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Abstract

With the availability of intra-daily price data, researchers have focused more attention on market
microstructure issues to understand and help formulate strategies for the timing of trades. The pur-
pose of this article is to provide a brief survey of the research employing intra-daily price data. Specif-
ically, we review stylized facts of intra-daily data, econometric issues of data analysis, application of
intra-daily data in volatility and liquidity research, and the applications to market microstructure
theory. Long-range dependence is observed in intra-daily data. Because fractal processes or frac-
tional integrated models are usually used to model long-range dependence, we also provide a review
of fractal processes and long-range dependence in order to consider them in future research using
intra-daily data.

1. Introduction

With the adoption of electronic trading and order routing systems, an enormous quantity of trading data
in electronic form is now available. A complete data set of transactions recorded and their associated
characteristics such as transaction time, transaction price, posted bid/ask prices, and volumes are
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provided. These data are gathered at the ultimate frequency level in the financial markets and usually
referred to as intra-daily data or high-frequency data.

There is no standardization of the term intra-daily data adopted by researchers in the market
microstructure area. In this literature, there are several descriptions for intra-daily data. Hasbrouck
(1996) mentions microstructure data or microstructure time series. Engle (2000) uses the term ultra-
high frequency data to describe the ultimate level of disaggregation of financial time series. Alexander
(2001) describes high-frequency data as real time tick data. Gourieroux and Jasiak (2001) use the
expression tick-by-tick data while Tsay (2002) writes “high frequency data are observations taken at
fine time intervals.” In this article, the term intra-daily data will be used interchangeably with the other
terms used by market structure researchers as identified above.

A summary of the literature covering intra-daily data research has been provided in several publica-
tions from 1996 to 2004. Hasbrouck (1996) provides an overview of the statistical models of intra-daily
data are used for explaining trading behavior and market organization. Goodhart and O’Hara (1997)
summarize many important issues connected with the use, analysis, and application of intra-daily data.
Madhavan (2000) provides a survey covering the theoretical, empirical, and experimental studies of mar-
ket microstructure theory. Ghysels (2000) reviews the econometric topics in intra-daily data research,
identifying some challenges conforting researchers. In a collection of papers edited by Goodhard and
Payne (2000), several works based the intra-daily data from foreign exchange market are presented.
Gwilym and Sutcliff (1999), Bauwens and Giot (2001), and Dacorogna et al. (2001) provide detailed
coverage of econometric modeling as it pertains to the empirical analysis of market microstructure. The
survey by Easley and O’Hara (2003) is presented in terms of microstructure factors in asset pricing
dynamics. Engle and Russel (2004) highlight econometric developments pertaining intra-daily data.
Harris (2003) and Schwartz and Francioni (2004) provide insights into market microstructure theory
based on discussions with practitioners, focusing less on theoretical and econometric issues associated
with intra-daily data.

As the full record of every movement in financial markets, intra-daily data offer the researcher or
analyst a large sample size that increases statistical confidence. The data can reveal events in the
financial market that are impossible to identify with low frequency data. While in some sense, intra-
daily data might be regarded as the microscope used for studying financial markets, these data have
broader interest in econometric modeling and market microstructure research. Some other implications
of intra-daily data are being identified in the literature. A fundamental property of intra-daily data is
“observations can occur at varying random time intervals” (see, Ghysels (2000)). Other fundamental
statistical properties that have been observed by researchers to characterize intra-daily data are fat tails,
volatility clustering, daily and weekly patterns, and long-range dependence (see, for example, Dacorogna
et al. (2001)). Based on these observed stylized factors, time series models and market microstructure
models have been built. Time series models capture the statistical properties of financial data, while
market microstructure models explain trading behavior and market organization.

