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Unconditional Copula-Based Simulation of Tail Dependence

for Co-movement of International Equity Markets

Abstract

Analyzing equity market co-movements is important for risk diversification of an international
portfolio. Copulas have several advantages compared to the linear correlation measure in modeling
co-movement. This paper introduces a copula ARMA-GARCH model for analyzing the co-movement
of international equity markets. The model is implemented with an ARMA-GARCH model for the
marginal distributions and a copula for the joint distribution. After goodness of fit testing, we find
that the Student’s t copula ARMA(1,1)-GARCH(1,1) model with fractional Gaussian noise is superior
to alternative models investigated in our study where we model the simultaneous co-movement of
nine international equity market indexes. This model is also suitable for capturing the long-range
dependence and tail dependence observed in international equity markets.
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1. Introduction

The co-movement of world equity markets is often used as a barometer of economic globalization and fi-
nancial integration. Analyzing such co-movement is important for risk diversification of an international
portfolio. The source of co-movement of international equity markets is the volatility-in-correlation
effect found by Andersen et al. (2001) in individual stock returns and by Solnik et al. (1996) in in-
ternational equity index returns. In fact, volatility-in-correlation effect could be explained by the tail
dependence of underlying assets, which exhibits extreme events happening simultaneously. The co-
movement, volatility-in-correlation, and tail dependence in a sense are interrelated when analyzing the
dependence structure of international equity markets. It is also found that the correlations between
consecutive returns decay slowly, that is, long-range dependence in returns is exhibited. Co-movement
reflects intercorrelation between underlying asset returns (or returns in different markets) and long-range
dependence exhibits autocorrelation within a single asset return (or return of a single market). There-
fore, when analyzing international equity markets, we face two dependence structures: the correlation
within a single market and the correlation between several markets.

When dealing with the dependence (i.e., long-range dependence) of a single market, we should take
other stylized factors into account such as volatility clustering and distributional heavy-tails. It is neces-
sary to treat long-range dependence, volatility clustering, and heavy-tailedness simultaneously in order
to obtain more accurate predictions of market volatility. Rachev and Mittnik (2000) note that for model-
ing financial data, not only does model structure play an important role, but distributional assumptions
influence modeling accuracy. The stable Paretian distribution can be used to capture characteristics of
financial data since it is rich enough to encompass those stylized facts. Other researchers have shown the
advantages of stable distributions in financial modeling (see, Fama (1963), Mittnik and Rachev (1993),
Rachev (2003), and Rachev et al. (2005)). Several studies have reported that long-range dependence,
self-similar processes, and stable distribution are very closely related (see, Taqqu and Samorodnitsky
(1994), Rachev and Mittnik (2000), Rachev and Samorodnitsky (2001), Doukhan et al. (2003), and
Racheva and Samorodnitsky (2003)). Long-range dependence processes are asymptotically second-order
self-similar (see Willinger et al. (1998)). Second-order self-similarity describes the property that the
correlation structure of a process is preserved irrespective of time scaling. Although self-similarity
and long-range dependence are different concepts, in the case of second-order self-similarity, long-range
dependence implies self-similarity and vice versa. As to this point, it is natural to employ specified
self-similar processes in the study of the within-market dependence together with capturing volatility
clustering and heavy-tailedness.

When dealing with the dependent structure between several markets, the usual linear correlation is
often applied. But the usual linear correlation is not a satisfactory measure of the dependence among
global equity markets for several reasons. First, when the variance of returns in those markets turns
out to be infinite, that is, extreme events are frequently observed, the linear correlation between these
markets is undefined. Second, linear correlation assumes that both marginal and joint distributions of
returns in these markets are elliptical. In real-world markets, this assumption is unwarranted. Third, the
linear correlation is not invariant under nonlinear strictly increasing transformations, implying that the
return might be uncorrelated whereas the prices are correlated or vice versa. Fourth, linear correlation
only measures the degree of dependence but does not clearly discover the structure of dependence. It
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has been widely observed that market crashes or financial crises often occur in different countries at
about the same time period even when the correlation among those markets is fairly low. The structure
of dependence also influences the diversification benefit gained based on a linear correlation measure.
Embrechts et al (2003) and Rachev et al (2005) illustrate the drawbacks of using linear correlation to
analyze dependency. A more prevalent approach which overcomes the disadvantages of linear correlation
is to model dependency by using copulas. With the copula method, the nature of dependence that can
be modeled is more general and the dependence of extreme events can be considered.

Based on a copula-ARMA-GARCH modeling structure for stock market indexes from nine different
countries, in this paper we compare several candidate specifications using simulation methods. In our
modeling structure, the marginal distribution captures the long-range dependence, heavy tails, and
volatility clustering simultaneously in order to obtain more accurate predictions, and these marginal
distributions are connected by a specified copula. The empirical results indicate that the Student’s
t copula and ARMA-GARCH model with fractional Gaussian noise dominate the alternative models
tested in this study.

We organized the paper as follows: A brief introduction of copula considering tail dependence is
provided in Section 2. The data and empirical methodology we used in our study are described in
Section 3. In Section 4, we specify two self-similar processes: fractional Gaussian noise and fractional
stable noise. Methods for estimating the parameters of underlying self-similar processes are introduced.
In Section 5, the simulation methods applied in our empirical study are introduced. The empirical
results based on high-frequency data at 1-minute level for nine international stock market indexes are
reported in Section 6. In that section, we compare the goodness of fit for both the marginal distribution
and joint distribution. We summarize our conclusions in Section 7.

2. Unconditional copulas and tail dependence

Copulas enable the dependence structure to be extracted from both the joint distribution function and
the marginal distribution functions. From a mathematical viewpoint, a copula function C is a probability
distribution function on the n-dimensional hypercube. Sklar (1959) has shown that any multivariate
probability distribution function FY of some random vector Y = (Y1, ..., Yn) can be represented with
the help of a copula function C of the following form:

FY (y1, ..., yn) = P (Y1 ≤ y1, . . . , Yn ≤ yn) (1)

= C(P (Y1 ≤ y1), . . . , P (Yn ≤ yn))

= C(Fy1(y1), . . . , Fyn(yn))

where Fyi , i = 1, . . . , n denote the marginal distribution functions of the random variables, Yi, i =
1, . . . , n.

When the variables are continuous, the density c associated with the copula is given by:

c(Fy1(y1), . . . , Fyn(yn)) =
∂nC(Fy1(y1), . . . , Fyn(yn))

∂Fy1(y1), . . . , ∂Fyn(yn)
. (2)
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The density function fY corresponding to the n-variate distribution function FY is

fY (y1, ..., yn) = c(Fy1(y1), . . . , Fyn(yn))
n∏

i=n

fyi(yi), (3)

where fyi , i = 1, . . . , n is the density function of Fyi , i = 1, . . . , n (see, Joe (1997), Cherubini et al.
(2004), and Nelsen (2006)).

