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Abstract

Portfolio risk estimation requires appropriate modeling of fat-tails
and asymmetries in dependence in combination with a true downside
risk measure. In this survey, we discuss computational aspects of a
Monte-Carlo based framework for risk estimation and risk capital allo-
cation. We review different probabilistic approaches focusing on prac-
tical aspects of statistical estimation and scenario generation. We dis-
cuss value-at-risk and conditional value-at-risk and comment on the
implications of using a fat-tailed framework for the reliability of risk
estimates.
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1 Introduction

The quality of portfolio risk estimates depends on assumptions about the
behavior of risk drivers such as stock returns, exchange rates, and interest
rates. Traditional approaches are based either on the historical method
or on a normal (Gaussian) distribution for risk driver returns. Neither of
them, however, captures adequately the unusual behavior of risk drivers.
The historical method assumes that future returns are exact replicas of
past returns and the normal distribution approach is greatly limited by its
inability to produce extreme returns with a realistic probability. Because
of this property, the normal distribution is said to have thin tails while
empirical studies indicate that asset returns are generally fat-tailed.

The non-normality of assets returns is explored in many studies and
many alternative approaches have been suggested. Among the well known
ones are Student’s t distribution, generalized hyperbolic distributions (see
Hurst et al. (1997), Bibby and Sorensen (2003), and Platen and Rendek
(2007)), stable Paretian distributions (see Rachev and Mittnik (2000)), and
extreme value distributions (see Embrechts et al. (2004)). At least some of
their forms are subordinated normal models and thus provide a practical
and tractable framework. Rachev et al. (2005) provide an introduction to
heavy-tailed models in finance.

Apart from realistic assumptions for returns’ distributions, a reliable risk
model requires an appropriate downside risk measure. The industry stan-
dard value-at-risk (VaR) has significant deficiencies and alternatives have
been suggested in the academic literature. For example, an axiomatic ap-
proach towards construction of risk measures gave rise to the family of co-
herent risk measures which contains superior alternatives to VaR, such as
conditional value-at-risk (CVaR), also known as average value-at-risk (see,
for example, Rachev et al. (2008) and the references therein).

The plan of the survey is as follows. We start with a brief description of
the architecture of a Monte-Carlo based portfolio risk management system.
We proceed with a discussion of computational aspects of CVaR estimation
assuming fat-tailed distributions for asset returns. We compare the approach
based on extreme value theory, which represents a model only for the tail of
the return distribution, to approaches based on explicit fat-tailed assump-
tions for the entire distribution. We proceed with remarks on modeling joint
dependence and a discussion of VaR and CVaR, closed-form expressions un-
der certain parametric assumptions, and risk-budgeting. Finally, we discuss
the stochastic instability of risk estimation in a Monte-Carlo based frame-
work and provide a particular result for CVaR with fat-tailed scenarios.

2



2 Generic structure of a portfolio risk manage-
ment system

The architecture of any portfolio risk management system has three key
components as shown in Figure 1. The most basic structure is the database
and the corresponding database layer. Historical data, information about
portfolio positions, and different user settings are stored in it. Apart from
simple storage of data, it is responsible for data retrieval, when requested
from the middle layer, and also for maintenance of data.

The middle layer is the business logic layer. It is the heart of the risk
management system and is responsible for carrying out mathematical calcu-
lations, such as model parameter estimation, scenarios generation, and cal-
culation of portfolio risk statistics. It requests information from the database
layer when necessary and also submits queries with changes to the database
initiated by the user or by regular batch jobs. Those changes may concern
historical data updates or they may be a result of, for example, portfolio
rebalancing decisions.

Finally, the top layer is the user interface layer which has two goals. First,
it collects the user input and sends it to the business layer for processing.
Second, it receives the results from calculations performed by the business
layer and presents them to the user.

A portfolio risk management system may also communicate with external
systems on a regular basis. This communication may involve, for example,
regular updates of the historical data.

From a modeling point of view, all operations are performed by the
business logic layer. When a portfolio risk calculation is requested by the
user, the following abstract steps are performed:

1. The business logic layer analyzes the requested calculation and sends
historical data queries to the database layer. Those queries concern
only the risk drivers relevant for the portfolio specified by the user. For
example, if there is only one stock option position in the portfolio, the
historical data request will concern the underlying stock, the relevant
yield curve, and the relevant implied volatility surface.

2. Model parameters are fitted to the historical data. This step usually
contains several sub-steps depending on the complexity of the mul-
tivariate mathematical model and we discuss it in detail in Section
3.

3. Scenarios for the relevant risk drivers are generated jointly from the
fitted model. This step is crucial for the Monte Carlo method. Each
vector of scenarios represents one possible state of the world. In the
simple one-option portfolio example, one state of the world is repre-
sented by a vector containing a price for the underlying stock, a value
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Figure 1: The basic components of a risk system.

for the interest rate, and a value for the implied volatility generated
jointly from the fitted multivariate model.

4. Portfolio positions are evaluated in each state of the world. As a re-
sult, we obtain samples from the joint distribution of the positions.
Scenarios at the portfolio level are calculated by summing up the cor-
responding position level scenarios.

5. Risk statistics are calculated from the portfolio and position level sce-
narios. The risk statistics are visualized in a tabular or a graphical
format by the user interface layer.

