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Abstract. In this paper we identify a lacuna in a proof in the paper by
M. Caner published in 1997 in this Journal concerning the weak limit behavior
of various expressions involving heavy-tailed multivariate vectors and the con-
vergence of stochastic integrals. In a later paper (Caner, 1998) uses results for
these limit relations to formulate tests for cointegration with infinite variance
errors.
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Caner (1997) proved several important results (see Theorems 3, 4, and 5) on the limit
behavior of various expressions constructed by means of independent, identically distributed
(i.i.d.) random vectors in the domain of attraction of a multivariate stable law with an index
0 < α < 2. In a later paper (Caner, 1998) important results on cointegration are based on
these limit relations. However, there is a lacuna in the proof of Theorem 2 in Caner (1997),
and, as a consequence, all the above-mentioned results based on this theorem cannot be
considered as strictly proven.

The main difficulty is the convergence of stochastic integrals. This difficulty is de-
scribed in Paulauskas and Rachev (1998)(PR hereafter). In that paper, to prove the con-
vergence of stochastic integrals, PR used Theorem 2.7 from Kurtz and Protter (1991) (KP
hereafter) in which the so-called uniform tightness (UT) condition is the main condition. In
Caner (1997), Theorem 2 is proven, yielding the same result as Theorem 2.7 from KP but
without the UT condition. Roughly speaking, in Theorem 2 in Caner (1997) it is assumed
that semi-martingale Pn is written as a sum of two components P

(1)
n and P

(2)
n , where P

(1)
n

represents a jump process and P
(2)
n is a locally square-integrable martingale. That is, unlike

in the paper by KP, in Caner’s decomposition there is no component of finite variation, An

in the notation of KP. This can be seen from the beginning of the proof of Theorem 2
where Caner (1997, 518) states “This is a special case of Theorem 2.7 in Kurtz and Protter
(1991), where An = 0”. Then he claims that the weak convergence of P

(2)
n implies the

UT condition of Theorem 2.7 from KP, namely, that supn E[P (2)
n ]t∧2a is finite, where [X]t

denotes the quadratic variation of X and a is an arbitrary number. But this is not true.
Intuitively it is clear that boundedness in L2 does not follow from weak convergence and it is
not difficult to construct a counterexample. Here we provide the sketch of the construction
of a counterexample.

Let {Ω,F ,P} be a probability space and let F = {Ft, t ≥ 0} be a filtration generated
by a Brownian motion. Let us take a sequence of F1-measurable random variables Xn and
X such that the following properties hold:

Property 1 : Xn
L1−→ X,

Property 2 : EXn = EX = 0, EX2
n < ∞, EX2 < ∞,

Property 3 : sup
n

EX2
n = ∞.

Let us take
P (2)

n (t) = E(Xn|Ft), P (2)(t) = E(X|Ft).

Due to Property 2, P
(2)
n (t) and P (2)(t) will be square-integrable martingales. Now applying

Doob inequality and Property 1 we have that for any ε > 0

P
{

sup
0≤t≤1

|P (2)
n (t)− P (2)(t)| > ε

}
≤ ε−1E|P (2)

n (1)− P (2)(1)| = ε−1E|Xn −X| → 0,
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therefore P
(2)
n

d−→ P (2). Now we use the well-known representation of martingales generated
by Brownian filtration, see, for example, Øksendal (2000), Theorem 4.3.4, which says that
if B(t) is a Brownian motion, {Ft, t ≥ 0} is a filtration generated by this Brownian motion
and M(t) is an Ft-martingale with EM(t)2 < ∞ for all t ≥ 0, then there exists a unique
stochastic process g(s), s ≥ 0 (satisfying natural measurability condition) such that for all
t ≥ 0 E

∫ t
0 g(s)2ds < ∞ and

M(t) = EM(0) +
∫ t

0
g(s)dB(s), a.s.

Using this representation it is easy to show that

E[P (2)
n ]1 = EX2

n,

hence from Property 3 we see that the UT condition cannot be satisfied.
Therefore, the application of Theorem 2.7 from KP is not possible and Theorem 2

in Caner (1997), which is subsequently used in Theorems 3, 4, and 5 and then applied in
Caner (1998), is not proven. Moreover, because KP, as well as other authors who have
investigated the convergence of stochastic integrals, have shown that the UT condition in
some sense is necessary for the convergence of stochastic integrals (see Paulauskas and
Rachev (1998) where it is discussed), one is bound to believe that Theorem 2 in Caner
(1997) is false. On the other hand, the results of Theorem 3 in Caner (1997) in which
innovations are i.i.d. random variables, although based on Theorem 2 (which as we argued
above is not proven and most probably false), is true. The reason is that PR verified the UT
condition even in a more general situation. In Caner (1997) there are strong assumptions of
symmetricity, independence of coordinates of innovations, and the same index of stability for
all coordinates. All conditions of Theorem 2.7 in KP are verified without these assumptions
in PR; therefore, coordinates of a limit stable vector are allowed to have different exponents
and the normalization by a diagonal matrix is used. This gives flexibility in the application
of this important result.

The principal purpose of this comment in addition to pointing out the gap in the proof
of Theorem 2 in Caner (1997) is to warn researchers working in econometrics about the
difficulties associated with the convergence problems for stochastic integrals and possible
misuse of the continuous mapping theorem. In the case of finite variance and continuous
limiting Brownian motion there was no such problems: stochastic integrals were continuous
functionals and convergence was obtained by the standard continuous mapping theorem.
The situation changed when econometricians began dealing with heavy-tailed distributions
and Lévy processes as limits. In probability theory around the 1970s, it was observed
that stochastic integrals with integrator and integrand having jumps can be discontinuous
functionals and convergence of such stochastic integrals requires special attention. Powerful
tools to cope with this problem were introduced in the works of T. Kurtz, P. Protter, A.

3



Jakubowski, J. Mémin and other researchers working in the area of stochastic analysis and
stochastic differential equations.

It seems that the first correct application of these tools in econometrics was in PR,
which, unfortunately, was published in an applied probability journal. We looked at recent
papers in econometrics dealing with similar problems and found several recent works where
strict proofs are available. For example, Zarepour and Roknossadati (2008) using results
from PR and Mittnik, Paulauskas, and Rachev (2001) improved Theorem 3 in Caner (1997)
in the above-mentioned direction: as in PR they allow dependence between and different
exponents for coordinates, and use matrix normalization. Also a recent doctoral dissertation
by Ferstl (2009) should be mentioned where substantially the results and proofs from PR
are used.

We conclude with one more difficulty encountered with heavy-tailed distributions
when considering the convergence of sums a−1

n

∑[nt]
j=1 Xj formed by linear processes Xj =∑∞

i=0 εi−j . It was demonstrated in Avram and Taqqu (1992) that in the case of linear pro-
cesses generated by heavy-tailed i.i.d. innovations the above written sum generally does
not converge in the usual Skorohod topology J1 and therefore another topology M1 should
be used. (Here it is worth mentioning that A.V. Skorohod in his famous 1956 paper on the
space of cadlag functions introduced four different topologies J1, J2,M1,M2, adapted for
convergence of various types of stochastic processes, but in the literature the main topology
used is J1.) Taking into account that in the KP paper the traditional Skorohod topology
J1 is used, one must deal with the case of linear processes very carefully.
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