
Asymptotic distribution of the sample average
value-at-risk

Stoyan V. Stoyanov
Svetlozar T. Rachev

September 30, 2007

Abstract

In this paper, we prove a result for the asymptotic distribution
of the sample average value-at-risk (AVaR) under certain regularity
assumptions. The asymptotic distribution can be used to derive as-
ymptotic confidence intervals when AV aRε(X) is calculated by the
Monte Carlo method which is adopted in many risk management sys-
tems. We study the effect of the tail behavior of the random variable
X on the convergence rate and the improvement of a tail truncation
method.

1 Introduction

The average value-at-risk (AVaR) risk measure has been proposed in the
literature as a coherent alternative to the industry standard Value-at-Risk
(VaR), see Artzner et al. (1998) and Pflug (2000). It has been demonstrated
that it has better properties than VaR for the purposes of risk management
and, being a downside risk-measure, it is superior to the classical standard
deviation and can be adopted in a portfolio optimization framework, see
Rachev et al. (2006), Stoyanov et al. (2007), Biglova et al. (2004), and Rachev
et al. (2008).

The AVaR of a random variable X at tail probability ε is defined as

AV aRε(X) = −1

ε

∫ ε

0

F−1(p)dp.

where F−1(x) is the inverse of the cumulative distribution function (c.d.f.)
of the random variable X. The random variable may describe the return of
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stock, for example. A practical problem of computing portfolio AVaR is that
usually we do not know explicitly the c.d.f. of portfolio returns. In order
to solve this practical problem, the Monte Carlo method is employed. The
returns of the portfolio constituents are simulated and then the returns of the
portfolio are calculated. In effect, we have a sample from the portfolio return
distribution which we can use to estimate AVaR. The larger the sample, the
closer the estimate to the true value. However, with any finite sample, the
sample AVaR will fluctuate about the true value and, having only a sample
estimate, we have to know the probability distribution of the sample AVaR
in order to build a confidence interval for the true value. The sample AVaR
equals,

ÂV aRε(X) = −1

ε

∫ ε

0

F−1
n (p)dp.

where F−1
n (p) denotes the inverse of the sample c.d.f. Fn(x) = 1

n

∑n
i=1 I{Xi ≤

x} in which I{A} denotes the indicator function of the event A.
The problem of computing the distribution of the sample AVaR is a com-

plicated one even if we know the distribution of X. From a practical view-
point, X describes portfolio returns which can be a complicated function of
the joint distribution of the risk drivers. Therefore, we can only rely on large
sample theory to gain insight into the fluctuations of sample AVaR. That
is, for a large n, we can use a limiting distribution to calculate a confidence
interval.

In this paper, first we prove a limit theorem for the sample AVaR in
Section 2 . The limit theorem does not give answers to the question of how
many simulations are necessary in order for the limiting distribution to be
acceptable as a model for practical purposes. This number depends also
on the distribution of X. A major factor is the tail behavior of X and,
more precisely, how heavy the left tail of the distribution is. We study this
problem in Section 3.1 assuming that X has Student’s t distribution. Finally,
we illustrate the impact of a tail truncation method in a finite and infinite
variance case.

2 A limit theorem

In this section, we prove the following limit theorem.

Theorem 1. Suppose that X is random variable with finite second mo-
ment EX2 < ∞. Furthermore, suppose that the c.d.f. of X is differentiable
at x = qε, where qε is the ε-quantile of X. Then, as n →∞,
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√
n

σε

(
ÂV aRε(X)− AV aRε(X)

)
w→ N(0, 1) (1)

where
w→ denotes weak limit and

σ2
ε =

1

ε2
D(max(qε −X, 0)). (2)

Proof. We apply the following more general result,

φ(Fn)− φ(F )
w→ N(0, λ2)

where φ is a differentiable functional, Fn is the empirical c.d.f., F is the c.d.f.
of X, and

λ2 = D(φ′(δXi
− F )) =

∫

R

(IFφ(x))2dF (x) < ∞

in which IFφ stands for the influence function of the functional φ1, δXi
is the

cdf of the observation Xi.
2 By the definition of the influence function,

φ′(δXi
− F ) =

d

dt
(φ((1− t)F + tδXi

))|t=0 =
d

dt
(φ(Ft))|t=0.

