection.In each
step, a regression model is used to determine one optimal parameter. Empirical
results using S&P 500 return data supported our two main theoretical results for
the CTS case: applying the FFT method to the CTS distribution delivers good ap-
proximation quality and using standardization improves the effectiveness ofMLE.
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