Besides explaining market microstructure theory, intra-daily data has been used in studying various
topics in finance. Some examples are risk management (e.g., Beltratti and Morana (1999)), model
evaluation (e.g., Gençay et al.(2002), and Bollerslev and Zhang (2003)), market efficiency test (e.g.,
Hotchkiss and Ronen (2002)), electricity price analysis (e.g., Longstaff and Wang (2004)), information
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shocks to financial market (e.g., Faust et al. (2003) and Adams et al. (2004)), and financial market
anomalies (e.g., Gleason et al. (2004)).

Any survey of a field with extensive research must be necessarily selective in its coverage. This is
certainly the case we faced in preparing this review on research of intra-daily data, fractal processes,
and long-range dependence. In this paper, we provide an aerial view of the literature, attempting to
combine the research of fractal processes and long-range dependence together with the use of intra-daily
data.

We organized the paper as follows. In Section 2, we discuss the stylized facts of intra-daily data
observed in financial markets. Computer implementations in studying intra-daily data are the subject of
Section 3. In Section 4, we review the major studies on intra-daily data analyzed in financial markets,
running the risk that we have overlooked some important studies somewhere in hyperspace that we
failed to uncover or published while this work was in progress. In Section 5, we discuss the anaylsis of
long-range dependence, then introducing two fractal processes, (fractional Gaussian noise and fractional
stable noise) in Section 6. Our concluding remarks appear in Section 7.

2. Stylized Facts of Financial Intra-daily Data

In data analysis, an important task is to identify the statistical properties of the target data set. Those
statistical properties are referred to as stylized factors. Stylized factors offer building blocks for further
modeling in such a way so as to encompass these statistical properties. Being full record of market
transactions, intra-daily data have properties that have been observed. In this section, some stylized
factors of intra-daily data will be reviewed.

2.1 Random Durations

For intra-daily data, irregularly spaced time intervals between successive observations is the salient
feature compared with classical time series data (see, for example, Engle (2000) and Ghysels (2000)).
Given time points equally spaced along the time line, for intra-daily data, at one time point, there
might be no observation or several observations. In intra-day data, observations arrive at random time.
This causes the duration between two successive observations not to be constant in a trading day. For
a time series, if the time space (duration) is constant over time, it is an equally spaced time series or
homogeneous time series. If the duration varies throught time, it is an unequally spaced time series,
i.e., the inhomogeneous time series, see Dacorogna et al. (2001).

2.2 Distributional Properties of Returns

Many techniques in modern finance rely heavily on the assumption that the random variables under
investigation follow a Gaussian distribution. However, time series observed in finance often deviate
from the Gaussian model, in that their marginal distributions are found to possess heavy tails and are
possibly asymmetric. Bollerslev et al. (1992) mentions that intra-daily data exhibit fatter tails in the
unconditional return distributions and Dacorogna et al. (2001) confirms the exhibition of heavy tails in
intra-daily returns data.
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In such situations, the appropriateness of the commonly adopted normal distribution assumption
for returns is highly questionable in research involving intra-daily data. It is often argued that financial
asset returns are the cumulative outcome of a vast number of pieces of information and individual
decisions arriving almost continuously in time. Hence, in the presence of heavy tails, it is natural to
assume that they are approximately governed by a non-Gaussian stable distribution, see Rachev and
Mittnik (2000), and Rachev et al. (2005). Marinelli et al. (2000) first model the heavy tailedness in
intra-daily data. Mittnik et al. (2002) point out that other leptokurtic distributions, including Student’s
t, Weibull, and hyperbolic, lack the attractive central limit property. Sun et al. (2006a) confirm the
findings of heavy tailedness in intra-daily data.

Wood et al. (1985) present evidence that stock returns are not independently and identically dis-
tributed. They find that the distributions are different for the return series in the first 30 minutes of
the trading day, at the market close of the trading day, and during the remainder of the trading day.