Two commonly used unconditional copulas are the unconditional Gaussian copula and unconditional
Student’s t copula. Specification of these two copulas are given in the Appendix A.

In financial data, we can observe that extreme events happen simultaneously for different assets. In
a time interval, several assets might exhibit extreme values. Tail dependence reflects the dependence
structure between extreme events. It turns out that tail dependence is a copula property. Letting
(Y1, Y2)T be a vector of continuous random variables with marginal distribution functions F1, F2, then
the coefficient of the upper tail dependence of (Y1, Y2)T is

λU = lim
u→1

P
(
Y2 > F−1

2 (u)|Y1 > F−1
1 (u)

)
, (4)

and the coefficient of the lower tail dependence of (Y1, Y2)T is

λL = lim
u→0

P
(
Y2 < F−1

2 (u)|Y1 < F−1
1 (u)

)
. (5)

If λU > 0, there exists upper tail dependence and the positive extreme values can be observed simulta-
neously. If λL > 0, there exists lower tail dependence and the negative extreme values can be observed
simultaneously. Embrechts et al. (2003) introduce some coefficients of tail dependence of different
copulas.

Empirical studies have failed to support the assumption that return data follow a Gaussian distribu-
tion. Instead, return data often exhibit excess kurtosis and heavy tails. Nor is the multivariate Gaussian
distribution warranted either when studying multi-dimensional return data because of tail dependence
among them. The Student’s t copula and Clayton copulas can characterize tail dependence in multi-
dimensional return data but the Gaussian copula can not. In Clayton copulas, only Joe-Clayton copula
can capture both the lower and upper tail dependence and the Joe-Clayton copula allows for asymmetric
tail dependence. Unfortunately, the Joe-Clayton copula cannot be implemented for multi-dimensional
return data because of computational difficulties, while the Student’s t copula can be implemented to
capture tail dependence in multi-dimensional return data (see, Embrechts et al. (2003), Patton (2005),
and Nelsen (2006)).

3. Data and empirical methodology

3.1 Data

In previous studies of the co-movement of international equity markets, low-frequency data are usually
examined. Because stock indexes change their composition quite often over time, it is difficult to find
the impact of these changes in composition when analyzing the return history of stock indexes using
low-frequency data. Dacorogna et al. (2001) calls this phenomenon the “breakdown of the permanence
hypothesis”. In order to overcome this problem, we use high-frequency data in our study.
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Employing high-frequency data has several advantages compared with low-frequency data. First,
with a very large amount of observations, high-frequency data offers a higher level of statistical signif-
icance. Second, high-frequency data are gathered at a low level of aggregation, thereby capturing the
heterogeneity of players in financial markets. These players should be properly modeled in order to
make valid inferences about market movements. Low-frequency data, say daily or weekly data, aggre-
gate the heterogeneity in a smoothing way. As a result, many of the movements in the same direction
are strengthened and those in the opposite direction cancelled in the process of aggregation. The ag-
gregated series generally show smoother style than their components. The relationships between the
observations in these aggregated series often exhibit greater smoothness than their components. For
example, a curve exhibiting a one-week market movement based on daily return data might be a line
with a couple of nodes. The smooth line segment veils the intra-daily fluctuation of the market. But
high-frequency data can reflect such intra-daily fluctuations and the intra-daily co-movement can be
taken into account. Third, using high-frequency data in analyzing the co-movement of international
equity markets can consider both microstructure effects and macroeconomic factors. This is because
information contained in high-frequency data can be resolved into a higher frequency part (i.e., the
intra-daily fluctuation) and a lower frequency part (i.e., low-frequency smoothness). The information
provided by the higher frequency part mirrors the microstructure effect of the equity markets and
the information in the lower frequency part shows the smoothed trend that is usually influenced by
macroeconomic factors in these markets.

Standard econometric techniques are based on homogeneous time series analysis. If a researcher uses
analytic methods of homogeneous time series for inhomogeneous time series, the reliability of the results
will be doubtful. Aggregating inhomogeneous tick-by-tick data to the equally spaced (homogeneous)
time series is needed. Engle and Russell (1998) argue that for aggregating tick-by-tick data to a fixed
time interval, if a short time interval is chosen, there will be many intervals in which there is no new
information, and if choosing a wide interval, micro-structure features might be missing. Aı̈t-Sahalia
(2005) suggests keeping the data at the ultimate frequency level. In our empirical study, intra-daily
data, which we refer to as the high-frequency data in this paper, at 1-minute level were aggregated from
tick-by-tick data to investigate the co-movement of international equity markets.

The high-frequency data of the nine international stock indexes listed in Table 1 from January 8,
2002 to December 31, 2003 were aggregated to the 1-minute frequency level. The aggregation algorithm
is based on the linear interpolation introduced by Wasserfallen and Zimmermann (1995). That is, given
an inhomogeneous series with times ti and values ϕi = ϕ(ti), the index i identifies the irregularly spaced
sequence. The target homogeneous time series is given at times t0 + j∆t with fixed time interval ∆t

starting at t0. The index j identifies the regularly spaced sequence. The time t0 + j∆t is bounded by
two times ti of the irregularly spaced series, I = max( i |ti ≤ t0 + j∆t) and tI ≤ t0 + j∆t > tI+1. Data
are interpolated between tI and tI+1. The linear interpolation shows that

ϕ(t0 + j∆t) = ϕI +
t0 + j∆t− tI

tI+1 − tI
(ϕI+1 − ϕI). (6)

Dacorogna et al. (2001) pointed out that linear interpolation relies on the future of time and Müller
et al. (1990) suggests that linear interpolation is an appropriate method for stochastic processes with
independent and identically distributed (i.i.d.) increments.

6



Empirical evidence has shown the seasonality in high-frequency data. In order to remove such
disturbance, several methods of data adjusting have been adopted in modeling. Engle and Russell
(1998) and other researchers adopt several methods to adjust the seasonal effect in data. In our study,
seasonality is treated as one type of self-similarity. Consequently, it is not necessary to adjust for the
seasonal effect in the data.

3.2 Empirical methodology

To investigate the co-movement of international stock markets, we use the market index for each country
as the proxy for the market movement and propose the copula ARMA-GARCH model. This model is
implemented with an ARMA-GARCH model for the marginal distributions and one copula for the
joint distribution. Six GARCH models with different kinds of residuals (i.e., residuals with forms of
white noise, fractional Gaussian noise, fractional stable noise, stable distribution, generalized Pareto
distribution, and generalized extreme value distribution) for the marginal distributions are simulated.
After goodness of fit testing, we use the best goodness of fit model for the marginal distributions with
Gaussian copula and Student’s t copula for the joint distribution to simulate the returns on the equity
indexes. Then, the models will be tested with several goodness of fit test methods for a large dataset.

