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Abstract

In this paper, we provide a stable limit theorem for the asymptotic
distribution of the sample average value-at-risk when the distribution
of the underlying random variable X describing portfolio returns is
heavy-tailed. We illustrate the convergence rate in the limit theorem
assuming that X has a stable Paretian distribution and Student’s t
distribution.
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1 Introduction

The average value-at-risk (AVaR) risk measure has been proposed in the
literature as a coherent alternative to the industry standard Value-at-Risk
(VaR), see Artzner et al. (1998) and Pflug (2000). It has been demonstrated
that it has better properties than VaR for the purposes of risk management
and, being a downside risk-measure, it is superior to the classical standard
deviation and can be adopted in a portfolio optimization framework, see
Rachev et al. (2006), Stoyanov et al. (2007), Biglova et al. (2004), and Rachev
et al. (2008).

The AVaR of a random variable X at tail probability ε is defined as

AV aRε(X) = −1

ε

∫ ε

0

F−1(p)dp.

where F−1(x) is the inverse of the cumulative distribution function (c.d.f.)
of the random variable X. The random variable may describe the return of
stock, for example. A practical problem of computing portfolio AVaR is that
usually we do not know explicitly the c.d.f. of portfolio returns. In order
to solve this practical problem, the Monte Carlo method is employed. The
returns of the portfolio constituents are simulated and then the returns of
the portfolio are calculated. In effect, we have a sample from the portfolio
return distribution which we can use to estimate AVaR. The sample AVaR
equals,

ÂV aRε(X) = −1

ε

∫ ε

0

F−1
n (p)dp.

where F−1
n (p) denotes the inverse of the sample c.d.f. Fn(x) = 1

n

∑n
i=1 I{Xi ≤

x} in which I{A} denotes the indicator function of the event A, and X1, . . . , Xn



is a sample of independent, identically distributed (i.i.d.) copies of a random
variable X.

Under a very general regularity condition, the larger the sample, the closer
the estimate to the true value. Suppose that E max(−X, 0) < ∞. Then, it
is easy to demonstrate that the following relation holds,

E max(−X, 0) < ∞ ⇐⇒ AV aRε(X) < ∞.

Thus, by the strong law of large numbers, the condition E max(−X, 0) < ∞
is necessary and sufficient for the almost sure convergence of the sample
AVaR to the true one,

ÂV aRε(X)
a.s.−→ AV aRε(X) as n →∞. (1)

However, with any finite sample, the sample AVaR will fluctuate about
the true value and, having only a sample estimate, we have to know the
probability distribution of the sample AVaR in order to build a confidence
interval for the true value. The problem of computing the distribution of
the sample AVaR is a complicated one even if we know the distribution of
X. From a practical viewpoint, X describes portfolio return which can be a
complicated function of the joint distribution of the risk drivers. Therefore,
we can only rely on large sample theory to gain insight into the fluctuations
of sample AVaR. That is, for a large n, we can use a limiting distribution
to calculate a confidence interval. In this respect, a limit theorem for the
distribution of the sample AVaR can be regarded as a way to describe the
speed of convergence in (1).

Concerning the finite sample properties, the estimator ÂV aRε(X) has a
negative bias,

ÂV aRε(X) ≤ AV aRε(X).

The asymptotic bias is of order O(n−1) and we consider it negligible for the
purposes of our study. For further details, see Trindade et al. (2007).

In this paper, we discuss the asymptotic distribution of the sample AVaR
assuming that the random variable X can be heavy-tailed and may have an
infinite second moment. In such a case, we cannot take advantage of the
classical Central Limit Theorem (CLT) to establish a limit theorem. For
this reason, we resort to the Generalized CLT and the characterization of
the domains of attraction of stable distributions which appear as limiting
distribution in it.