The abstract steps described above are independent of the multivariate
probabilistic assumption and the particular risk measure. They are generic
for every Monte-Carlo based portfolio risk management system. Therefore,
from a computational viewpoint, in any such system there is a trade-off
between speed and accuracy. The risk drivers scenario matrix has the di-
mension equal to the product of the number of risk drivers and the number
of scenarios. The accuracy of the final risk numbers depends on the number
of scenarios. The larger the number is, the closer the generated samples
will be to the theoretical distributions and, therefore, the smaller the nu-
merical error becomes. More scenarios, however, indicate more states of the
world involving more evaluations of portfolio positions which means longer
calculations.

Generally, there is no universal solution working uniformly well across
portfolios of different sizes and different multivariate models. One-dimensional
simulation studies in Stoyanov and Rachev (2008a) and Stoyanov and Rachev
(2008b) suggest that fat-tailed models require at least 10,000 scenarios which
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seems to be a good starting point for experiments in higher-dimensional
cases.

Recent developments in the field of computer technology offer a way of
pushing up the performance limit. Contemporary computer systems have
multi-core processors and tendencies are for the number of cores to increase
in the future. This implies that algorithms allowing for distributed calcula-
tions can benefit an enormous speed up through splitting the work among
the cores.

Monte Carlo methods are inherently very well suited for distributed cal-
culation. In the five-step algorithm above, all states of the world are gen-
erated independently which implies that subsequent calculations concerning
different states of the world can be processed in parallel. In this fashion, the
most computationally demanding step, which is the evaluation of portfolio
positions, can be processed by the CPU cores simultaneously.

3 Fat-tailed and asymmetric models for assets re-
turns

Reliable risk management is impossible without specifying realistic models
for assets returns. Using inappropriate models may result in underestima-
tion of portfolio risk and may lead to wrong decisions.

The distributional modeling of financial variables has several aspects.
First, there should be a realistic model for the returns of individual finan-
cial variables. That is, we should employ realistic marginal models for the
returns of individual assets. Second, the model should capture properly
the dependence among the individual variables. Therefore, we need an ap-
propriate multivariate model with the above two building blocks correctly
specified.

3.1 One-dimensional models

The cornerstone theories in finance such as the mean-variance model for
portfolio selection and asset pricing models rest upon the assumption that
asset returns follow a normal distribution. Yet, there is little, if any, credible
empirical evidence that supports this assumption for financial assets traded
in most markets throughout the world. Moreover, the evidence is clear that
the distribution of financial returns is heavy-tailed and, possibly, skewed.
A number of researchers have analyzed the consequences of relaxing the
normality assumption and developed generalizations of prevalent concepts
in financial theory that can accommodate heavy-tailed returns (see Rachev
and Mittnik (2000) and Rachev (2003) and references therein).

Mandelbrot (1963) strongly rejected normality as a distributional model
for asset returns, conjecturing that financial returns behave like non-Gaussian
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stable returns. To distinguish between Gaussian and non-Gaussian stable
distributions, the latter are commonly referred to as “stable Paretian” dis-
tributions or “Levy stable” distributions.

While there have been several studies in the 1960s that have extended
Mandelbrot’s investigation of financial return processes, probably, the most
notable is Fama (1963, 1965). His work and others led to a consolidation
of the stable Paretian hypothesis. In the 1970s, however, closer empirical
scrutiny of the “stability” of fitted stable Paretian distributions also pro-
duced evidence that was not consistent with the stable Paretian hypothesis.
Specifically, it was often reported that fitted characteristic exponents (or
tail-indices) did not remain constant under temporal aggregation. Partly
in response to these empirical “inconsistencies,” various alternatives to the
stable law were proposed in the literature, including fat-tailed distributions
being in the domain of attraction of a stable Paretian law, finite mixtures
of normal distributions, the Student’s t distribution, the hyperbolic distri-
bution (see Bibby and Sorensen (2003)), and tempered stable distributions
(see Bianchi et al. (2010) and Kim et al. (2010)).

Mandelbrot’s stable Paretian hypothesis involves more than simply fit-
ting marginal asset return distributions. Stable Paretian laws describe the
fundamental building blocks (e.g., innovations) that drive asset return pro-
cesses. In addition to describing these building blocks, a complete model
should be rich enough to encompass relevant stylized facts, such as

• non-Gaussian, heavy-tailed, and skewed distributions

• volatility clustering (ARCH-effects)

• temporal dependence of the tail behavior

• short- and long-range dependence

There exists another approach for building a fat-tailed one-dimensional
model which is based on extreme value theory (EVT). EVT has been ap-
plied for a long time in areas other than finance for modeling the frequency
of occurrence of extreme events. Examples include extreme temperatures,
floods, winds, ocean waves, and other natural phenomena. From a general
perspective, extreme value distributions represent distributional limits for
properly normalized maxima of random independent quantities with equal
distributions, and therefore can be applied in finance as well. The inter-
pretation is straightforward: we can use them, for example, to describe the
behavior of a large portfolio of independent losses. In contrast to the other
methods, EVT provides a framework for modeling only the tails of the re-
turn distribution. Thus, the remaining part of the return distribution should
be modeled by other methods.