We define the ARMA-GARCH model for the conditional mean equation as:

yt = α0 +
r∑

i=1

αi yt−i + εt +
m∑

j=1

βjεt−j . (7)

Let εt = σt ut, where the conditional variance of the innovations, σ2
t , is by definition

V art−1(yt) = Et−1 (ε2
t ) = σ2

t . (8)

The general GARCH(p,q) processes for the conditional variance of the innovation is then

σ2
t = κ +

p∑
i=1

γi σ
2
t−i +

q∑
j=1

θj ε2
t−j . (9)

Since εt = σt ut, ut could be calculated from εt/σt. Defining

ũt =
εs
t

σ̂t
, (10)

where εs
t is estimated from the sample and σ̂t is the estimation of σt. In our study, ARMA(1,1)-

GARCH(1,1) are parameterized as marginal distributions with different kinds of ut (i.e., normal distri-
bution, fractional Gaussian noise, fractional stable noise, stable distribution, generalized Pareto distri-
bution, and generalized extreme value distribution).

From the goodness of fit testing for marginal distributions, we find the best fit model. Then taking
the best fit model as marginal distributions for each stock index return, we simulate a multivariate
Gaussian copula and Student’s t copula for the dependence structure of the nine stock index returns.
The simulation method adopted is introduced in Section 4.
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The Kolmogorov-Simirnov distance (KS) and Anderson-Darling distance (AD) proposed by Rachev
and Mittnik (2000) and Cramer Von Mises distance (CVM)1 are used as the criterion for the goodness
of fit testing. The major disadvantage of KS statistics researchers have argued is that they tend to be
more sensitive near the center of the distribution than at the tails. But AD statistics can overcome
this. The reliability of testing the empirical distribution will be increased with the help of these two
statistics, with the KS distance focusing on the deviations around the median of the distribution and
the AD distance focusing on the discrepancies in the tails.

4. Analysis of the marginal distribution

As mentioned in the previous section, we apply ARMA(1,1)-GARCH(1,1) with alternative distributions
for residuals ut in our empirical study to model the marginal distribution of each equity market return.
The key point of our marginal distributions is to empower the residuals ut to capture the stylized factors,
such as, long-range dependence and heavy-tailedness. One of the powerful forms of ut is the self-similar
process. Two specified self-similar processes applied in our empirical study are the fractional Gaussian
noise and the fractional stable noise. The reason why such self-similar processes are powerful is that
they impose an index on quantifying the degree of long-range dependence and measuring self-similarity.
In this section, based on the residuals ut in ARMA(1,1)-GARCH(1,1) model, we introduce how to
estimate the parameters of the two specified self-similar processes for ut.

4.1 The self-similarity parameter

Self-similarity is defined by Samorodnitsky and Taqqu (1994) as follows. Let T be either R,R+ = {t :
t ≥ 0} or {t : t > 0}. The real-valued process {X(t), t ∈ T} is self-similar with Hurst index H > 0, if
for any a > 0 and d ≥ 1, t1, t2, ..., td ∈ T , satisfying:(

X(at1), X(at2), ..., X(atd)
)

d=
(

aHX(t1), aHX(t2), ...aHX(td)
)

. (11)

The Hurst index H plays a key role in such processes to capture long-range dependence.

Let φ(k) denote the kth-order autocovariance function of {X(t), t ∈ T}, for 0 < H < 1, and H 6= 0.5,
φ(k) ∼ H(2H − 1)k2(H−1) holds. {X(t), t ∈ T} is called long-range dependence if

∑∞
k=1 φ(k) = +∞.

{X(t), t ∈ T} is called short-range dependence if
∑∞

k=1 φ(k) < +∞. If 0 < H < 0.5, then
∑∞

k=1 φ(k) ∼∑∞
k=1 H(2H − 1)k2(H−1). Note that in this case, 2(H − 1) < −1,

∑∞
k=1 k2(H−1) < +∞. Thus X(t)

1Specifically, these criterion are defined as follows:

KS = sup
x∈<

∣∣Fs(x)− F̃ (x)
∣∣,

AD = sup
x∈<

∣∣Fs(x)− F̃ (x)
∣∣√

F̃ (x)(1− F̃ (x))
,

and

CV M =

∫ ∞

−∞

(
Fs(x)− F̃ (x)

)2

dF̃ (x),

where Fs(x) denotes the empirical sample distribution and F̃ (x) is the estimated distribution function.

8



exhibits short-range dependence. If 0.5 < H < 1, then 2(H − 1) > −1, thus
∑∞

k=1 k2(H−1) = +∞,
X(t) shows long-range dependence. For all k ≥ 1, if H = 0.5, the autocovariance is zero and X(t) is a
random walk; if H = 1, then φ(k) = 1 and we have the degenerate situation with no meaning; and if
H > 1, then φ(k) > 1 and that is impossible.

Several methods for estimating the Hurst index have been proposed (see, Beran (1994)). Applying
the method of calculating R/S statistic proposed by Hurst (1951), we estimated the Hurst index of the
nine international equity index returns and show the results in Table 1.

As we have shown above, the Hurst index H ∈ (0, 1) usually serves as a measure of the self-similarity
of stochastic processes. It can be somewhat explained by considering the covariance of two consecutive
increments. When H ∈ (0, 0.5), the increments of a process tend to have opposite signs and thus are
more zigzagging due to their negative covariance; when H ∈ (0.5, 1), the covariance between these two
increments is positive and that process is less zigzagging; when H = 0.5, the covariance between these
two increments is zero. It can be stated as following: If the Hurst index is less than 0.5, the process
displays “anti-persistence” which means that positive excess return is more likely to be reversed and
the performance in the next period is likely to be below the average, or in the contrary, negative excess
return is more likely to be reversed and the performance in the next period is likely to be above the
average. If the Hurst index is greater than 0.5, the process displays “persistence” which means that
positive excess return or negative excess return is more likely to be continued and the performance in
the next period is likely to be the same as that in the current period. If the Hurst index is equal to 0.5,
the process displays no memory, meaning the performance in the next period has equal probability of
being below and above the performance in the current period. From Table 1, we find that the Hurst
index has no value of 0.5. Clearly, the memory effect occurs for the equity index returns in our study.