Stable distributions are introduced by their characteristic functions. The
random variable Z is said to have a stable distribution if its characteristic
function ϕ(t) = EeitZ has the form
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ϕ(t) =

{
exp{−σα|t|α(1− iβ t

|t| tan(πα
2

)) + iµt}, α 6= 1

exp{−σ|t|(1 + iβ 2
π

t
|t| ln(|t|)) + iµt}, α = 1

(2)

and is denoted by Z ∈ Sα(σ, β, µ). The parameter α ∈ (0, 2] is called the
tail index and governs the tail behavior and the kurtosis of the distribution.
Smaller α indicates heavier tails and higher kurtosis. If α < 2, then Z has
infinite variance. If 1 < α ≤ 2, then Z has finite mean and the AVaR of Z
can be calculated. The Gaussian distribution appears as a stable distribution
with α = 2. The stable distributions with α < 2 are referred to as stable
Paretian distributions. The parameter β ∈ [−1, 1] is a skewness parameter.
If β = 0, the distribution is symmetric with respect to µ. Positive β indicates
that the distribution is skewed to the right and negative β indicates that the
distribution is skewed to the left. The parameter σ > 0 is a scale parameter
and µ ∈ R is a location parameter.

The notion of slowly varying functions is extensively used in the paper. A
positive function L(x) is said to be slowly varying at infinity if the following
limit relation is satisfied,

lim
x→∞

L(tx)

L(x)
= 1, ∀t > 0. (3)

The main result concerning the domains of attraction of stable distribu-
tions is given in the following theorem.

Theorem 1. Let X1, . . . , Xn be i.i.d. with c.d.f. F (x). There exist
an > 0, bn ∈ R, n = 1, 2, . . ., such that the distribution of

a−1
n [(X1 + . . . + Xn)− bn]

converges as n →∞ to Sα(1, β, 0) if and only if both

(i) xα[1− F (x) + F (−x)] = L(x) is slowly varying at infinity.

(ii)
1− F (x)− F (−x)

1− F (x) + F (−x)
→ β as x →∞

The an must satisfy

lim
n→∞

nL(an)

aα
n

=





(Γ(1− α) cos(πα/2))−1 if 0 < α < 1,
2/π if α = 1,(

Γ(2−α)
α−1

| cos πα
2
|
)−1

if 1 < α < 2.

(4)

The bn may be chosen as follows:
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bn =





0 if 0 < α < 1,

nan

∫ ∞

−∞
sin(x/an)dF (x) if α = 1,

n

∫ ∞

−∞
xdF (x) if 1 < α < 2.

(5)

In all cases, an = n1/αL0(n) where L0(n) is slowly varying at infinity.

For further information about stable distributions and their properties, see
Samorodnitsky and Taqqu (1994).

The result in Theorem 1 characterizes the domains of attraction of stable
Paretian laws. If the index α characterizing the tails of the c.d.f. F (x) in
condition (i) satisfies α ≥ 2, then the tail index of the limiting distribution
equals α∗ = 2. Thus, the relationship between the tail index of the limiting
distribution, which we denote by α∗, and the tail index in condition (i) can
be generalized as α∗ = min(α, 2). If α > 2, then EX2

1 < ∞ and we are
in the setting of the classical CLT. The centering and normalization can
be done bn = nEX1 and an = n1/2σX1 , where σX1 denotes the standard
deviation of X1. The case α = 2 is more special because the variance of
X1 is infinite and an cannot be chosen in this fashion. Moreover, the proper
normalization cannot be obtained by computing the limit α → 2 in equation
(4). Under the more simple assumptions that the function L(x) in condition
(i) equals a constant A, Zolotarev and Uchaikin (1999) provide the formula
an = (n log n)1/2A1/2.

The paper is organized in the following way. Section 2 provides a stable
limit theorem for the asymptotic distribution of the sample AVaR. In Section
3, we apply the theorem assuming that the random variable X has a stable
Paretian distribution and also Student’s t distribution. Under these assump-
tions, we study the effect of skewness and heavy tails on the convergence rate
in the limit theorem.

2 A stable limit theorem

In order to develop the limit theorem, we need a few additional facts related
to building a linear approximation to AVaR and estimating the rate of im-
provement of the linear approximation. They are collected in the following
proposition.