The proof of the main result reduces to calculating the influence function
of φ(F ) and then calculating the variance λ2. We need the assumed properties
of the c.d.f. for the calculation of the influence function. In our case, from
the definition of AVaR,

φ(F ) = −1

ε

∫ ε

0

F−1(p)dp

= −F−1(ε) +
1

ε

∫ F−1(ε)

−∞
F (p)dp.

(3)

The influence function can be directly calculated,

IFφ(x) =
d

dt
(φ(Ft))|t=0

= − d

dt
(F−1

t (ε))|t=0 +
1

ε

d

dt

(∫ F−1
t (ε)

−∞
Ft(p)dp

)∣∣∣∣∣
t=0

1Alternatively, the influence function can be regarded as the Gateaux derivative of φ
in the direction of δXi

2It can also be verified that E(IFφ(X)) = 0. In fact, this condition should hold from
the general considerations behind the more abstract result.
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The second term is differentiated separately below

d

dt

(∫ F−1
t (ε)

−∞
Ft(p)dp

)∣∣∣∣∣
t=0

= ε
d

dt
(F−1

t (ε))|t=0 + max(qε − x, 0)−
∫ qε

−∞
F (y)dy

where where qε stands for the ε-quantile of X and we take advantage of the
chain rule

d

dt

(∫ f(t)

a

G(t, y)dy

)
= G(t, f(t))f ′(t) +

∫ f(t)

a

Gt(t, y)dy

in which f(x) is a monotonically increasing function. In computing the deriv-
ative we used that F (x) is differentiable at x = qε. Finally, for the influence
function we obtain

IFφ(x) =
1

ε
max(qε − x, 0)− 1

ε

∫ qε

−∞
F (y)dy

Now we can calculate the variance,

λ2 = D(IFφ(X)) =
1

ε2
D(max(qε −X, 0)).

It is also straightforward to check that E(IFφ(X)) = 0,

E(IFφ(X)) =
1

ε
E max(qε −X, 0)− 1

ε

∫ ε

0

pdF−1(p) = 0

follows after integration by parts.

The variance of the asymptotic normal distribution is not possible to
calculate if we do not know the cdf F (x) of X. Therefore, if we have only
a sample of i.i.d. observations, the variance σ2 has to be estimated. To
this end, expressing the variance in terms of conditional moments may be
more useful. The variance of the asymptotic normal distribution given in (2)
equals

σ2
ε =

q2
ε

ε
− 2qε

ε
E(X|X ≤ qε) +

1

ε
E(X2|X ≤ qε)− (qε − E(X|X ≤ qε))

2 (4)

An estimate of σ2
ε can be obtained by estimating the conditional moments

and the corresponding quantile from the sample.
Furthermore, we would like to remark on a consistency with the classical

theory behind constructing confidence intervals for the mean of a random
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variable. Suppose that the tail probability approaches one. In this case, the
AVaR turns into the mean of X,

lim
ε→1

AV aRε(X) = EX,

the sample AVaR turns into the sample average,

lim
ε→1

ÂV aRε(X) =
1

n

n∑
i=1

Xi,

where X1, . . . , Xn is a sample if i.i.d. observations, and the variance of the
asymptotic normal distribution becomes the variance of X,

lim
ε→1

σε = DX.

Therefore, we obtain as a special case the classical CLT

√
n√

DX

(
1

n

n∑
i=1

Xi − EX

)
w→ N(0, 1).

3 Monte Carlo experiments

In this section, our goal is to investigate the effect of the tail behavior on
the rate of convergence in (1). We are also interested in the question if tail
truncation improves the convergence and by how much. Generally, the tail
truncation method consists in “replacing” the tails of X with the tails of
a thin-tailed distribution “far away” from the center of the distribution of
X, for example beyond the 0.1% and 99.9% quantiles. The tail truncation
method has applications in finance for modeling the distribution of stock
returns, a practical reason being that stock exchanges close if a severe market
crash occurs. This method also has application in derivatives pricing with a
heavy-tailed distributional assumption for the return of the underlying, see
Rachev et al. (2005) and the references therein.