2.3 Autocorrelation and Seasonality

The study by Wood et al. (1985), one of the earliest studies employing intra-daily data, finds that the
trading day return series is non-stationary and is characterized by a low-order autoregressive process.
For the volatility of asset returns, autocorrelation has been documented in the literature (see among
others, Engle (1982), Baillie and Bollerslev (1990), Bollerslev et al. (1992), Hasbrouck (1996), and
Bollerslev and Wright (2001)). The existence of negative first-order autocorrelation of returns at higher
frequency, which disappears once the price formation is over, has been reported in both the foreign
exchange market and equity market. The explanation for the finding of negative autocorrelation of
stock returns observed by researchers is due to by what is termed the bid-ask bounce. According to the
bid-ask bounce explanation, the probability of a trade executing at the bid price and then being followed
by a trade executing at the ask price is higher than a trade at the bid price followed by another trade
at the bid price (see Alexander (2001), Dacorogna et al. (2001), and Gourieroux and Jasiak (2001)).

Many intra-daily data display seasonality. By seasonality, we mean periodic fluctuations. Daily
patterns in the trading day have been found in the markets for different types of financial assets (see,
Jain and Joh (1988), McInish and Wood (1991), Bollerslev and Domowitz (1993), Engle and Russel
(1998), Andersen and Bollerslev (1997), Bollerslev et al. (2000), and Veredas et al. (2002)). One such
trading pattern is the well-known “U-shape” pattern of daily trading (see, Wood et al (1985), Ghysels
(2000), and Gourieroux and Jasiak (2001)). This trading pattern refers to the observation in a trading
day that trade intensity is high at the beginning and at the end of the day, and trading durations
increase and peak during lunch time. As a result, return volatility exhibits a U-shape where the two
peaks are the beginning and the end of a trading day, with the bottom approximately during the lunch
period. Hong and Wang (2000) confirm the U-shape patterns in the mean and volatility of returns over
trading day. They find that around the close and open there exist higher trading activity, the returns of
open-to-open being more volatile than that of close-to-close. Besides the intra-day pattern, there exists
a day-of-week pattern evidenced by both lower returns and higher volatility on Monday.
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2.4 Clustering

Many financial time series display volatility clustering. It is observed that large returns are followed by
more large returns and small returns by more small returns. Equity, commodity, and foreign exchange
markets often exhibit volatility clustering at higher frequency. Volatility clustering becomes pronounced
in intra-daily data (see, for example, Alexander (2001), Haas et al. (2004)). Besides volatility clustering,
intra-daily data exhibit quote clustering and duration clustering. Quote or price clustering is the
preference for some quote/prices over others. Duration clustering is the long and short durations tend
to occur in clusters (see, for example, Bauwens and Giot (2001), Chung and Van Ness (2004), Engle
and Russell (1998), Feng et al. (2004), Huang and Stoll (2001), and Sun et al.(2006b)).

2.5 Long-range Dependence

Long-range dependence or long memory (sometimes also referred to as strong dependence or persistence)
denotes the property of time series to exhibit persistent behavior. (A more precise mathematical defin-
ition will be provided in Section 5.) It is generally believed that when the sampling frequency increases
for financial returns, long-range dependence will be more significant. Marinelli et al. (2000) propose
subordinated modeling to capture long-range dependence and heavy tailedness. Several researchers, fo-
cusing both on theoretical and empirical issues, discuss long-range dependence. Doukhan et al. (2003),
Robinson (2003), and Teyssiére and Kirman (2006) provide an overview of the important contributions
to this area of research. Investigating the stocks comprising the German DAX, Sun et al.(2006a) confirm
that long-range dependence does exist in intra-daily return data. We provide a more detailed discussion
of long-range dependence in Section 5.