Proposition 1. Suppose X is a r.v. with c.d.f. F which satisfies the
condition E max(−X, 0) < ∞ and F is differentiable at the ε-quantile of X.
Denote by Fn the sample c.d.f. of X1, . . . , Xn which is a sample of i.i.d.
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copies of X. There exists a linear functional ∆ defined on the difference
G− F where the functions G and F are c.d.f.s, such that

|φ(Fn)− φ(F )−∆(Fn − F )| = o(ρ(Fn, F )) (6)

where ρ(Fn, F ) = supx |Fn(x)− F (x)| stands for the Kolmogorov metric and

φ(G) = −1

ε

∫ ε

0

G−1(p)dp

in which G−1 is the inverse of the c.d.f. G. The linear functional ∆ has the
form

∆(Fn − F ) =
1

ε

∫ qε

−∞
(qε − x)d(Fn(x)− F (x)). (7)

where qε is the ε-quantile of X.

Proof. The condition E max(−X, 0) < ∞ guarantees φ(F ) < ∞. Note that
φ(Fn) is convergent with any finite sample.

Consider the difference φ(Fn)− φ(F ).

φ(Fn)− φ(F ) = −1

ε

∫ ε

0

F−1
n (p)dp +

1

ε

∫ ε

0

F−1(p)dp

= −1

ε

∫ F−1
n (ε)

−∞
pdFn(p) +

1

ε

∫ qε

−∞
pdF (p)

= −1

ε

∫ qε

−∞
pdFn(p)− 1

ε

∫ F−1
n (ε)

qε

pdFn(p) +
1

ε

∫ qε

−∞
pdF (p)

= −1

ε

∫ qε

−∞
pd(Fn(p)− F (p))− Cn

ε
(F (qε)− Fn(qε))

= −1

ε

∫ qε

−∞
pd(Fn(p)− F (p)) +

Cn

ε
(Fn(qε)− F (qε))

where, by the mean-value theorem, the constant Cn is between qε and F−1
n (ε).

For example if we assume, for the sake of being particular, that qε ≤ F−1
n (ε),

then qε ≤ Cn ≤ F−1
n (ε). Due to the assumption that F is differentiable at

qε, F−1
n (ε) → qε in almost sure sense as n increases indefinitely. As a result,

Cn → qε in almost sure sense.
Choose the linear functional ∆(Fn−F ) as in equation (7). The fact that

it is linear with respect to the difference of the c.d.f.s is a property of the
integral. Consider the left-had side of (7), which we denote by LHS, having
in mind the expression derived above. We obtain
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LHS =

∣∣∣∣−
1

ε

∫ qε

−∞
xd(Fn(x)− F (x)) +

Cn

ε
(Fn(qε)− F (qε))− L(Fn − F )

∣∣∣∣

=

∣∣∣∣−
1

ε

∫ qε

−∞
qεd(Fn(x)− F (x)) +

Cn

ε
(Fn(qε)− F (qε))

∣∣∣∣

=

∣∣∣∣−
qε

ε
(Fn(qε)− F (qε)) +

Cn

ε
(Fn(qε)− F (qε))

∣∣∣∣

=
|Cn − qε|

ε
|Fn(qε)− F (qε)|

≤ |Cn − qε|
ε

sup
x
|Fn(x)− F (x)|

=
|Cn − qε|

ε
ρ(Fn, F )

As a result,

|φ(Fn)− φ(F )− L(Fn − F )|
ρ(Fn, F )

→ 0, as n →∞

in almost sure sense. As a result we obtain the asymptotic relation in equa-
tion (6).

Corollary 1. Under the assumptions in the proposition,

|φ(Fn)− φ(F )−∆(Fn − F )| = o(n−1/2). (8)

Proof. By the Kolmogorov theorem, the metric ρ(Fn, F ) approaches zero at
a rate equal to n−1/2 which indicates the rate of improvement of the linear
approximation ∆(Fn − F ).