4.2 Specification of the self-similar processses

In this section, specification of two self-similar processes used in our empirical study, fractional Gaussian
noise and fractional stable noise, are introduced. Mandelbrot and Wallis (1968) first introduced the
fractional Brownian motion (FBM) and Samorodnitsky and Taqqu (1994) clarified the definition of
FBM as a Gaussian process having self-similarity index H and stationary increments. Mandelbrot and
van Ness (1968) defined the stochastic representation

BH(t) :=
1

Γ(H + 1
2)

(∫ 0

−∞
[(t− s)H− 1

2 − (−s)H− 1
2 ]dB(s) +

∫ t

0
(t− s)H− 1

2 dB(s)
)

, (12)

where Γ(·) represents the Gamma function:

Γ(a) :=
∫ ∞

0
xa−1e−xdx,

and 0 < H < 1 is the Hurst parameter. The integrator B is ordinary Brownian motion. The main
difference between fractional Brownian motion and ordinary Brownian motion is that the increments
in Brownian motion are independent while in fractional Brownian motion they are dependent. As for
the fractional Brownian motion, Samorodnitsky and Taqqu (1994) define its increments {Yj , j ∈ Z} as
fractional Gaussian noise (FGN), which is for j = 0,±1,±2, ..., Yj = BH(j − 1)−BH(j).

Fractional Brownian motion can capture the effect of long-range dependence, but with less power
to capture the heavy tailedness. The existence of abrupt discontinuities in return data, combined with
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the empirical observation of sample excess kurtosis and unstable variance, suggests that return series
can best be described by a stable Paretian distribution (see, Mandelbrot (1963, 1983)). It is natural to
introduce the stable Paretian distribution in self-similar processes in order to capture both long-range
dependence and heavy tailedness. Samorodinitsky and Taqqu (1994) introduce the α-stable H-sssi

processes {X(t), t ∈ R} with 0 < α < 2. If 0 < α < 1, the values of the Hurst index are H ∈ (0, 1/α]
and if 1 < α < 2, the values of the Hurst index are H ∈ (0, 1]. There are several extensions of
fractional Brownian motion to the stable distribution. The most commonly used is the linear fractional
stable motion (also called linear fractional Lévy motion), which is defined by Samorodinitsky and Taqqu
(1994).2 In this paper, if there is no special indication, fractional stable noise (fsn) is generated from
linear fractional stable motion.

4.3 Estimation of the self-similarity parameter

Beran (1994) discusses the approximate maximum likelihood estimator (MLE)3 of the self-similarity
parameter. For fractional Gaussian noise, Yt, let f(λ;H) denote the power spectrum of Y after being
normalized to have variance 1 and let I(λ) denote the periodogram of Yt; that is,

I(λ) =
1

2πN

∣∣∣∣∣
N∑

t=1

Yt ei t λ

∣∣∣∣∣
2

. (13)

The MLE of H is to find Ĥ that minimizes

g(Ĥ) =
∫ π

−π

I(λ)
f(λ; Ĥ)

dλ. (14)

Stoev et al. (2002) proposed the least-squares (LS) estimator for the Hurst index based on the finite
impulse response transformation (FIRT) and wavelet transform coefficients of the fractional stable
motion. FIRT is a filter v = (v0, v1, ..., vp) of real numbers vt ∈ <, t = 1, ..., p, and length p + 1. It is
defined for Xt by

Tn,t =
p∑

i=0

vi Xn(i+t), (15)

where n ≥ 1 and t ∈ N . The Tn,t are the FIRT coefficients of Xt (i.e., the FIRT coefficients of
the fractional stable motion). The indices n and t can be explained as “scale” and “location”. If∑p

i=0 irvi = 0, for r = 0, ..., q − 1, but
∑p

i=0 iqvi 6= 0, the filter vi can be said to have q ≥ 1 zero
moments. If {Tn,t, n ≥ 1, t ∈ N} is the FIRT coefficients of fractional stable motion with the filter
vi that has at least one zero moment, Stoev et al. (2002) prove the following properties of Tn,t: (1)
Tn,t+h

d= Tn,t, and (2) Tn,t
d= nHT1,t, where h, t ∈ N , n ≥ 1. We assume that Tn,t are available for the

fixed scales nj j = 1, ...,m and locations t = 0, ...,Mj − 1 at the scale nj , since only a finite number,
say Mj , of the FIRT coefficients are available at the scale nj . By using these two properties, we have

E log |Tnj ,0| = H log nj + E log |T1,0|. (16)

2Some properties of these processes have been discussed in Mandelbrot and Van Ness (1968), Maejima and Rachev

(1987), Manfields et al. (2001), Rachev and Mittnik (2000), Rachev and Samorodnitsky (2001), Samorodnitsky (1994),

and Samorodinitsky and Taqqu (1994).
3It is also called the Whittle estimator.
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The left-hand side of this equation can be approximated by

Ylog(Mj) =
1

Mj

Mj−1∑
t=0

log |Tnj ,t|. (17)

Then we obtain( Ylog(M1)
...

Ylog(Mm)

)
=

( log n1 1
...

...
log nm 1

)(
H

E log |T1,0|

)
+

( √
M
(
Ylog(M1)− E log |Tn1,0|

)
...√

M
(
Ylog(Mm)− E log |Tnm,0|

)
)

. (18)

We can express equation (18) as follows

Y = Xθ +
1√
M

ε, (19)

where ε is the vector showing the difference between
√

MYlog(Mm) and
√

ME(log |Tnm,0|). Equation
(19) shows that the self-similarity parameter H can be estimated by a standard linear regression of
the vector Y against the matrix X. Stoev et al. (2002) provide the details for implementing such a
procedure.

4.4 The parameters of a stable Non-Gaussian distribution

A stable distribution requires four parameters for complete description: an index of stability α ∈
(0, 2] also called the tail index, a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0, and a
location parameter ζ ∈ <. There is unfortunately no closed-form expression for the density function
and distribution function of a stable distribution. Rachev and Mittnik (2000) give the definition for the
stable distribution: A random variable X is said to have a stable distribution if there are parameters
0 < α ≤ 2, −1 ≤ α ≤ 1, γ ≥ 0 and ζ real such that its characteristic function has the following form:

E exp(iθX) =

{
exp{−γα|θ|α(1− iβ(sin θ) tan πα

2 ) + iζθ}, if α 6= 1
exp{−γ|θ|(1 + iβ 2

π (sin θ) ln |θ|) + iζθ}, if α = 1
(20)

and,

sin θ =


1, if θ > 0
0, if θ = 0

−1, if θ < 0

(21)

For 0 < α < 1 and β = 1 or β = −1, the stable density is only for a half line.

In order to estimate the parameters of a stable distribution, we use the ML method given in Rachev
and Mittnik (2000). Given N observations, X = (X1, X2, · · · , XN )′ for the positive half line, the log-
likelihood function is of the form

ln(α, λ;X) = N lnλ + N lnα + (α− 1)
N∑

i=1

lnXi − λ
N∑

i=1

Xα
i , (22)

which can be maximized using, for example, a Newton-Raphson algorithm. It follows from the first-order
condition,

λ = N

(
N∑

i=1

Xα
i

)−1

(23)
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that the optimization problem can be reduced to finding the value for α which maximizes the concen-
trated likelihood

ln∗(α;X) = lnα + αν − ln

(
N∑

i=1

Xα
i

)
, (24)

where ν = N−1ΣN
i=1 lnXi.