In the following sections, we start with Student’s t distribution and in-
vestigate the convergence rate in the limit relation (1) as degrees of freedom
increase. We address the same questions with a truncated Student’s t distri-
bution in which the truncation is done in the simplest possible way — we set
the the values of the random variable which are beyond the 0.1% and 99.9%
quantiles to be equal to the corresponding quantiles. As a result, small point
masses appear at the 0.1% and 99.9% quantiles. We also focus on the class
of stable distributions and truncated stable distributions in which the same
truncation technique is adopted as in the case of Student’s t distribution.
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3.1 The effect of tail thickness

The impact of the tail behavior on the rate of convergence in Theorem 1 is
first studied when X has Student’s t distribution, X ∈ t(ν), with ν ≥ 3. We
need the condition on the degrees of freedom in order for the random variable
to have finite variance. Taking advantage of the expression for the density,

fν(x) =
Γ

(
ν+1
2

)

Γ
(

ν
2

) 1√
νπ

(
1 +

x2

ν

)− ν+1
2

, x ∈ R,

it is possible to compute explicitly the variance in equation (2). In fact, for
this purpose the expression in (4) is more appropriate. As a first step, we
calculate the two conditional expectations.

E(X|X ≤ qε) =
1

ε

∫ qε

−∞
xfX(x)dx

=
1

ε

∫ qε

−∞
x

Γ
(

ν+1
2

)

Γ
(

ν
2

) 1√
νπ

(
1 +

x2

ν

)− ν+1
2

dx

=
1

ε

Γ
(

ν+1
2

)

Γ
(

ν
2

) 1√
νπ

ν

2

∫ qε

−∞

(
1 +

x2

ν

)− ν+1
2

d

(
1 +

x2

ν

)

= −1

ε

Γ
(

ν+1
2

)

Γ
(

ν
2

)
√

ν

(ν − 1)
√

π

(
1 +

q2
ε

ν

) 1−ν
2

, if ν > 1.

(5)

E(X2|X ≤ qε) =
1

ε

∫ qε

−∞
x2fX(x)dx

=
1

ε

∫ qε

−∞
x2 Γ

(
ν+1
2

)

Γ
(

ν
2

) 1√
νπ

(
1 +

x2

ν

)− ν+1
2

dx

=
1

ε

Γ
(

ν+1
2

)

Γ
(

ν
2

) 1√
νπ

ν

1− ν

∫ qε

−∞
xd

(
1 +

x2

ν

)− ν+1
2

+1

= qεE(X|X ≤ qε) +
ν

ε(ν − 2)
Fν−2

(
qε

√
ν − 2

ν

)
, if ν > 2.

(6)

where the last equality follows by integration by parts and Fν(x) is the c.d.f.
of Student’s t distribution with ν degrees of freedom. Plugging these expres-
sions in (4), we obtain the expression for the variance σ2

ε .
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ν ε = 0.01 ε = 0.05
3 70000 17000
4 60000 9000
5 50000 7000
6 23000 4500
7 14000 4200
8 13000 4100
9 12000 4000

10 12000 3900
15 11000 3850
25 10000 3800
50 10000 3750
∞ 10000 3300

Table 1: The number of observations sufficient to accept the normal distrib-
ution as an approximate model for different values of ν and ε.

Note that, besides an equation for σ2
ε , we can explicitly calculate the

AVaR of X since in the case of Student’s t distribution we can express AVaR
as a conditional expectation,

AV aRε(X) = −E(X|X ≤ qε).

Having an expression for the variance allows us to use the test of Kol-
mogorov and address the question oh how many simulations are needed in
order to accept the hypothesis that the distribution of the random variable
in the left-hand side of the limit relation (1),

√
n

σε

(
ÂV aRε(X)− AV aRε(X)

)
, (7)

is standard normal. If we accept the null hypothesis for a given value of n,
then the standard normal distribution can be used as an approximate model
and we can calculate not only confidence intervals but also other character-
istics based on it.