The main result is given in the theorem below. The idea is to use the
linear approximation ∆(Fn − F ) of the AVaR functional in order to obtain
an asymptotic distribution as n →∞.

Theorem 2. Suppose that X is random variable with c.d.f. F (x) which
satisfies the following conditions

a) xαF (−x) = L(x) is slowly varying at infinity

b)

∫ 0

−∞
xdF (x) < ∞

c) F (x) is differentiable at x = qε, where qε is the ε-quantile of X.
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Then, there exist cn > 0, n = 1, 2 . . ., such that for any 0 < ε < 1,

c−1
n

(
ÂV aRε(X)− AV aRε(X)

)
w→ Sα∗(1, 1, 0), (9)

in which
w→ denotes weak limit, 1 < α∗ = min(α, 2), and cn = n1/α∗−1L0(n)/ε

where L0 is slowly varying at infinity. Furthermore, the cn are representable
as cn = an/nε where an stands for the normalizing sequence in Theorem 1
and must satisfy the condition in equation (4).

Proof. By the result in Proposition 1,

φ(Fn)− φ(F ) = ∆(Fn − F ) + o(n−1/2) (10)

where φ is the AVaR functional and ∆(Fn − F ) is given in (6). Simplifying
the expression for ∆(Fn − F ), we obtain

φ(Fn)− φ(F ) =
1

nε

n∑
i=1

[(qε −Xi)+ − E(qε −Xi)+] + o(n−1/2) (11)

It remains to apply the domains of attraction characterization in Theorem
1 to the right-hand side of equation (11). For this purpose, consider the
expression

n∑
i=1

Yi − nEY1 (12)

where Yi = (qε−Xi)+ are i.i.d. random variables. Denote by FY (x) the c.d.f.
of Y . The left-tail behavior of X assumed in a) implies xα(1−FY (x)) = L(x)
as x →∞ where L(x) is the slowly varying function assumed in a). This is
demonstrated by

xα(1− FY (x)) = xαP (max(qε −X, 0) > x)

= xαP (X < qε − x)

∼ xαP (X < −x)

(13)

Furthermore, the asymptotic behavior of the left tail of Y is FY (−x) = 0
which holds for any x ≥ −qε. As a result, condition (i) from Theorem 1
holds.

Condition b) implies that the tail exponent α in a) must satisfy the in-
equality α > 1. Therefore, subtracting nEY1 in (12) is a proper centering
of the sum as suggested in (5) in Theorem 1. Note that if α ≥ 2, then Y is
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in the domain of attraction of the normal distribution and the same choice
of centering is appropriate. Thus, the tail index of the limiting distribution
satisfies 1 < α∗ = min(α, 2).

Finally, computing condition (ii) in Theorem 1 from the tail behavior of
Y yields β = 1. Essentially, this follows because FY (−x) = 0 if x ≥ −qε.

Therefore, all conditions in Theorem 1 are satisfied and as, a result, there
exists a sequence of normalizing constants an satisfying (4), such that

a−1
n

(
n∑

i=1

Yi − nEY1

)
w→ Sα∗(1, 1, 0). (14)

as n → ∞. In order to apply this result to sample AVaR, we need (14)
reformulated for the average rather than the sum of Yi. Thus, a more suitable
form is

nεa−1
n

(
1

nε

n∑
i=1

(Yi − EYi)

)
w→ Sα∗(1, 1, 0). (15)

as n →∞.
As a final step, we apply the limit result in (15) to equation (11). Multi-

plying both sides of (11) by nεa−1
n yields the limit

nεa−1
n (φ(Fn)− φ(F ))

w→ Sα∗(1, 1, 0) (16)

as n → ∞. It remains only to verify if the normalization does not lead to
explosion of the residual. Indeed,

nεa−1
n o(n−1/2) =

n1/2

an

o(1) = o(1),

because the factor n1/2/an approaches zero by the asymptotic behavior of an

given in the domains of attraction characterization in Theorem 1.

A number of comments are collected in the following remarks.