3. Computer Implementation in Studying Intra-daily Data

3.1 Data Transformation

Being a full record of transactions and their associated characteristics, intra-daily data represent the
ultimate level of frequency at which trading data are collected. The salient feature of such data is
that they are fundamentally irregularly spaced. It is necessary to distinguish intra-daily data from
high frequency data because the former are irregularly spaced while the latter are sometimes spaced by
aggregating to a finer fixed-time interval. In order to clarify the time interval, it is useful to refer to the
data by its associated time interval. For example, if the raw intra-daily data have been aggregated to
create an equally-spaced time series, say five minutes interval, then the return series is referred to as the
“5 minutes intra-daily data”. In order to clarify the characteristic of the interval between data points,
Dacorogna et al. (2001) propose employing a definition of homogeneous and inhomogeneous time series.
The irregularly spaced time series is called an inhomogeneous time series while the equally spaced one is
called a homogeneous time series. One can aggregate inhomogeneous time series data up to a specified
fixed time interval in order to obtain a corresponding homogeneous version. Naturally, such aggregation
will either lose information or create noise, or both. For example, if the observations in the original
data are more than that in the aggregated one, some information will be lost. If the observations in the
orginal data are much less than that in the aggregated one, noise will be generated. Data interpolation
is required to create aggregated time series. Obviously, different interpolation methods lead to different
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results. This leads not only to the loss of information but also the creation of noise due to introducing
errors in the interpolation process. Engle and Russel (1998) argue that in the aggregation of tick-by-tick
data to some fixed time interval, if a short time interval is selected, there will be many intervals having
no new information and, as a result, heteroskedasticity will be introduced; and if wide interval is chosen,
microstructure features might be missing. Therefore, it is reasonable to keep the data at the ultimate
frequency level (see Aı̈t-Sahalia et al. (2005)).

Standard econometric techniques are based on homogeneous time series analysis. Applying analytical
methods of homogeneous time series to inhomogeneous time series may produce unreliablity. That
is the dichotomy in intra-daily data analysis: a researcher can retain the full information without
creating noise but is challenged by the burden of technical complexity. Sometimes, it is not always
necessary to retain the ultimate frequency level. In those instances, aggregating inhomogeneous intra-
daily data to a relatively lower but still comparably higher frequency level of homogeneous time series
is needed. Wasserfallen and Zimmermann (1995) show two interpolation methods: linear interpolation
and previous-tick interpolation. Given an inhomogeneous time series with times ti and values ϕi = ϕ(ti),
the index i identifies the irregularly spaced sequence. The target homogeneous time series is given at
times t0 + j∆t with fixed time interval ∆t starting at t0. The index j identifies the regularly spaced
sequence. The time t0 + j∆t is bounded by two times ti of the irregularly spaced series,

I = max( i |ti ≤ t0 + j∆t) (1)

tI ≤ t0 + j∆t > tI+1 (2)

Data will be interpolated between tI and tI+1. The linear interpolation shows that

ϕ(t0 + j∆t) = ϕI +
t0 + j∆t− tI
tI+1 − tI

(ϕI+1 − ϕI) (3)

and previous-tick interpolation shows that

ϕ(t0 + j∆t) = ϕI (4)

Dacorogna et al. (2001) point out that linear interpolation relies on the future information whereas
previous-tick interpolation is based on the information already known. Müller et al. (1990) suggest
that linear interpolation is an appropriate method for independent and identically distributed (i.i.d.)
increments stochastic processes.

More advanced techniques have been adopted by some researchers in order to find sufficient statistical
properties of data but at the same time retaining the inhomogeniety of time series. Zumbach and Müller
(2001), for example, propose a convolution operator to transform the original inhomogeneous time series
to a new inhomogeneous time series in order to get more sophisticated quantities. Newly developed
techniques such as the wavelet method have been adopted to analyze intra-daily data. For example,
Gençay et al (2001, 2002) employed a wavelet multiscaling method to remove intra-daily seasonality in
five-minute intra-daily data of foreign exchange.