Table 1 shows the values of n sufficient to accept the null hypothesis in the
test of Kolmogorov for different degrees of freedom and tail probabilities. We
chose ε = 0.01 and ε = 0.05 since these values are frequently used in financial
industry in value-at-risk estimation. The numbers in the table are calculated
by generating independently 2000 samples of a given size and then from each
sample (7) is estimated. In effect, we obtain 2000 observations from the
distribution of (7).

In line with intuition, the numbers Table 1 indicate that when the tail
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n = 250 n = 500 n = 1000 n = 5000 n = 10000
ν q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5%

3 -1.110 2.011 -1.257 2.173 -1.352 2.202 -1.633 2.037 -1.664 2.007
4 -1.337 2.144 -1.442 2.229 -1.543 2.082 -1.744 2.230 -1.756 2.176
5 -1.441 2.153 -1.529 2.224 -1.728 2.190 -1.843 2.060 -1.807 2.009
6 -1.522 2.134 -1.618 2.033 -1.701 2.115 -1.848 1.987 -1.955 1.982
7 -1.627 2.050 -1.668 1.975 -1.827 2.043 -1.841 2.048 -1.913 2.014
8 -1.655 2.028 -1.760 2.145 -1.836 2.032 -1.898 2.034 -1.866 1.939
9 -1.720 1.938 -1.753 2.146 -1.798 2.075 -1.866 2.005 -1.905 2.007

10 -1.747 1.925 -1.809 1.980 -1.762 2.078 -1.822 1.950 -1.962 2.000
15 -1.813 1.751 -1.848 1.896 -1.891 1.956 -1.969 1.941 -1.968 1.873
25 -1.848 1.760 -1.933 2.028 -1.897 1.950 -1.939 1.957 -1.899 1.923
50 -1.898 1.948 -1.962 1.900 -1.971 1.973 -1.961 1.914 -1.895 1.948
∞ -1.921 1.761 -1.976 1.920 -1.964 1.822 -1.869 1.907 -2.004 1.937

Table 2: The 95% confidence bounds generated from 2000 simulations from
the distribution of (7) with ε = 0.01. The corresponding quantiles of N(0, 1)
are q2.5% = −1.96 and q2.5% = 1.96.

is heavier, we need a larger sample in order for the asymptotic law to be
sufficiently close to the distribution of (7) in terms of the Kolmogorov metric.
Another expected conclusion is that as the tail probability increases, a smaller
sample turns out to be sufficient.

In Table 2, we calculated the 95% confidence interval for AVaR when the
sample size changes from 250 to 10000 observations. We generated 2000 inde-
pendent samples and then computed the quantity in equation (7). Thus, the
95% confidence intervals are obtained from 2000 observations of the random
variable in (7). As n increases, the two quantiles approach the correspond-
ing quantiles of the standard normal distribution. Note that the largest
n = 10000 is generally below the sample sizes for ε = 0.01 given in Table
1. Nevertheless, the relative discrepancies between the quantiles given in
Table 2 and the corresponding standard normal distribution quantiles are
less than 5% for ν ≥ 6.3 The relative discrepancies between the quantiles
given in Table 3 the corresponding standard normal distribution quantiles
for n = 10000 have the same magnitude. However, in this case n = 10000 is
well above the sample sizes given in Table 1 for ε = 0.05. As a result, we can
conclude that even smaller samples than the ones given in Table 1 can lead to
95% confidence intervals obtained via resampling from (7) being close to the

3If we generate a sample of 2000 observations from the standard normal distribution, a
relative deviation below 6% between the estimated quantile q2.5% and the corresponding
standard normal quantile happens with about 95% probability, and below 7.7% with about
99% probability.
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n = 250 n = 500 n = 1000 n = 5000 n = 10000
ν q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5%