In the remainder of this section, we describe in detail several fat-tailed
models and compare them to a common EVT-based approach.
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3.1.1 Stable distributions

The class of stable distributions is defined by means of their characteristic
functions. With very few exceptions, no closed-form expressions are known
for their densities and cumulative distribution functions (c.d.f.). A random
variable X is said to have a stable distribution if its characteristic function
ϕX(t) = EeitX has the following form

ϕX(t) =

{
exp{−σα|t|α(1 − iβ t

|t| tan(πα
2 )) + iμt}, α �= 1

exp{−σ|t|(1 + iβ 2
π

t
|t| ln(|t|)) + iμt}, α = 1

(1)

where t
|t| = 0 if t = 0. The formula in (1) implies that they are described

by four parameters: α, called the index of stability, which determines the
tail weight or density’s kurtosis with 0 < α ≤ 2, β, called the skewness
parameter, which determines the density’s skewness with −1 ≤ β ≤ 1,
σ > 0 which is a scale parameter, and μ ∈ R which is a location parameter.
Stable distributions allow for skewed distributions when β �= 0 and when
β = 0, the distribution is symmetric around μ. Stable Paretian laws have
fat tails, meaning that extreme events have high probability relative to a
normal distribution when α < 2. The tail behavior of non-Gaussian stable
distributions is described by the following asymptotic relation

P (X > λ) ∼ λ−α

which indicates that the tail decays like a power function. The Gaussian
distribution is a stable distribution with α = 2. (For more details on the
properties of stable distributions, see Samorodnitsky, Taqqu (1994).) Of the
four parameters, α and β are most important as they identify two funda-
mental properties that are atypical of the normal distribution — heavy tails
and asymmetry.

Rachev et al. (2006) studied the daily return distribution of 382 U.S.
stocks in the framework of two probability models — the homoskedastic in-
dependent, identically distributed model and the conditional heteroskedastic
ARMA-GARCH model. In both models, the Gaussian hypothesis is strongly
rejected in favor of the stable Paretian hypothesis which better explains the
tails and the central part of the return distribution. The companies in the
study are the constituents of the S&P 500 with complete history in the 12-
year time period from January 1, 1992 to December 12, 2003. The estimated
parameters suggest a significant heavy-tail and asymmetry in the residual
which cannot be accounted for by a normal distribution.

Even though there is much empirical evidence in favor of the stable
hypothesis, it is a theoretical fact that stable distributions with α < 2 have
an infinite second moment. Thus, if we model the return distribution of
a stock with such a model, we assume it has an infinite volatility. This
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property creates problems in derivatives pricing models and, in order to
avoid it, modifications to stable distributions have been proposed such as
smoothly truncated stable laws, see Rachev et al. (2005). More general
models in this direction applied to option pricing include tempered stable
distributions, see Kim et al. (2008).

Generally, stable and tempered stable distributions are difficult to apply
in practice because, apart from a few exceptions, there are no closed-form
expressions of their density and distribution functions. There are, however,
efficient numerical techniques which can be employed to construct approx-
imations of densities and distribution functions, see Kim et al. (2008) for
additional details.

3.1.2 Generalized hyperbolic distributions

A random variable X is said to have a one-dimensional generalized hyper-
bolic distribution if its density function is given by

fX(x) = C ×
Kλ−1/2

(√(
χ + (x−μ)2

σ2

) (
ψ + γ2

σ2

))
e

γ(x−μ)

σ2

(√(
χ + (x−μ)2

σ2

) (
ψ + γ2

σ2

))1/2−λ
(2)

where

C =
(
√

ψχ)−λψλ(ψ + γ2

σ2 )1/2−λ

√
2πσKλ(

√
ψχ)

Kλ denotes a modified Bessel function of the third kind with index λ ∈
R, and x ∈ R. Not all the parameters have interpretations and other
parametrizations are also used, see McNeil et al. (2005) for additional re-
marks. In this parametrization, μ ∈ R is a location parameter, σ > 0 is a
scale parameter, and γ ∈ R is a skewness parameter. If γ = 0, then the
distribution is symmetric around μ. The parameters λ, ψ > 0, γ, and σ
control the tail behavior which is given by the following asymptotic relation
for the density

fX(x) ∼ |x|λ−1e−α|x|+βx (3)

where α =
√

ψ+γ2/σ2

σ2 and β = γ/σ2. The parameter χ is a positive param-
eter but does not have an intuitive interpretation.

Note that in contrast to the power tail decay of the tails of stable distri-
butions, generalized hyperbolic laws have a faster tail decay which is domi-
nated by the exponential function in (3). The tail decay, however, is slower
than that of the normal distribution, which makes them a good choice for
modeling asset returns.
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The application of generalized hyperbolic distributions in the field of
finance has a long history, see, for example, Bibby and Sorensen (2003)
and McNeil et al. (2005). They are infinitely divisible and can be used for
derivative pricing and also as a building block in time series models.

Even though a special function appears in the definition in (2), numerical
work with generalized hyperbolic distributions is facilitated by the closed-
form expression of the density function. Random number generators can be
constructed using the normal mean-variance mixture representation

X
d= μ + Wγ + Z

√
W

where Z ∈ N(0, σ2) has a normal distribution, W ∈ N−(λ, χ, ψ) has a
generalized inverse Gaussian distribution and is independent of Z, μ and
γ are real-valued parameters, and d= denotes equality in distribution. The
Box-Muller algorithm is the standard approach for generation of normally
distributed random numbers and a rejection method can be employed for
the generalized inverse Gaussian distribution.

With respect to parameter estimation, the classical maximum likelihood
(ML) method or the expectation maximization (EM) algorithm can be em-
ployed, see McNeil et al. (2005) for additional details.