As mentioned in Section 2, intra-daily data exhibit daily patterns. Several methods of data adjusting
have been adopted in empirical analysis in order to remove such pattern (see, Engle and Russell (1998),
Veredas et al. (2002), Bauwens and Giot (2000, 2003), and Bauwens and Veredas (2004)).
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3.2 Data Cleaning

In order to improve the quality of data, data cleaning is required to detect and remove errors and
inconsistencies from the data set. Data quality problems are the result of misspelling during data
entry, missing information, and other kinds of data invalidity. There are two types of error: human
errors and computer system errors (see Dacorogna et al. (2001)). When multiple data sources must
to be integrated, for instance, pooling the data in each trading day together for one year, the need for
data cleaning increases significantly. The reason is that the sources often contain redundant data in
different representations. High quality data analysis requires access to accurate and consistent data.
Consequently, consolidating different data representations and eliminating duplicate information become
necessary.

The object of data cleaning is the time series of transactions information. Usually, the transactions
information is “quote” or “tick” information. Each quote or tick in the intra-daily data set contains
a time stamp, an identification code, and variables of the tick, such as bid/ask price (and volume),
trade price (and volume), and locations. Intra-daily data might contain several errors that should be
specially treated. Decimal errors occur when the quoting software uses cache memory so that it is
failure to change a decimal digit of the quote. Test tick errors are caused by data managers’ testing
operation of sending artificial ticks to the system to check the sensitivity of recording. Repeated ticks
are caused by data managers’ test operation of letting the system repeat the last tick in the specified
time intervals. Some errors occur when data managers copy the data or when a scaling problem occurs,
see Dacorogna et al. (2001).

Coval and Shumway (2001) illustrate the existence of occasionally incorrect identification of the
exact time. They use the data cleaning method to ensure that the time stamps on each tick were
accurate and scaled to the second level. They introduce a method of summing up variables from 31
seconds past one minute to 30 seconds past the next minute to aggregate the tick to the minute level.
Some detailed methods used in data cleaning are discussed in Dacorogna et al. (2001).

4. Research on Intra-Daily Data in Finance

4.1 Studies of Volatility

Volatility is one of the most important risk metric. Harris (2003) defines it as the tendency for prices
unexpectedly changing. Volatility could be regarded as the market reaction to news reflected by price
changing . He distinguishes fundamental volatility and transitory volatility. Fundamental volatility
is caused by the endogenous variables which determine the value of trading instruments. Transitory
volatility is due to trading activity by uninformed traders.

Volatility is not constant over the trading stage, but changes over time. Transitory volatility might
occur in a very short time period before it converts to its fundamental value. The intra-daily data can
observe both fundamental volatility and transitory volatility with sufficient statistical significance.

Engle (2000) adopts the GARCH model to the irregularly spaced ultra-high frequency data. Letting
di be the duration between two successive transactions and ri the return between transactions i−1 and
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i, then the conditional variance per transaction is:

Vi−1(ri|di) = φi (5)

and the conditional volatility per unit of time is defined as,

Vi−1(
ri√
di
|di) = σ2

i (6)

Then the connection between equations (5) and (6) can be established by φi = diσ
2
i . The predicted

variance conditional on past returns and durations is Ei−1(φi) = Ei−1(diσ2
i ). Using ARMA(1,1) with

innovations εi, the series of return per unit of time is

ri√
di

= a
ri−1√
di−1

+ εi + b εi−1 (7)

If the current duration contains no information, the simple GARCH specification is used, and then

σ2
i = ω + α ε2i−1 + β σ2

i−1 (8)

If durations are informative, Engle (2000) proposes an autoregressive conditional duration (ACD) model
to define the expected durations. If the ACD model is

ψ2
i = h + mdi−1 + nψi−1 (9)

then the ultra-high frequency GARCH model is expressed as:

σ2
i = ω + α ε2i−1 + β σ2

i−1 + γ1 d
−1
i + γ2

di
ψi

+ γ3 ξi−1 + γ4 ψ
−1
i (10)

where ξi−1 is the long-run volatility computed by exponentially smoothing r2/d with a parameter 0.995
such that

ψi = 0.005

(
r2i−1

di−1

)
+ 0.995ψi−1 (11)