The information matrix evaluated at the maximum likelihood estimates, denoted by I(α̂, λ̂), is given
by

I(α̂, λ̂) =

(
Nα̂−2 ∑N

i=1 X α̂
i lnXi∑N

i=1 X α̂
i lnXi Nλ̂−2

)
.

It can be shown that under fairly mild conditions, the maximum likelihood estimates α̂ and λ̂ are
consistent and have asymptotically a multivariate normal distribution with mean (α, λ)′(see Rachev
and Mittnik (2000)).4

5 Simulating the co-movement of international equity markets

5.1 Simulation of the marginal distribution

Paxson (1997) gives a method to generate the fractional Gaussian noise by using the Discrete Fourier
Transform of the spectral density. Bardet et al. (2003) give a concrete simulation procedure based on
this method with respect to alleviating some of the problems faced in practice. The procedure is:

1. Choose an even integer M . Define the vector of the Fourier frequencies Ω = (θ1, ..., θM/2), where
θt = 2πt/M and compute the vector F = fH(θ1), ..., fH(θM/2), where

fH(θ) =
1
π

sin(πH)Γ(2H + 1)(1− cos θ)
∑
t∈ℵ

|2πt + θ|−2H−1

fH(θ) is the spectral density of FGN.

2. Generate M/2 i.i.d exponential Exp(1) random variables E1, ..., EM/2 and M/2 i.i.d uniform
U [0, 1] random variables U1, ..., UM/2.

3. Compute Zt = exp(2iπUt)
√

FtEt, for t = 1, ...,M/2.

4. Form the M -vector: Z̃ = (0, Z1, ...Z(M/2)−1, ZM/2, Z(M/2)−1, ..., Z1).

5. Compute the inverse fast Fourier transform of the complex Z to obtain the simulated sample path.

Stoev and Taqqu (2004) generate the approximation of fractional stable noise. They introduce
parameters n, N ∈ ℵ, and let the fractional stable noise Y (t) be expressed as

Yn,N (t) :=
nN∑
j=1

(
(
j

n
)H−1/α
+ − (

j

n
− 1)H−1/α

+

)
Lα,n(nt− j), (25)

4Other methods for estimating the parameters of a stable distribution (i.e., the method of moments based on the

characteristic function, the regression-type method, and the fast Fourier transform method) are discussed in Stoyanov and

Racheva-Iotova (2004a, 2004b, 2004c).
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where Lα,n(t) := Mα((j + 1)/n) −Mα(j/n), j ∈ <. The parameter n is mesh size and the parameter
M is the cut-off of the kernel function. Stoev and Taqqu (2004) describe an efficient approximation
involving the fast Fourier transform algorithm for Yn,N (t). Consider the moving average process Z(m),
m ∈ ℵ,

Z(m) :=
nM∑
j=1

gH,n(j)Lα(m− j), (26)

where

gH,n(j) :=
(
(
j

n
)H−1/α − (

j

n
− 1)H−1/α

+

)
n−1/α, (27)

and where Lα(j) is the series of i.i.d standard stable Paretian random variables. Since Lα,n(j) d=
n−1/αLα(j), j ∈ <, equations (25) and (26) imply Yn,N (t) d= Z(nt), for t = 1, ..., T . Then, the computing
of Yn,N (t) is transferred to focus on the moving average series Z(m), m = 1, ..., nT . Let L̃α(j) be
the n(N + T )-periodic with L̃α(j) := Lα(j), for j = 1, ..., n(N + T ) and let g̃H,n(j) := gH,n(j), for
j = 1, ..., nN ; g̃H,n(j) := 0, for j = nN + 1, ..., n(N + T ). Then

{Z(m)}nT
m=1

d=
{ n(N+T )∑

j=1

g̃H,n(j)L̃α(n− j)
}nT

m=1
, (28)

because for all m = 1, ..., nT , the summation in equation (26) involves only Lα(j) with indices j in the
range −nN ≤ j ≤ nT − 1. Using a circular convolution of the two n(N + T )-periodic series g̃H,n and
L̃α computed by using the Stoev-Taqqu discrete Fourier transform, the variables Z(n), m = 1, ..., nT

(i.e., the fractional stable noise), can be generated.

5.2 Simulation of the multi-dimensional copulas

Embrechts et al. (2003) suggest a simulation method for the n-dimension Gaussian copula and Student’s
t copula. For the Gaussian copula, the algorithm is:

1. Find the Cholesky decomposition A of correlation matrix ρ.

2. Simulate n independent random variates y1, . . . , yn from N (0, 1).

3. Set z = Ay.

4. Set ui = Φ(zi) for i = 1, . . . , n.

5. (u1, . . . , un)T ∼ CN
ρ .

For the Student’s t copula, the algorithm is:

1. Find the Cholesky decomposition A of correlation matrix ρ.

2. Simulate n independent random variates y1, . . . , yn from N (0, 1).

3. Simulate a random variate α from χ2
ν independent of y1, . . . , yn.

4. Set z = Ay.
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5. Set x =
√

ν√
α
y.

6. Set ui = tν(xi) for i = 1, . . . , n.

7. (u1, . . . , un)T ∼ Ct
ν,ρ.

These algorithms have been adopted in Section 6 for the empirical research in this paper.

6. Empirical results

Table 1 shows the descriptive statistics for the nine international stock indexes in our study. All returns
for the indexes used in this study are calculated as

yi,t = 100× log
( Pi,t

Pi,t−1

)
.

From the statistics reported in this table, it can be seen that excess kurtosis exists. Figure 1 shows the
movement of the nine stock indexes. From this figure, the co-movement can be observed.

For the return of each stock index in our study, we denote N as the sample length, sub-sample series
that have been randomly selected by a moving window with length T (1 ≤ T ≤ N). Replacement is
allowed in the sampling. In the empirical analysis, sub-sample length (i.e., the window length) of T = 1
month was chosen. A total of 1,800 (200 sub-samples for each stock index) sub-samples were randomly
created.

Engle (1982) proposes a Lagrange-multiplier test for ARCH phenomenon. A test statistic for ARCH
of lag order q is given by

Xq ≡ nR2
q ,

where R2
q is the non-centered goodness-of-fit coefficient of a qth-order autoregression of the squared

residuals taken from the original regression

û2
t = ω0 + ω1û

2
t−1 + ω2û

2
t−2 + · · ·+ ωqû

2
t−q + et, (29)

The û in the above equation is the residual in the original regression equation. Under the null hypothesis
of the residuals of the original model being normally i.i.d., the ARCH statistic of lag order q follows a
χ2 distribution with q degree of freedom:

lim
n→∞

Xq ∼ χ2
q .