3.1.3 The EVT-based approach

EVT originated in areas other than finance. It studies the limit behavior of
properly normalized maxima of independent and identically distributed (iid)
random variables which in financial applications can be assumed to describe
portfolio losses. There are two approaches to EVT-based modeling. The
block maxima method, leading to a generalized extreme value distribution
(GEV), divides the data into consecutive blocks and focuses on the series
of the maxima (minima) in these blocks. The peaks-over-threshold (POT),
leading to a generalized Pareto distribution (GPD), models those events in
the data that exceed a high threshold. We discuss first the block-maxima
method and then the POT method.

According to the theory, the limit behavior of properly normalized max-
ima of iid random variables is described by the GEV distribution given by

Hξ(x) =
{

exp(−(1 + ξx)−1/ξ), ξ �= 0
exp(−e−x), ξ = 0

(4)

where 1+ξx > 0. The parameter ξ is a shape parameter – when ξ > 0, Hξ is
a Frećhet distribution, when ξ = 0, Hξ is a Gumbel distribution, and when
ξ < 0, Hξ is a Weibull distribution. The GEV distribution can be extended
with a scale and a location parameter Hξ,μ,σ(x) := Hξ((x − μ)/σ).

The block of maxima method is used to fit the parameters of the GEV
distribution. In practice, it works in the following way. The historical data
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representing financial losses of a portfolio or an asset are divided into k blocks
of size n. The maximum loss is calculated for each block. Thus, we obtain
k such losses. According to ETV, this sample of k losses is asymptotically
described by Hξ,μ,σ and, therefore, we can resort to the ML method to fit
the three parameters.

There are two practical problems with the block of maxima method.
First, the choice of k and n is important and there is a trade-off between the
two parameters because kn equals the initial sample size. While for daily
financial time series, n recommended to be three months, six months, or one
year, there is no general rule of thumb or any formal approach which could
suggest a good choice.

Second, one needs a very large initial sample in order to have a reliable
statistical estimation. In academic examples, using 20-30 years of daily
returns is common, see, for example, McNeil et al. (2005). However, from a
practical viewpoint, it is arguable that observations so far back in the past
have any relevance to the present market conditions.

In contrast to the block-maxima method, the POT method is based on
a model for exceedances over a high threshold which, in a financial context,
means losses larger than a given high level. It is a model for the tail of
the return distribution and not for the body. The distributional model for
exceedances over thresholds is GPD given by

Gξ,β(x) =
{

1 − (1 + ξx/β)−1/ξ, ξ �= 0
1 − exp(−x/β), ξ = 0

(5)

where β > 0, and x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ when ξ < 0.
The parameters ξ and β are the shape and the scale parameter respectively.
When ξ > 0, then Gξ,β is the distribution function of a Pareto distribution
which has a power tail decay. If ξ = 0, then GPD turns into an exponential
distribution and, finally, if ξ < 0, GPD is a short-tailed distribution.

As a consequence of the theoretical model, the parameters of GPD can
be fitted using only information from the respective tail. There are two
challenges stemming from this restriction: (1) we need to know where the
body of the distribution ends and where the tail begins and (2) we need an
extremely large sample in order to get a sufficient number of observations
from the tail, which is an issue shared with the block-maxima method.

In practice, the high threshold is determined on an ad-hoc basis through
visual identification methods, such as the mean-excess plot, or the Hill plot,
see Embrechts et al. (2004). Having chosen a threshold, the parameters
of GPD can fitted using the ML method, for example. The estimators,
and consequentially all portfolio risk statistics based on them, are however
sensitive to the choice of the high threshold.

Apart from the ML method, the Hill estimator is widely used. It is
defined by
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ξ̂ =
1
k

k∑
j=1

(log X∗
n−j+1 − log X∗

n−k) (6)

where X∗
1 ≤ . . . ≤ X∗

n denote the order statistics of the sample X1, . . . , Xn,
see Embrechts et al. (2004). Thus, it is based on the largest k upper order
statistics. The parameter k plays the role of the high threshold in the POT
method. Basically, a smaller k leads to a smaller bias but a larger variance
of ξ̂ and, as a result, there is a bias-variance trade-off that has to be taken
into account when choosing k. While the Hill estimator is simple and easy to
implement, there are many studies demonstrating that it performs well only
if the sample is produced from a Pareto distribution. A simulation study in
Rachev and Mittnik (2000) demonstrates that even 100,000 scenarios from a
stable distribution prove insufficient for a proper estimation of the tail index
α. There are other examples demonstrating that even mild deviations from
an exact Pareto tail, such as a logarithmic perturbation of the tail

P (X > λ) ∼ x−α/ log x,

may lead to a wrong estimate of the tail index, see Drees et al. (2000).
Finally, we can conclude that the estimation difficulties of EVT-based

models arise because the theory is based on the asymptotic behavior of tail
events. In effect, very large samples are needed which makes the approach
impractical for implementation in a risk system requiring a high degree
of automation. Nevertheless, EVT-based may be useful in stress-testing
experiments in which the tail behavior can be manually modified to explore
the potential effect on portfolio risk statistics.

3.2 Multivariate models

For the purposes of portfolio risk estimation, constructing one-dimensional
models for financial instruments is incomplete. Failure to account for the
dependencies among financial instruments is inadequate for the analysis.