Remark 1. By definition, the AVaR is the negative of the average of the
quantiles of X beyond a reference quantile qε. For this reason, it is only the
behavior of the left tail of X which matters and the assumptions a) and b)
in Theorem 2 concern the left tail only. Condition c) is technical and allows
the calculation of the influence function of AVaR.

Remark 2. If α > 2 in condition a), then
∫ 0

−∞ x2dF (x) < ∞ and the limiting
distribution is the standard normal distribution. In this case, the normalizing
sequence cn should be calculated using σ2

ε = D(qε −X)+,
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Figure 1: Densities of the limiting stable distribution corresponding to dif-
ferent tail behavior.

cn = n−1/2σε/ε.

The case α > 2 is considered in detail in Stoyanov and Rachev (2007).

Remark 3. The limiting stable distribution is totally skewed to the right,
β = 1. However, the observed skewness in the shape of the distribution
decreases as α → 2, see Figure 1. At the limit, when α = 2, the limiting
distribution is Gaussian and is symmetric irrespective of the value of β.
Therefore, the degree of the observed skewness in the limiting distribution is
essentially determined by the tail behavior of X, or by the value of α, and is
not influenced by any other characteristic.

Remark 4. When ε → 1, then AVaR approaches the mean of X (or the
sample average if we consider the sample AVaR),

lim
ε→1

AV aRε(X) = EX.

Unfortunately, there is no such continuity in equation (9) unless X has finite
variance. That is, generally it is not true that the weak limit in equation (9)
holds for the sample average letting ε → 1. The reason is that if ε = 1, then
both tails of the distribution of X matter and the limiting stable distribution
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can have any β ∈ [−1, 1]. The condition DX < ∞ is sufficient to guarantee
that the limiting distribution is normal for any ε ∈ (0, 1] and in this case
there is continuity in equation (9) as ε → 1.

As an illustration of the singularity at ε = 1, consider the following ex-
ample. Suppose that the right tail of X is heavier than the left tail and as a
consequence,

∫ qε

−∞
x2dF (x) < ∞, for any ε < 1,

but EX2 = ∞. Under this assumption, the limiting distribution of the
sample AVaR is normal for any ε < 1. If ε = 1, then the limiting distribution
becomes stable non-Gaussian due to the heavier right tail. Thus, there is a
change in the limiting distribution of the sample AVaR with ε < 1 and the
sample average.

3 Examples

The result in Theorem 2 provides the limiting distribution but does not
provide any insight on the rate of convergence. That is, it does not give an
answer to the question how many observations are needed in order for the
distribution of the left-had side in equation (9) to be sufficiently close to the
distribution of the right-hand side in terms of a selected probability metric.
In this section, we provide illustrations of the stable limit theorem and the
rate of convergence assuming particular distributions of X.

3.1 Stable Paretian Distributions

We remarked that stable Paretian distributions are stable distributions with
tail index α < 2. This distinction is made since their properties are very
different from the properties of the normal distribution which appears as
a stable distribution with α = 2. For example, in contrast to the normal
distribution, stable Paretian distributions have heavy tails exhibiting power
decay. In the field of finance, stable Paretian distribution were proposed as a
model for stock returns and other financial variables, see Rachev and Mittnik
(2000).

Denote by X the random variable describing the return of a given stock.
In this section, we assume that X ∈ Sα(σ, β, µ) with 1 < α < 2, β 6= 1,
and our goal is to apply the result in Theorem 2 which provides a tool of
computing the confidence interval of the sample AVaR of X on condition that
the Monte Carlo method is used with a large number of scenarios. Since by
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Figure 2: The density of the sample AVaR as n increases with β = 0.7 and
ε = 0.01.

assumption α > 1, which guarantees convergence of the sample AVaR to the
theoretical AVaR in almost sure sense. In the case of stable distributions,
the quantity AV aRε(X) can be calculated using a semi-analytic expression
given in Stoyanov et al. (2006).

In order to apply the result in Theorem 2, first we have to check if the
conditions are satisfied and then choose the scaling constants cn. For this
purpose, we use the following property of stable Paretian distributions, see
Samorodnitsky and Taqqu (1994).