Table 2 shows the test statistics and the critical values to reject the null hypothesis that there is
no ARCH effect at different lag levels. It is clear from the results reported in the table that an ARCH
effect is exhibited in these return series.

We use the Ljung-Box-Pierce Q-statistic based on the autocorrelation function to test for serial
correlation (i.e., the memory effect). The Q-statistic is given as follows:

Q :∼ χ2
m = N(N + 2)

m∑
k=1

ρ2
k

N − k
, (30)
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where N denotes the sample size, m the number of autocorrelation lags included in the statistic, and
ρk the sample autocorrelation at lag order k which is

ρk =
∑N−k

t=1 ytyt+k∑N
t=1 y2

t

. (31)

Ljung and Box (1978) show that the Q-statistic follows an asymptotic chi-square distribution.

Table 3 shows that the null hypothesis that there is no serial correlation can be rejected at different
lags. The table shows that the memory effect occurs for each index return series. In order to see when
the memory effect vanishes, we compare the Q-statistic with its corresponding critical value. When the
quotient of the Q-statistic and the corresponding critical value are less than 1, we cannot reject the null
hypothesis that there is no serial correlation. From Table 3, we find that the quotient of the Q-statistic
to its corresponding critical value exceeds unity. We can therefore reject the null hypothesis that there
is no serial correlation and can say that long-range dependence is exhibited by our dataset.

Table 4 reports the parameters estimated from the ARMA(1,1)-GARCH(1,1) assuming that residuals
are identically and independently normally distributed with zero mean and unit variance. Based on
equation (9), we generate the empirical residuals. The descriptive statistic of the empirical residuals ũt

is shown in Table 5. The results reported in the table make it clear that excess kurtosis still exists and
the residuals do not follow i.i.d. N (0,1) distribution.

Table 6 shows the parameters estimated for empirical residuals ũt based on the methods introduced
in Section 4. As we mentioned in that section, the Hurst index for non-Gaussian stable processes has
different bounds for “persistence” and “anti-persistence”. For tail index α ∈ (0, 2), when H ∈ (0, 1/α),
the processes exhibit “anti-persistence”, and when H ∈ (1/α, 1), the processes exhibit “persistence”.
There is no long-range dependence when α ∈ (0, 1] because the Hurst index is bounded in the interval
(0, 1). When H = 1/α, depending on the value of α, the processes exhibit either no memory or long-
range dependence. From Tables 1 and 6, we find that the Hurst index has no value that is equal to 1/α.
Therefore, we find that long-range dependence occurs in our dataset.

The AD and KS statistics were calculated for the six candidate distributional assumptions. Table 7
reports the descriptive statistics of the computed AD, KS, and CVM statistics. As can be seen in the
table, ARMA-GARCH with a fractional Gaussian noise model exhibits a smaller mean value for the
AD, KS, and CVM statistics than the other five models. Figure 2 shows the boxplot of AD statistics
for the six alternative ARMA-GARCH models investigated. Figure 3 shows the boxplot of KS statistics
and Figure 4 shows the boxplot of CVM statistics. ARMA-GARCH with fractional Gaussian noise
model exhibits smaller mean and less outliers, demonstrating the advantage of this model.

As can be seen from Table 1, the index returns clearly do not follow the Gaussian distribution. Stable
parameters in this table also exhibit the non-Gaussian characteristic since the stable parameter is equal
to 2 for the Gaussian case. The heavy tailedness can be easily observed in the data. Accordingly it seems
that the application of heavy-tailed distributions should perform better than the Gaussian distribution or
fractional Gaussian noise. Our empirical result found by simulating the marginal distribution indicates
that the fractional Gaussian noise subordinated in the ARMA-GARCH model fits better than other
alternatives. We believe that there are two reasons for this. First, the heavy tailendness of index
returns stems from the heavy tailedness of each index component stock. The equity market indexes
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aggregate those stocks that exhibit heavy tailedness. The aggregation of heavy-tailed distributions is
asymptotically self-similar, and the fractional Gaussian noise is a typical stochastic process with self-
similarity. The heavy-tailedness effect is considered in the self-similarity. Second, after the aggregation,
although equity market indexes exhibit heavy tailedness, the influence of such effect (non-Gaussian and
heavy tailedness) in the movement of the market index is weak compared to long-range dependence and
volatility clustering.

From the goodness of fit testing for marginal distributions, we find the best fit model is ARMA-
GARCH with a fractional Gaussian noise model. Then taking ARMA-GARCH with a fractional
Gaussian noise model as marginal distributions for each stock index return, we simulate multivari-
ate Gaussian copula (in our empirical study, 9 dimensions for our data) and Student’s t copula for
the dependence structure of these nine index returns. Table 8 shows the descriptive statistics of the
computed AD, KS, and CVM statistics for 200 sub-sample matrices with nine marginal distributions as
the column vectors. In this table, the Student’s t copula exhibits smaller mean values for the computed
AD, KS, and CVM statistics than the Gaussian copula, indicating the better performance.

7. Conclusions

There is considerable interest in the co-movement of international equity markets. The linear correlation
measure is not satisfactory to discover the dependence structure between equity markets. With several
advantages, copulas are regarded as the ideal measure to model both the degree and structure of
dependence. Some works are based on the bivariate co-movement. In this paper, we use the copula
ARMA-GARCH model to capture the multivariate co-movement among the international equity markets
in our study.

In our empirical analysis, we investigate a ARMA-GARCH model with six forms for the residuals
(fractional stable noise, fractional Gaussian noise, stable distribution, white noise, generalized Pareto
distribution, and generalized extreme value distribution) for modeling the marginal distribution for the
nine international equity market indexes. By using parameters estimated from the empirical series, we
simulate a series for each index returns with these six different modeling structures. Then we compare
the goodness of fit for these generated series to the empirical series by adopting three criteria for the
goodness of fit test: the Kolmogorov-Simirnov distance, Anderson-Darling distance, and Cramer von
Mises distance. Based on a comparison of these criteria, the empirical evidence shows that the ARMA-
GARCH model with fractional Gaussian noise demonstrates better performance in modeling marginal
distributions.

Using an ARMA-GARCH model with fractional Gaussian noise, we simultaneously simulate the
nine index returns with both the Gaussian copula and Student’s t copula. By using the same criteria
of goodness of fit test in comparing marginal distributions, we find that the Student’s t copula is better
than the Gaussian copula when modeling the multivariate co-movement of these nine equity markets.
The reason is that Student’s t copula can capture the tail dependence among these index returns for
both positive and negative extreme values, while the Gaussian copula cannot.