There are two ways to build a complete multivariate model. It is possi-
ble to hypothesize a multivariate distribution directly (i.e., the dependence
between stock returns as well as their marginal behavior). Assumptions of
this type include, for example, the multivariate normal, the multivariate
Student’s t, the more general multivartiate elliptical or hyperbolic families,
and the multivariate stable. Sometimes in analyzing dependence, an explicit
assumption is not made, and the covariance matrix is very often relied on.
Although an explicit multivariate assumption is not present, it should be
kept in mind that this is consistent with the mutivariate normal hypothesis.
More importantly, the covariance matrix can describe only linear dependen-
cies and this is a basic limitation.
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Since the turn of the century, a second approach has become popular.
One can specify separately the one-dimensional hypotheses and the depen-
dence structure through a function called copula. This is a more general
and more appealing method because one is free to choose separately differ-
ent parametric models for the individual variables and a parametric copula
function. For more information, see Embrechts et al. (2002) and Embrechts
et al. (2003).

From a mathematical viewpoint, a copula function C is nothing more
than a probability distribution function on the d-dimensional hypercube

C(u1, . . . , ud), ui ∈ [0, 1], i = 1, 2, . . . , d

where C(ui) = ui, i = 1, 2, . . . , d. It is known that for any multivariate
cumulative distribution function:

F (x1, . . . , xd) = P (X1 ≤ x1, . . . , Xd ≤ xd)

there exists a copula C such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd))

where the Fi(xi) are the marginal distributions of F (x1, . . . , xd), and con-
versely for any copula C the right-hand-side of the above equation defines a
multivariate distribution function F (x1, . . . , xd). See, for example, Bradley
and Taqqu (2003), Sklar (1996), and Embrechts et al. (2003).

A possible approach for choosing a flexible copula model is to adopt the
copula of a parametric multivariate distribution. In this way, the copula
itself will have a parametric form. There are many multivariate laws dis-
cussed in the literature that can be used for this purpose. One such example
is the Gaussian copula (i.e., the copula of a multivariate normal distribu-
tion). This copula is easy to work with but it has one major drawback:
It implies that extreme events are asymptotically independent. Thus, the
probability of joint occurrence of large in absolute value negative returns
of two stocks is significantly underestimated. An alternative to the Gaus-
sian copula is the Student’s t copula (i.e., the copula of the multivariate
Student’s t distribution). It models better the probability of joint extreme
events but it has the disadvantage that it is symmetric. Thus, the probabil-
ity of joint occurrence of very large returns is the same as the probability of
joint occurrence of very small returns. This deficiency is not present in the
skewed hypebolic copula which is the copula of the multivariate hyperbolic
distribution defined by means of the following stochastic representation,

X = μ + γW + Z
√

W

where W ∈ N−(λ, χ, ψ) has a generalized inverse Gaussian distribution,
Z is multivariate normal random variable, Z ∈ Nd(0, Σ), W and Z are
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independent, and the constants μ and γ are such that the sign of a given
component of γ controls the asymmetry of the corresponding component
of X, and μ is a location parameter contributing to the mean of X. The
hyperbolic copula has the following features which make it a flexible and
attractive model:

• It has a parametric form which makes the copula an attractive model
in higher dimensions.

• The underlying stochastic representation facilitates scenario genera-
tion from the copula.

• It can describe tail dependence if it is present in the data.

• It can describe asymmetric dependence, if present in the data.

The skewed Student’s t copula is a special case of the hyperbolic copula.
For additional information and a case study for the German equity market,
see Sun et al. (2008).

4 Risk measurement

An important activity in financial institutions is to recognize the sources
of risk, manage them, and control them. A quantitative approach is fea-
sible only if risk can be quantified. In this way, we can measure the risk
contribution of portfolio constituents and then make re-allocation decisions,
calculate portfolio risk break-downs by market, geography, risk driver type,
or optimize portfolio risk subject to certain constraints. Functionals suitable
for risk measurement cannot be arbitrary.

From a historical perspective, Markowitz (1952) introduced standard
deviation as a proxy for risk. However, standard deviation is symmetric,
thereby penalizing both profits and losses, and, therefore, it is more appro-
priate for a measure of uncertainty rather than a measure of risk. In spite
of the disadvantages of this approach, pointed out in numerous studies, it is
still widely used by practitioners.

A risk measure which has been widely accepted since the 1990s is value-
at-risk (VaR). It was approved by regulators as a valid approach for calcula-
tion of capital reserves needed to cover market risk. Even though approved
by regulators and widely used in practice, VaR has major shortcomings.
In order to overcome them, axiomatic approaches were developed spawning
entire families of risk measures, such as spectral risk measures, the larger
family of coherent risk measures, and distortion risk measures. In the re-
mainder of this section, we discuss VaR and conditional value-of-risk (CVaR)
which is a coherent risk measure suggested in the academic literature as a
superior alternative to VaR.
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4.1 VaR and CVaR

Value-at-risk (VaR) at a confidence level 1 − ε is defined as the negative of
the ε-quantile of the return distribution,

V aRε(X) = −F−1(ε), (7)

where F−1 is the inverse distribution function of X. It has been widely
adopted as a risk measure. However, it is not very informative which we
illustrate in the following example. Suppose that X and Y are two random
variables describing the return distribution of two financial instruments. If
at a given confidence level V aRε(X) = V aRε(Y ) = qε, can we state that the
two financial instruments are equally risky? The answer is negative because
while we know that losses larger than qε for both financial instruments will
occur with the same probability ε, we are not sure about the magnitude of
these losses.