3 -1.422 2.110 -1.543 2.016 -1.549 1.981 -1.725 1.947 -1.883 1.987
4 -1.647 2.169 -1.737 2.235 -1.787 2.171 -1.900 2.226 -1.849 2.115
5 -1.749 2.081 -1.811 2.096 -1.757 2.148 -1.868 2.015 -1.937 2.100
6 -1.810 2.071 -1.896 2.030 -1.921 1.941 -1.958 1.998 -1.886 2.032
7 -1.786 2.215 -1.824 1.990 -1.809 2.086 -1.986 2.030 -1.916 2.015
8 -1.932 2.131 -1.870 2.058 -1.755 2.090 -1.937 2.014 -1.915 1.952
9 -1.848 2.139 -1.884 2.081 -1.930 2.023 -1.995 1.964 -1.863 2.048

10 -1.906 2.103 -2.021 1.966 -1.839 2.087 -2.009 1.930 -1.989 1.995
15 -1.797 1.905 -1.929 2.056 -1.944 1.952 -1.924 1.973 -1.947 1.979
25 -1.958 1.950 -1.994 1.956 -1.939 1.968 -2.085 1.993 -1.894 1.944
50 -1.986 1.927 -1.980 1.823 -1.962 1.883 -1.911 1.969 -2.002 1.935
∞ -2.013 1.828 -1.953 1.869 -1.975 1.893 -2.034 1.958 -1.903 1.944

Table 3: The 95% confidence bounds generated from 2000 simulations from
the distribution of (7) with ε = 0.05. The corresponding quantiles of N(0, 1)
are q2.5% = −1.96 and q2.5% = 1.96.

corresponding 95% confidence interval obtained from the limit distribution
even though the Kolmogorov test fails for such samples. For instance, the
relative deviation between the quantiles given in Table 2 for n = 5000 and
the corresponding standard normal distribution quantiles are below 7% for
n ≥ 6, which is a small deviation for all practical purposes.

As a result of this analysis, we can conclude that for the purposes of
building confidence intervals for AV aRε(X) when X ∈ t(ν), with ν ≥ 6 and
ε = 0.01, 0.05, we can safely employ the asymptotic law when the sample
size we use for AVaR estimation contains more than 5000 observations. If
Student’s t distribution is fitted on daily stock-returns time series, such values
for ν are very common.

Figure 1 illustrates the differences in the convergence rate when X has
Student’s t distribution with ν = 3, which corresponds to heavier tails, and
ν = 10. Since high degrees of freedom imply more light tails, smaller samples
are sufficient for the density of (7) to be closer to the standard normal density.

3.2 The effect of tail truncation

The stochastic stability of sample AVaR increases dramatically after tail
truncation. In this section, we repeat the calculations from the previous
section but when X has Student’s t distribution with the tails truncated at
q0.1% and q99.9% quantiles. The random variable Y is said to have a truncated
distribution at these quantiles if it has the representation
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Figure 1: The density of (7) approaching the N(0, 1) density as the sample
size increases with ν = 3 (top) and ν = 10 (bottom).
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ν ε = 0.01 ε = 0.05
3 12000 4000
4 11500 3600
5 11000 3300
6 11000 3200
7 10500 3100
8 10000 3000
9 10000 3000

10 10000 3000
15 10000 2950
25 10000 2900
50 10000 2900
∞ 10000 2900

Table 4: The number of observations sufficient to accept the normal distrib-
ution as an approximate model for different values of ν and ε.

Y = XI{q0.1% ≤ X ≤ q99.9%}+ q0.1%I{X < q0.1%}+ q99.9%I{X > q99.9%}

in which X ∈ t(ν), I{A} denotes the indicator of the event A, and q0.1%,
q99.9% are the corresponding quantiles of X. The tail truncation introduces
small point masses at the two quantile levels.

The two conditional expectations in (4) can be related to the correspond-
ing conditional expectations of X. In the following, we assume that the tail
probability ε is larger from the tail probability of the left truncation point,
ε > 0.001. Under this assumption, the ε-quantile of X is the same as the
ε-quantile of Y .