The findings reported in this paper should be taken into account in modeling the co-movement of
global equity markets for several reasons. First, using multi-dimension copulas rather than bivariate
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copulas can reveal the simultaneous co-movement of several markets. Second, when modeling the
marginal distribution of each market returns, our model can capture long-range dependence, heavy
tails, and volatility clustering simultaneously. Third, using high-frequency data, the impact of both
macroeconomic factors and microstructure effects on each market can be considered. Our model reveals
that similar macroeconomic factors impact the co-movement of international markets and that investors’
behaviors in each market are similar, especially their reactions in each market to world news are similar.
With our model, more accurate prediction is possible for the simultaneous co-movement of several equity
markets.

Appendix A

The unconditional Gaussian copula and unconditional Student’s t copula are specified in this section.
The multivariate version of these two copulas are given as follows. Let ρ be the correlation matrix
which is a symmetric, positive definite matrix with unit diagonal, and Φρ the standardized multivariate
normal distribution with correlation matrix ρ. The unconditional multivariate Gaussian copula is then

C(u1, . . . , un; ρ) = Φρ

(
Φ−1(u1), . . . ,Φ−1(un)

)
,

and the corresponding density is

c(u1, . . . , un; ρ) =
1

|ρ|1/2
exp

(
−1

2
λT (ρ−1 − I)λ

)
,

where λ = (Φ−1(u1), . . . ,Φ−1(un))T and un is the margins.

The unconditional (standardized) multivariate Student’s copula Tρ,ν can be expressed as

Tρ,ν(u1, . . . , un; ρ) = tρ,ν

(
t−1
ν (u1), . . . , t−1

ν (un)
)
,

where tρ,ν is the standardized multivariate Student’s t distribution with correlation matrix ρ and ν

degrees of freedom and t−1
ν is the inverse of the univariate cumulative density function (c.d.f) of the

Student’s t with ν degrees of freedom. The density of the unconditional multivariate Student’s t copula
is

cρ,ν(u1, . . . , un; ρ) =
Γ(ν+n

2 )
Γ(ν

2 )|ρ|1/2

( Γ(ν
2 )

Γ(ν+1
2 )

)n
((

1 + 1
ν λT ρ−1λ

)− ν+n
2

∏n
j=1

(
1 +

λ2
j

ν

)− ν+1
2

)
,

where λj = t−1
ν (uj) and and un is the margins.
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Table 1: Summary of the statistical characteristics of nine index returns.
location mean std kurtosis skewness mininum maximum Hurst α

AORD Austrilia -5.38E-06 0.0213 1903.7000 -0.8007 -2.3168 2.3168 0.5182 1.3864
DAX Germany -2.31E-05 0.0371 448.7800 -0.4372 -4.4347 2.9733 0.4978 1.2222
FCHI France -5.08E-05 0.0506 732.5400 0.7020 -3.9898 3.9050 0.5065 1.3253
FTSE UK -1.53E-05 0.0222 846.8900 0.3852 -2.2313 2.7460 0.5110 1.3270
HSI China 2.19E-05 0.0486 235.6000 1.3178 -2.3099 2.6161 0.5410 1.4970

KS200 South Korea 2.25E-05 0.0439 1404.1000 4.9465 -3.7141 4.3014 0.5106 1.2961
N225 Japan 3.31E-06 0.0759 121.5700 1.7980 -2.0686 3.4282 0.4821 1.2411
SPX US -3.76E-06 0.0169 4478.7000 -14.7220 -3.6071 2.3110 0.5313 1.1819

STOXX Switzerland -2.45E-05 0.0247 619.6600 -2.3390 -3.4999 2.7500 0.5010 1.1720
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Table 2: Result of the ARCH-test for different lags at α = 0.05.
lag1 lag2 lag5 lag10 lag15 lag20 lag25 lag30

AORD 37152 37669 39206 39257 39265 39346 39356 39355
DAX 3910 4103 4565 6678 6745 6898 6914 6932
FCHI 10 12 19 23 29 60 69 75
FTSE 12854 12913 14395 14465 14512 15008 15472 15483
HSI 21 28 37 41 44 47 48 49

KS200 8 21 38 39 39 39 39 39
N225 66 73 633 642 644 646 647 647
SPX 7 11 16 17 17 17 17 18

STOXX 2342 3763 4831 4961 5005 5035 5060 5087

Critical Value 3.8415 5.9915 11.0700 18.3070 24.9960 31.4100 37.6520 43.7730
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Table 3: The Ljung-Box-Pierce Q-test statistic for different lags at α = 0.05.
10−min 30−min 1hour 2hours 4hours 1day 1week 1month

AORD 3202 3276 3375 3516 4245 6493 16943 51385
DAX 43937 44127 44375 44698 45360 47259 60129 105330
FCHI 8220 8461 8737 90051 97211 12711 26178 70851
FTSE 34008 35637 35944 36465 37205 38854 53398 100850
HSI 10490 10851 11162 11619 12324 13623 22593 55679

KS200 1547 1687 1807 2019 2785 3890 15770 52254
N225 2748 2836 2931 3166 3769 4945 13352 43790
SPX 25670 257030 258100 258550 259790 262420 283190 349850

STOXX 167900 168360 168770 169160 1701405 172290 189380 246550

Critical Value 55.7585 146.5673 277.1376 532.0754 1033.1928 2023.0522 9829.0489 38856.9694
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Table 4: Estimated parameters of the AMAR(1,1)-GARCH(1,1) model with residuals following normal
distribution with zero mean and unit variance. Numbers in parentheses are the standard errors. These
parameters are used in the empirical simulation.

α0 α1 β1 κ γ1 θ1

AORD 3.9724E-07 -0.1952 0.1136 4.6260E-009 0.6486 0.3438
(9.5130E-08 ) (1.1634E-11 ) ( 1.1618E-11 ) ( 3.3215E-12 ) (1.2023E-12 ) (1.6527E-11 )

DAX -1.9424E-07 0.5559 -0.3766 1.3826E-008 0.6558 0.3442
(3.5419E-08 ) (1.1621E-12 ) ( 1.3573E-12 ) ( 1.7137E-12 ) (3.4729E-12 ) (2.2729E-12 )

FCHI -9.5146E-08 0.5869 -0.4720 2.7586E-08 0.8135 0.1227
(1.4999E-07 ) (1.0717E-06 ) ( 1.2618E-6 ) ( 8.4707E-12 ) (2.7037E-05 ) (2.1210E-05 )

FTSE -1.2392E-07 0.8232 -0.7568 6.5616E-09 0.5987 0.2812
(3.3959E-08 ) (3.0773E-13 ) ( 2.3373E-13 ) ( 3.7753E-12 ) (1.2205E-12 ) (1.2504E-13 )

HSI -9.8445E-10 0.5154 -0.6893 2.8409E-08 0.6931 0.2610
(5.5655E-08 ) (2.5658E-04 ) ( 3.3054E-04 ) ( 4.7913E-11 ) (3.3037E-04 ) (3.2846E-04 )