Not only is VaR non-informative about extreme losses but it also fails to
satisfy an important property directly related to diversification. The VaR
of a portfolio of two positions may be larger than the sum of the VaRs of
these positions,

V aRε(X + Y ) > V aRε(X) + V aRε(Y ),

in which X and Y stand for the random payoff of the positions. As a con-
sequence, portfolio managers may choose to make the irrational decision to
concentrate the portfolio in a few positions which can be dangerous.

A risk measure which is more informative than VaR about extreme losses
and can always identify diversification opportunities is CVaR. It is defined
as the average VaR beyond the VaR at the corresponding confidence level,

CV aRε(X) :=
1
ε

∫ ε

0
V aRp(X)dp. (8)

Apart from the definition in (8), CVaR can be represented through a
minimization formula,

CV aRε(X) = min
θ∈R

(
θ +

1
ε
E(−X − θ)+

)
(9)

where (x)+ = max(x, 0) and X describes the return distribution. It turns
out that this formula has an important application in optimal portfolio prob-
lems based on CVaR as a risk measure. Equation (9) was first studied by
Pflug (2000). A proof that equation (8) is indeed the CVaR can be found in
Rockafellar and Uryasev (2002). For a geometric interpretation of (9), see
Rachev et al. (2008).

14



4.1.1 Closed-form expressions of CVaR

Under a parametric assumption, the calculation of VaR is numerically rel-
atively straightforward. From the definition in (7), it follows that we only
need to know the inverse distribution function of the assumed distribution.
Even if F−1 is not available in closed-form, numerical algorithms are usu-
ally readily available in the statistical toolboxes of software tools such as
MATLAB or R.

Calculating CVaR is more involved due to the fact that the numerical
calculation of the integral in the definition in (8) is not always simple because
of the unbounded range of integration. For some continuous distributions,
however, it is possible to calculate explicitly the CVaR through the defini-
tion. We provide closed-form expressions for the normal distribution and
Student’s t distribution.

1. The Normal distribution

Suppose that X is distributed according to a normal distribution with
standard deviation σX and mathematical expectation EX. The CVaR
of X at tail probability ε equals

CV aRε(X) =
σX

ε
√

2π
exp

(
−(V aRε(Y ))2

2

)
− EX (10)

where Y has the standard normal distribution, Y ∈ N(0, 1).

2. The Student’s t distribution

Suppose that X has Student’s t distribution with ν degrees of freedom,
X ∈ t(ν). The CVaR of X at tail probability ε equals

CV aRε(X) =

⎧⎪⎨
⎪⎩

Γ
(

ν+1
2

)
Γ

(
ν
2

) √
ν

(ν − 1)ε
√

π

(
1 +

(V aRε(X))2

ν

) 1−ν
2

, ν > 1

∞ , ν = 1

Note that equation (10) can be represented in a more compact way,

CV aRε(X) = σXCε − EX, (11)

where Cε is a constant which depends only on the tail probability ε. There-
fore, the CVaR of the normal distribution has the same structure as the
normal VaR — the difference between the properly scaled standard devia-
tion and the mathematical expectation. In effect, similar to the normal VaR,
the normal CVaR properties are dictated by the standard deviation. Even
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though CVaR is focused on the extreme losses only, due to the limitations of
the normal assumption, it is symmetric. Exactly the same conclusion holds
for the CVaR of the Student’s t distribution. The true merits of CVaR
become apparent if the underlying distributional model is skewed.

It turns out that it is possible to arrive at formulae for the CVaR of sta-
ble distributions and skewed Student’s t distributions. The expressions are
more complicated even though they are suitable for numerical work. They
involve numerical integration but this is not a severe restriction because the
integrands are nicely behaved functions. The calculations for the case of
stable distributions can be found in Stoyanov et al. (2006). In this section,
we only provide the result.

Suppose that the random variable X has a stable distribution with tail
exponent α, skewness parameter β, scale parameter σ, and location param-
eter μ, X ∈ Sα(σ, β, μ). If α ≤ 1, then CV aRε(X) = ∞. The reason is that
stable distributions with α ≤ 1 have infinite mathematical expectation and
the CVaR is unbounded.

If α > 1 and V aRε(X) �= 0, then the CVaR can be represented as

CV aRε(X) = σAε,α,β − μ

where the term Aε,α,β does not depend on the scale and the location parame-
ters. In fact, this representation is a consequence of the positive homogeneity
and the invariance property of CVaR. Concerning the term Aε,α,β ,

Aε,α,β =
α

1 − α

|V aRε(X)|
πε

∫ π/2

−θ0

g(θ) exp
(
−|V aRε(X)| α

α−1 v(θ)
)

dθ

where

g(θ) =
sin(α(θ0 + θ) − 2θ)

sin α(θ0 + θ)
− α cos2 θ

sin2 α(θ0 + θ)
,

v(θ) =
(
cos αθ0

) 1
α−1

(
cos θ

sin α(θ0 + θ)

) α
α−1 cos(αθ0 + (α − 1)θ)

cos θ
,

in which θ0 = 1
α arctan

(
β tan πα

2

)
, β = −sign(V aRε(X))β, and V aRε(X) is

the VaR of the stable distribution at tail probability ε.
If V aRε(X) = 0, then the CVaR admits a very simple expression,

CV aRε(X) =
2Γ

(
α−1

α

)
(π − 2θ0)

cos θ0

(cos αθ0)1/α
.