Property 1. Let X ∈ Sα(σ, β, µ) 0 < α < 2. Then

lim
λ→∞

λαP (X > λ) = Cα
1 + β

2
σα

lim
λ→∞

λαP (X < −λ) = Cα
1− β

2
σα

where

Cα =

(∫ ∞

0

x−α sin(x)dx

)−1

=

{ 1−α
Γ(2−α) cos(πα/2)

, α 6= 1

2/π, α = 1

11



−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

n = 250
n = 1,000
n = 10,000
n = 100,000
S

1.5
(1,1,0)

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

n = 250
n = 1,000
n = 10,000
n = 100,000
S

1.5
(1,1,0)

Figure 3: The density of the sample AVaR as n increases with β = 0.7 (top)
and β = −0.7 (bottom) and ε = 0.05.
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This property provides the asymptotic behavior of the left tail of the dis-
tribution. We further assume that β 6= 1 since in this case the asymptotic
behavior of the left tail is different, see Samorodnitsky and Taqqu (1994).
Condition b) is satisfied because of the assumption 1 < α < 2 and, finally,
condition c) is satisfied for any choice of 0 < ε < 1 since all stable distribu-
tions have densities. Therefore, all assumptions are satisfied and the result in
Theorem 2 holds with α∗ = α and the scaling constants cn should be chosen
in the following way,

cn = n1/α−1

(
1− β

2

)1/α
σ

ε
.

Note that in this case, the skewness in the distribution of X translates into
a different scaling of the normalizing constants. If X is negatively skewed
(β < 0), the scaling factor is larger than if X is skewed positively (β > 0).

We carry out a Monte Carlo study assuming X ∈ S1.5(β, 1, 0) where
β = ±0.7 and two choices of the tail probability ε = 0.01 and ε = 0.05. We
generate 2,000 samples from the corresponding distribution the size of which
equals n = 250, 1, 000, 10, 000, and 100, 000.

Figure 2 illustrates the convergence rate for the case ε = 0.01 as the num-
ber of observations increases. While from the plot it seems that n = 100, 000
results in a density which is very close to that of the limiting distribution, but
the Kolmogorov test fails. The convergence rate is much slower in the heavy-
tailed case than in the setting of the classical CLT. Stoyanov and Rachev
(2007) suggest that about 5,000 simulations are sufficient for the purposes
of confidence bounds estimation when the distribution has bounded support.
Apparently, much more observations are needed in this heavy-tailed case.

The plots in Figure 3 indicate that as the tail probability ε increases, the
behavior of the sample AVaR distribution improves. Furthermore, the the
behavior improves when X turns from being negatively to positively skewed.

3.2 Student’s t distribution

Student’s t distribution is a widely used model for a stock return distribution.
X has Student’s t distribution, X ∈ t(ν), with ν > 0 degrees of freedom if
the density of X equals,

fν(x) =
Γ

(
ν+1
2

)

Γ
(

ν
2

) 1√
νπ

(
1 +

x2

ν

)− ν+1
2

, x ∈ R.

A few simple properties of Student’s t distribution are collected in the
next proposition.
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Proposition 2. Suppose that X ∈ t(ν) and denote the c.d.f. of X by
F (x). Then, xνF (−x) = L(x) where L(x) is a slowly varying function at
infinity and also

lim
x→∞

xνF (−x) = νν/2−1 Γ
(

ν+1
2

)

Γ(ν/2)
√

π
. (17)

Proof. The fact that L(x) is a slowly varying function is checked directly ap-
plying the definition and the limit in (17) is obtained by applying l’Hospital’s
rule.