KS200 4.3005E-06 0.0075 -0.2692 1.9238E-08 0.6582 0.3418
(2.4262E-08 ) (8.6562E-06 ) ( 9.6637E-06 ) ( 3.0034E-12 ) (2.5391E-05 ) (2.1966E-05 )

N225 -4.8124E-06 0.4782 -0.2905 6.6660E-08 0.6170 0.3766
(4.5034E-07 ) (8.2554E-04 ) ( 7.5777E-04 ) ( 2.5256E-10 ) (8.2544E-04 ) (8.0406E-04 )

SPX 2.5689E-07 0.5548 -0.0262 2.4089E-09 0.8386 0.0619
(3.1323E-08 ) (3.1166E-12 ) ( 2.4869E-15 ) ( 4.4352E-14 ) (2.7531E-11 ) (5.2184E-11 )

STOXX 1.3438E-07 0.6101 -0.3995 5.8155E-09 0.6677 0.2631
(7.3838E-08 ) (2.9345E-12 ) ( 1.3513E-12 ) ( 1.3865E-13 ) (2.2687E-11 ) (2.4868E-11 )
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Table 5: Summary of the empirical ũt.
mean variance kurtosis skewness

AORD -0.0027 0.9085 326.1807 2.5378
DAX 0.0017 0.9384 1034.6394 -2.2134
FCHI -3.6688E-05 0.9196 1032.1787 2.0182
FTSE 0.0038 0.9337 84.3404 -0.5075
HSI 0.0023 0.9522 147.8326 0.7201

KS200 -0.0170 1.0982 1379.5626 6.9291
N225 0.0103 1.0463 74.6847 0.6791
SPX -0.0026 1.0008 14390.3118 -40.7157

STOXX -0.0011 0.9487 6051.9163 -6.9826

Table 6: Parameters estimated from the empirical ũt.
HurstFGN Hurstfsn α β γ ζ

AORD 0.5366 0.5791 1.8777 -0.2610 0.4765 0.0063
DAX 0.5619 0.5492 1.3976 -0.0103 0.3765 -0.0026
FCHI 0.5476 0.5107 1.4688 -0.0153 0.3508 -0.0039
FTSE 0.5544 0.5112 1.3538 -0.0126 0.4032 0.0014
HSI 0.4588 0.6376 1.0914 -0.0016 0.2550 -9.8442E-04

KS200 0.5168 0.5594 1.4387 0.0147 0.3869 -0.0195
N225 0.5554 0.5260 1.3326 -0.0234 0.3629 0.0021
SPX 0.5278 0.5149 1.3533 -0.0113 0.3535 -0.0073

STOXX 0.5787 0.5604 1.3847 -5.3461E-04 0.3852 -0.0019
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Table 7: Summary of the AD, KS and CVM statistics for alternative models for marginal distribution.
Mean, median, standard deviation (“std”), maximum value (“max”), minimum value (“min”) and range
of the AD, KS and CVM statistics are presented in this table. “FGN” stands for fractional Gaussian
noise, “fsn” for fractional stable noise, “normal” for white noise, “stable” for stable distribution, “gev”
for generalized extreme value distribution, and “gpd” for generalized Pareto distribution.

ADmean ADmedian ADstd ADmax ADmin ADrange

ARMA−GARCHFGN 54.8381 54.8220 0.3222 56.2561 53.5083 2.7482
ARMA−GARCHfsn 54.8459 54.7861 0.7213 63.4861 51.7917 11.6952

ARMA−GARCHnormal 55.0686 54.9050 0.8139 66.1060 53.9640 12.1425
ARMA−GARCHstable 55.7993 55.1920 2.2074 77.7650 52.8670 24.9051
ARMA−GARCHgev 55.4836 55.2240 1.2978 73.6110 53.4447 20.1677
ARMA−GARCHgpd 76.7643 70.2010 18.1530 109.5412 45.5832 63.9523

KSmean KSmedian KSstd KSmax KSmin KSrange

ARMA−GARCHFGN 0.5017 0.5012 0.0025 0.5136 0.4966 0.0170
ARMA−GARCHfsn 0.5032 0.5016 0.0058 0.5855 0.4945 0.0910

ARMA−GARCHnormal 0.5039 0.5020 0.0075 0.6035 0.4965 0.1070
ARMA−GARCHstable 0.5116 0.5053 0.0202 0.7103 0.4948 0.2155
ARMA−GARCHgev 0.5079 0.5052 0.0121 0.6721 0.4967 0.1754
ARMA−GARCHgpd 0.7059 0.6476 0.1646 1.0000 0.4309 0.5691

CV Mmean CV Mmedian CV Mstd CV Mmax CV Mmin CV Mrange

ARMA−GARCHFGN 502.4011 500.1612 5.4108 535.6220 498.5100 37.1120
ARMA−GARCHfsn 502.4176 500.2272 5.6007 545.4330 497.8300 47.6120

ARMA−GARCHnormal 502.9730 500.3900 6.3452 568.2810 498.6210 69.6620
ARMA−GARCHstable 505.6970 500.9900 16.8300 773.8670 497.6620 276.1900
ARMA−GARCHgev 503.8650 500.8452 10.4230 684.7800 498.2801 186.4900
ARMA−GARCHgpd 910.7413 627.1045 551.4111 1999.7110 388.6400 1611.1001

Table 8: Summary of the AD, KS and CVM statistics for alternative models for joint distribution. Mean,
median, standard deviation (“std”), maximum value (“max”), minimum value (“min”) and range of
the AD, KS and CVM statistics are presented in this table.

ADmean ADmedian ADstd ADmax ADmin ADrange

Gaussian copula 0.9241 0.9374 0.0338 0.9718 0.8370 0.1348
Student’s t copula 0.9237 0.9362 0.0340 0.9716 0.8382 0.1334

KSmean KSmedian KSstd KSmax KSmin KSrange

Gaussian copula 48.4519 55.5841 16.3230 67.9456 9.6306 58.3150
Student’s t copula 48.4470 55.5060 16.3190 67.9740 9.9158 58.0580

CV Mmean CV Mmedian CV Mstd CV Mmax CV Mmin CV Mrange

Gaussian copula 785.6190 798.7101 24.5134 817.5083 729.5811 87.9272
Student’s t copula 785.2964 798.1155 24.6323 817.9235 728.6673 89.2562
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Figure 1: Plot of Index Movements
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Figure 2: Boxplot of AD statistics of modeling marginal

distribution with alternative residual distributions.

Figure 3: Boxplot of KS statistics of modeling marginal

distribution with alternative residual distributions.

Figure 4: Boxplot of CVM statistics of modeling marginal

distribution with alternative residual distributions.
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