in which Γ(x) is the gamma function and θ0 = 1
α arctan(β tan πα

2 ).
A similar result for skewed Student’s t distribution is given in Dokov

et al. (2008).
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4.1.2 Estimation of CVaR

Suppose that we have a sample of observed portfolio returns and we are not
aware of their distribution. Provided that we do not impose any distribu-
tional model, both the VaR and CVaR of portfolio return can be estimated
from the sample of observed portfolio returns. Denote the observed portfo-
lio returns by r1, r2, . . . , rn at time instants t1, t2, . . . , tn. Denote the sorted
sample by r(1) ≤ r(2) ≤, . . . ,≤ r(n). Thus, r(1) equals the smallest observed
portfolio return and r(n) is the largest. The portfolio VaR can be esti-
mated as the corresponding empirical quantile through an order statistic,
V̂ aRε(r) = −r(�nε�), where 	x
 stands for the largest integer smaller than
x. The portfolio CVaR at tail probability ε is estimated according to the
formula1

ĈV aRε(r) = −1
ε

⎛
⎝ 1

n

�nε�−1∑
k=1

r(k) +
(

ε − �nε� − 1
n

)
r(�nε�)

⎞
⎠ (12)

where the notation �x� stands for the smallest integer larger than x. The
“hat” above CVaR denotes that the number calculated by equation (12) is
an estimate of the true value of the CVaR.

Besides formula (12), there is another method for calculation of CVaR.
It is based on the minimization formula (9) in which we replace the mathe-
matical expectation by the sample average,

ĈV aRε(r) = min
θ∈R

(
θ +

1
nε

n∑
i=1

max(−ri − θ, 0)

)
. (13)

Even though it is not obvious, equations (12) and (13) are completely equiv-
alent.

The minimization formula in equation (13) is appealing because it can be
calculated through the methods of linear programming. It can be restated as
a linear optimization problem by introducing auxiliary variables d1, . . . , dn,
one for each observation in the sample,

min
θ,d

θ +
1
nε

n∑
k=1

dk

subject to −rk − θ ≤ dk, k = 1, 2, . . . , n
dk ≥ 0, k = 1, 2, . . . , n
θ ∈ R.

(14)

The linear problem (14) is obtained from (13) through standard methods
in mathematical programming. We summarize the attractive properties of
CVaR as below:

1This formula is a simple consequence of the definition of CVaR for discrete distribu-
tions. A detailed derivation is provided by Rockafellar and Uryasev (2002).
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• CVaR gives an informed view of losses beyond VaR and is, therefore,
better suited for risk management in a fat-tailed world.

• CVaR is a convex function of portfolio weights, and is therefore at-
tractive to optimize portfolios (see Rockafellar and Uryasev (2002)).

• CVaR is sub-additive and satisfies a set of intuitively appealing prop-
erties of coherent risk measures by (see Artzner et al. (1998)).

• CVaR is a form of expected loss (i.e., a conditional expected loss) and
is a very convenient form for use in scenario-based portfolio optimiza-
tion. It is also quite a natural risk-adjustment to expected return (see
Rachev et al. (2007)).

Even though CVaR is not widely adopted, we expect it to become an
accepted risk measure as portfolio and risk managers become more familiar
with its attractive properties. For portfolio optimization, we recommend
the use of heavy-tailed distributions and CVaR, and limiting the use of
historical, normal or stable VaR to required regulatory reporting purposes
only. Finally, organizations should consider the advantages of CVaR with
heavy-tailed distributions for risk assessment purposes and non-regulatory
reporting purposes.

4.2 Risk budgeting with CVaR

The concept of CVaR allows for scenario-based risk decomposition which is
a concept similar to the standard deviation based percentage contribution
to risk (PCTR). The practical issue is to identify the contribution of each
position to portfolio risk and since CVaR is a tail risk measure, percentage
contribution to CVaR allows one to build a framework for tail risk budget-
ing. The approach largely depends on one of the coherence axioms given in
Artzner et al. (1998), which is the positive homogeneity property

CV aRε(aX) = aCV aRε(X), a > 0.

Euler’s formula is valid for such functions. According to it, the risk measure
can be expressed in terms of a weighted average of the partial derivatives
with respect to portfolio weights,

CV aRε(w′X) =
∑

i

wi
∂CV aRε(w′X)

∂wi

where w is a vector of weights, X is a random vector describing the multi-
variate return of all financial instruments in the portfolio, and w′X is the
portfolio return. The left hand-side of the equation equals total portfolio
risk and if we divide both sides by it, we obtain the tail risk decomposition,
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1 =
∑

i

wi

CV aRε(w′X)
∂CV aRε(w′X)

∂wi

=
∑

i

pi.
(15)

In order to compute the percentage contribution to risk of the i-th po-
sition, the i-th summand pi in (15), we have to calculate first the partial
derivative. It turns out that the derivative can be expressed as a conditional
expectation,

∂CV aRε(w′X)
∂wi

= −E(Xi|w′X < −V aRε(w′X)).

when X is an absolutely continuous random variable, see Zhang and Rachev
(2006) and the references therein. The conditional expectation can be com-
puted through the Monte Carlo method.

4.3 VaR and CVaR variability

There are two sources of variability in any risk model based on the Monte
Carlo method. First, there is the variability of the statistical estimators
which can be intuitively described in the following way. The parameter esti-
mates of the assumed probabilistic model depend on the input sample. Thus,
a change in the historical data will result in different parameter estimates
which, in turn, will change the portfolio risk numbers.