The result in this proposition and Theorem 2 imply that for ν > 2, the
limiting distribution of the sample AVaR is the Gaussian distribution. If
1 < ν ≤ 2, then the limiting distribution is stable with α∗ = ν. If ν ≤ 1,
then the AVaR of X diverges. The scaling constants cn should be chosen in
a different way depending on the value of ν,

cn =

{
n−1/2σε/ε, if ν > 2
n1/ν−1Aν/ε, if 1 < ν < 2

(18)

where σ2
ε = D(qε −X)+ and

Aν
ν = νν/2−1 Γ

(
ν+1
2

)

Γ(ν/2)
√

π

Γ(2− ν)

ν − 1
| cos(πν/2)|.

The value of the constant Aν is obtained by taking into account the limit in
(17) and the condition in equation (4). Stoyanov and Rachev (2007) consider
in detail the case ν > 2 and provide the formula for σε. This case is in the
classical setting of the CLT as the variance of X is finite.

We carry out a Monte Carlo experiment in order to study the convergence
rate of the sample AVaR distribution to the limiting distribution. We fix the
degrees of freedom, the number of simulations to 100,000, and ε = 0.05. Next
we generate 2,000 samples from which the sample AVaR is estimated. Thus
we obtain 2,000 estimates of AV aRε(X), X ∈ t(ν). Finally, we calculate the
Kolmogorov distance

ρ(Gν , G) = sup
x
|Gν(x)−G(x)|

where Gν is the c.d.f. of the sample AVaR approximated by the sample
c.d.f. obtained with the 2,000 estimates, and G is the c.d.f. of the limiting
distribution Sα∗(1, 1, 0) where α∗ = min(ν, 2).

Figure 4 shows the values of ρ(Gν , G) as ν varies from 1.05 to 3. The
horizontal line shows the critical value of the Kolmogorov statistic: if the

14



1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Degrees of freedom

 

 

Kolmogorov distance
Critical value

Figure 4: The Kolmogorov distance between the sample AVaR distribution
of X ∈ t(ν) obtained with 100,000 simulations and the limiting distribution.

calculated ρ(Gν , G) is below the critical value, we accept the hypothesis that
the sample AVaR distribution is the same as the limiting distribution, oth-
erwise we reject it. Since we use a sample c.d.f. to approximate Gν(x), the
solid line fluctuates a little but we notice that for ν ≤ 1.5 and ν ≥ 2.5 it
seems that 100,000 observations are enough in order to accept the limiting
distribution as a model. For the middle values, larger samples are needed.
This observation indicates that the rate of convergence of the sample AVaR
distribution to the limiting distribution deteriorates as ν approaches 2 and
is slowest for ν = 2. This finding can be summarized in the following way by
considering all possible cases for ν:

• ν > 2. As ν decreases from larger values to 2, the tail thickness in-
creases which results in higher absolute moments becoming divergent,
E|X|δ = ∞, δ ≥ ν. The limiting distribution is the Gaussian distri-
bution but the tails becoming thicker results in deterioration of the
convergence rate to the Gaussian distribution.

• ν = 2. The limiting distribution is the Gaussian distribution even
though the variance of X is infinite. This case is not covered by the
limit theory behind the classical CLT.
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• 1 < ν < 2. We continue decreasing ν and the tails become so thick that
they start influencing the limiting distribution which is stable Paretian,
Sν(1, 1, 0), and depends on ν. However, the convergence rate starts
improving.

• 0 < ν ≤ 1. The tails of X become so heavy that AV aRε(X) = ∞.

4 Conclusion

In the paper, we study the asymptotic distribution of the sample AVaR.
We provide a stable limit theorem describing all possible asymptotic laws
depending on the behavior of the left tail of the random variable X. If we
assume that X describes the return distribution of a stock, then the left tail
describes losses. Intuitively, the asymptotic distribution of the sample AVaR
is determined by the behavior of extreme losses.

Furthermore, in order to adopt the asymptotic law and draw conclusions
based on it, we need insight on the rate of convergence in the stable limit
theorem. We illustrate the rate of convergence by Monte Carlo experiments
assuming a stable distribution and Student’s t distribution for X. In sum-
mary, the convergence rate deteriorates as the tail exponent α → 2 and it
improves as the distribution of X becomes more positively skewed. Generally,
the skewness of X does not influence the asymptotic law.
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