E(Y |Y ≤ qε) = E(X|X ≤ qε)− 0.001

ε
E(X|X ≤ q0.1%) +

0.001qε

ε

E(Y 2|Y ≤ qε) = E(X2|X ≤ qε)− 0.001

ε
E(X2|X ≤ q0.1%) +

0.001q2
ε

ε

in which the conditional expectations of X can be computed according to for-
mulae (5) and (6). Plugging the expressions for the conditional expectations
of Y in the expression for σ2

ε , we obtain the variance of the asymptotic dis-
tribution. Furthermore, the tail truncation does not break the link between
AVaR and the conditional expectation, therefore

AV aRε(Y ) = −E(Y |Y ≤ qε).
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n = 250 n = 500 n = 1000 n = 5000 n = 10000
ν q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5%

3 -1.723 1.699 -1.847 1.932 -1.850 1.958 -1.966 1.921 -1.860 1.936
4 -1.759 1.694 -1.863 1.819 -1.903 1.860 -1.989 1.942 -1.964 1.886
5 -1.808 1.536 -1.884 1.871 -1.926 1.932 -1.961 1.964 -1.782 2.066
6 -1.947 1.565 -1.937 1.759 -2.002 1.734 -2.057 1.946 -1.981 1.958
7 -1.960 1.524 -1.960 1.666 -1.965 1.844 -2.101 1.932 -1.981 1.927
8 -2.002 1.567 -2.015 1.693 -1.903 1.802 -1.952 1.856 -1.917 1.928
9 -1.963 1.552 -2.030 1.748 -2.106 1.779 -1.965 2.026 -1.932 1.938

10 -2.003 1.596 -2.119 1.709 -2.034 1.850 -1.925 1.813 -1.990 1.952
15 -2.090 1.485 -2.159 1.650 -2.065 1.786 -1.983 1.847 -2.035 1.855
25 -2.183 1.502 -2.084 1.578 -2.093 1.747 -2.016 1.806 -1.954 1.877
50 -2.272 1.509 -2.089 1.632 -2.042 1.726 -1.938 1.914 -2.056 1.970

Table 5: The 95% confidence bounds generated from 2000 simulations from
the distribution of (8) with ε = 0.01. The corresponding quantiles of N(0, 1)
are q2.5% = −1.96 and q2.5% = 1.96.

In the following, we investigate the convergence rate of

√
n

σε

(
ÂV aRε(Y )− AV aRε(Y )

)
, (8)

for different degrees of freedom to the standard normal distribution and we
compare the results to the ones in the previous section.

Table 4 is the counterpart of Table 1 for the truncated distribution. It is
impressive how the sample size sufficient to accept the null hypothesis in the
Kolmogorov test decreases after tail truncation. The most dramatic change
is in the case ν = 3. Now we need only 12000 observations compared to
70000 in the non-truncated case.

Tables 5 and 6 are the counterparts of Tables 2 and 3. The relative
deviation of the quantiles q2.5% and q97.5% of the random variable in (8) from
those of the standard normal distribution are below 7% for all degrees of
freedom and n = 10000, and, with a few exceptions, for n = 5000. Compare
Figure 2 and the top plot in Figure 1 for an illustration of the improvement in
the convergence rate. These results indicate that the asymptotic distribution
can be used to obtain a 95% confidence bound for the sample AVaR for all
degrees of freedom if the sample size contains more than 5000 observations.

3.3 Infinite variance distributions

A critical assumption behind the limit result in Theorem 1 is the finite vari-
ance of X. To be more precise, the condition of finite variance can be loosened
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n = 250 n = 500 n = 1000 n = 5000 n = 10000
ν q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5% q2.5% q97.5%

3 -1.815 2.116 -1.866 2.041 -1.939 2.018 -1.944 1.975 -2.045 1.874
4 -1.756 2.150 -1.811 2.073 -2.052 2.060 -1.923 1.973 -1.922 1.854
5 -1.820 1.954 -1.971 2.032 -1.916 2.036 -1.826 1.960 -1.941 1.883
6 -1.899 2.089 -1.981 2.036 -2.012 2.012 -1.955 1.933 -1.921 2.011
7 -2.001 2.032 -1.921 1.997 -1.949 1.980 -1.980 1.936 -2.016 1.915
8 -1.888 1.995 -1.922 2.050 -1.907 1.917 -1.942 1.911 -1.910 1.903
9 -2.017 2.003 -1.892 1.918 -1.899 2.017 -1.931 2.001 -2.009 1.967