Consider, for example, the closed-form expression of CVaR given in (10).
Even though this expression is based on the normal distribution, the reason-
ing is generic. A small change in the historical data will result in a different
standard deviation σX and a different mean EX and, since the closed-form
expression is explicitly dependent on σX and EX, CVaR may change as a
consequence.

There are various ways to investigate the relative impact of the statis-
tical estimators variability on portfolio risk. The most straightforward and
universal one, but also very computationally demanding one, is the non-
parametric bootstrap method which is a popular statistical method. The
algorithm is simple and can be used if there is a closed-form expression
for the risk measure or if it can be numerically approximated: (1) obtain
bootstrapped samples from the initial historical data, (2) estimate the dis-
tribution parameters for each of the bootstrapped samples, and (3) calculate
the risk measure for each set of distribution parameters.

Another, more simple, approach can be employed if the risk measure is a
smooth function of the distribution parameters. Assume that small changes
in the input sample result in small changes in the parameter estimates. In
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this case, we can calculate the derivatives of the risk measure with respect
to the distribution parameters. The size of the derivatives determines the
relative sensitivity of the risk measure for a small unit change of the corre-
sponding parameters.

The second source of variability is inherent in the Monte Carlo method.
Basically, Monte Carlo scenarios are used to calculate portfolio risk when
it cannot be represented in a suitable way as a function of the distribu-
tion parameters. We hypothesize a parametric model for the multivariate
distribution of financial returns, we fit the model, and then we generate a
large number of scenarios. From the generated scenarios, we compute sce-
narios for portfolio return. Finally, employing formula (12) for example, we
can calculate portfolio CVaR at a specified tail probability ε. In a similar
fashion, we can calculate portfolio VaR using the generated portfolio return
scenarios.

We can regard the generated scenarios as a sample from the fitted model
and thus the computed CVaR in the end appears as an estimate of the
true CVaR. The larger the sample, the closer the estimated CVaR is to the
true value. If we regenerate the scenarios, the portfolio CVaR number will
change and it will fluctuate around the true value. In the remaining part of
this section, we discuss the asymptotic distribution of the estimator in (12)
which we can use to determine approximately the variance of (12) when the
number of scenarios is large. We do not consider the asymptotic theory for
VaR because it is trivially obtained from the asymptotic theory of sample
quantiles available, for example, in van der Vaart (1998).

Before proceeding to a more formal result, let us check what intuition
may suggest. If we look at equation (12), we notice that the leading term
is the average of the smallest observations in the sample. The fact that we
average observations reminds us of the central limit theorem (CLT) and the
fact that by averaging the smallest observations in the sample suggests that
the variability should be influenced by the behavior of the left tail of the
portfolio return distribution. Basically, a result based on the CLT would
state that the distribution of the CVaR estimator becomes more and more
normal as we increase the sample size. Applicability of the CLT however
depends on certain conditions such as finite variance which guarantee certain
regularity of the random numbers. If this regularity is not present, the
smallest numbers in a sample may vary quite a lot as they are not naturally
bounded in any respect. Therefore, for heavy-tailed distributions we can
expect that the CLT may not hold and the distribution of the estimator in
such cases may not be normal at all.

The formal result in Stoyanov and Rachev (2008b) confirms these ob-
servations. Taking advantage of the generalized CLT, we can demonstrate
that

Theorem 1. Suppose that X is random variable with distribution func-
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tion F (x) which satisfies the following conditions

• xαF (x) = L(x) is slowly varying at infinity, i.e. limx→∞ L(tx)/L(x) =
1, ∀t > 0.

• ∫ 0
−∞ xdF (x) < ∞

• F (x) is differentiable at x = qε where qε is the ε-quantile of X.

Then, there exist cn n = 1, 2, ..., such that for any 0 < ε < 1,

c−1
n

(
ĈV aRε(X) − CV aRε(X)

)
w→ Sα∗(1, 1, 0) (16)

in which w→ denotes weak limit, 1 < α∗ = min(α, 2), and cn = n1/α∗
L0(n)/ε

where L0 is a function slowly varying at infinity and ĈV aRε(X) is computed
from a sample of independent copies of X according to equation (12).

This theorem implies that the limit distribution of the CVaR estimator
in (12) is necessarily a stable distribution totally skewed to the left. In the
context of the theorem, we can think of X as a random variable describing
portfolio return. If the index α governing the left tail of X is α ≥ 2, then
the above result reduces to the classical CLT as in this case α∗ = 2 and the
limit distribution is normal. This case is considered in detail in Stoyanov
and Rachev (2008a).

5 Summary

In this paper, we provid a review of the essential components of a model for
portfolio risk estimation in volatile markets and discussed related compu-
tational aspects. We started with a description of the generic components
of the architecture of a Monte-Carlo based risk management system. Any
model implemented in a risk management solution adequate for volatile mar-
kets has to be capable of describing well the marginal distribution phenom-
ena of the returns series such as fat-tails, skewness, and volatility clustering.
Second, the model has to capture the dependence structure which can be
done through a copula function. Finally, the risk model has to incorporate
an appropriate risk measure. We considered the CVaR risk measure which
has a practical meaning and appealing properties. It allows for building a
risk budgeting framework based on Monte Carlo scenarios produced from a
fat-tailed probabilistic model and is more suitable than the widely accepted
VaR. Finally, we discussed the variability of the sample CVaR estimator in
a Monte-Carlo based framework with fat-tailed scenarios.
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