10 -1.928 1.814 -1.992 1.960 -1.870 1.949 -1.845 2.076 -1.992 1.898
15 -2.059 1.983 -2.020 2.007 -1.961 1.922 -1.953 1.870 -1.936 1.874
25 -1.999 1.854 -2.038 1.945 -1.889 2.028 -2.031 1.916 -1.975 1.890
50 -1.960 1.898 -2.028 1.898 -1.947 1.906 -2.015 2.002 -1.959 1.911

Table 6: The 95% confidence bounds generated from 2000 simulations from
the distribution of (8) with ε = 0.05. The corresponding quantiles of N(0, 1)
are q2.5% = −1.96 and q2.5% = 1.96.
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Figure 2: The density of (8) approaching the N(0, 1) density as the sample
size increases with ν = 3 and ε = 0.01.
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Figure 3: Lack of convergence, X has a stable distribution with X ∈
S1.5(1, 0, 0) and ε = 0.05.

to finite downside semi-variance,

D max(−X, 0) < ∞,

because it is the behavior of the left tail which is important. As a conse-
quence, the sample AVaR of distributions with infinite variance, but finite
downside semi-variance, may still follow Theorem 1.

However, there are infinite variance distributions for which

D max(−X, 0) = ∞
and, therefore, the limit result in Theorem 1 does not hold for them. Such
is the class of stable distributions which arises from generalizations of the
Central Limit Theorem and has been proposed as a model for stock return
distributions, see Rachev and Mittnik (2000).

Stable distributions are introduced by their characteristic functions. X
is said to have a stable distribution if its characteristic function is
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Figure 4: After tail truncation at q0.1% and q99.9%, there is a fast convergence
to N(0, 1), α = 1.5 and ε = 0.05.

ϕ(t) = EeitX =

{
exp{−σα|t|α(1− iβ t

|t| tan(πα
2

)) + iµt}, α 6= 1

exp{−σ|t|(1 + iβ 2
π

t
|t| ln(|t|)) + iµt}, α = 1

Except for a couple of representatives, generally no closed-form expressions
for their densities and c.d.f.s are known. If α < 2, then X has infinite
variance. If 1 < α ≤ 2, then X has finite mean and the AVaR of X can
be calculated. In our calculations, we will use the semi-analytic formula in
Stoyanov et al. (2006).

Even though we know that Theorem 1 does not hold for a stable dis-
tribution with α < 2, we simulate 2000 draws from the random variable
in equation (7) in which σε is estimated from a generated sample by esti-
mating the corresponding conditional moments. In theory these the second
conditional moment explodes but for any finite sample its estimate is a finite
number. Our goal is to see what happens when Theorem 1 does not hold.
Figure 3 illustrates such a divergent case in which α = 1.5 and ε = 0.05. The
lack of convergence is quite obvious.
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Stable distributions with α < 2 in combination with a tail truncation
method have been proposed as a model for the returns of the underlying in
derivatives pricing. It is interesting to see how much the simple truncation
technique we applied in the previous section can change Figure 3. With
its tails truncated according to our simple method, the random variable be-
comes with a bounded support and, therefore, it has finite variance. As a
consequence, Theorem 1 holds. Figure 4 illustrates this change. We observe a
quick convergence rate, similar to the one illustrated in Figure 2 for Student’s
t distribution.

4 Conclusion

In this paper, we study the asymptotic distribution of sample AVaR. Under
certain regularity conditions, we prove a limit theorem in which the limiting
distribution is the normal distribution. We study how the convergence rate
in the limit theorem is influenced by the tail behavior of the random vari-
able. An expected result is that, other things equal, more observations are
needed when the tail is heavier. We find out that a simple tail truncation
method improves dramatically the convergence rate. As a consequence, the
asymptotic distribution is reliable for confidence interval calculations when
the number of simulations is more than 5000 if the random variable has a
truncated Student’s t distribution.

We also consider an infinite variance case in which the random variable as
a stable distribution with finite mean. We illustrate the lack of convergence
and demonstrate the improvement due to tail truncation at high quantiles.
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