Alexander (2001) points out that a number of studies have shown that the aggregation properties
of GARCH models are not straightforward. The persistence in volatility seems to be lower when it is
measured using intra-day data than when measured using daily or weekly data. For example, fitting a
GARCH(1,1) to daily data would yield a sum of autoregressive parameter and moving average parameter
estimates that is greater than the sum of that estimated from fitting the same GARCH process by using
2-day returns. In the heterogeneous ARCH (HARCH) model proposed by Müller et al. (1997), a
modified process is introduced so that the squared returns can be taken at different frequencies. The
return of rt of the HARCH(n) process is defined as follows,

rt = ht εt (12)

h2
t = α0 +

n∑
j=1

αj (
j∑
i=1

rt−i)2

where εt is i. i. d. random variables with zero mean and unit variance, α0 > 0, αn > 0, αj ≥ 0, for
j = 1, 2, ..., n−1. The equation for the variance h2

t is a linear combination of the squares of aggregated
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returns. Aggregated returns may extend over some long intervals from a time point in the distant past
up to time t − 1. The HARCH process belongs to the wide ARCH family but differs from all other
ARCH-type processes in the unique property of considering the volatilities of returns measured over
different interval size. Dacorogna et al. (2001) generalized the HARCH process. In equation (12), all
returns considered by the variance equation are observed over recent interval ending at time t− 1. This
strong limitation is justified by its empirical successive observations, but a more general formula of the
process with observation intervals ending in the past before t− 1 can be shown as follows:

rt = ht εt (13)

h2
t = α0 +

n∑
j=1

j∑
k=1

αjk (
j∑
i=k

rt−i)2 +
q∑
i=1

bi h
2
t−i

where

α0 > 0, αjk ≥ 0, for j = 1, 2, ..., n, k = 1, 2, ... j; (14)

bj ≥ 0 for i = 1, 2, ..., q

The generalized process equation considers all returns between any pair of two time points in the period
between t− n and t− 1. It covers the case of HARCH (all αjk = 0 except some αj1), as well as that of
ARCH and GARCH (all αjk = 0 except some αjj).

From historical data, realized volatility can be computed. Dacorogna et al. (2001) show the realized
volatility as:

υ(ti) =

 1
n

n∑
j=1

|r(∆t; ti−n+j)p|

1/p

(15)

where n is the number of return observations, and r stands for the returns in the regularly spaced time
intervals. ∆t is the return interval. Taylor and Xu (1997), Andersen and Bollerslev (1998), and Giot
and Laurent (2004), among others, show that summing up intra-daily squared returns can estimate the
daily realized volatility. Given that a trading day can be divided into n equally spaced time intervals,
and if ri,t denotes the intra-daily return of the ith interval of day t, the daily volatility for day t can be
expressed as: [

n∑
i=1

ri,t

]2

=
n∑
i=1

r2i,t + 2
n∑
i=1

n∑
j=i+1

rj,t rj−i,t (16)

Andersen et al. (2001a) show that if the returns have a zero mean and are uncorrelated,
∑n
i=1 r

2
i,t

is a consistent and an unbiased estimator of the daily variance. [
∑n
i=1 ri,t]

2 is called the daily realized
volatility since all squared returns on the right side of equation (16) can be observed when intra-daily
data sampled over an equally spaced time interval are available. This is one method for modeling daily
volatility using intra-daily data, and a method that has been generalized by Andersen et al. (2001a,
2001b). Another method is to estimate the intra-daily duration model on trade durations for a given
asset. It is observed that longer durations lead to lower volatility and shorter durations lead to higher
volatility and durations are informative, see Engle (2000) and Dufour and Engle (2000). Gerhard and
Hautsch (2002) estimate daily volatility for an intra-daily duration model at which irregularly time
spaced volatility has been used at the aggregated level.
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There are several articles that provide a detailed discussion of modeling volatility, see, for example,
Andersen et al. (2005a, 2005b, 2006). Modeling and forecasting volatility based on intra-daily data has
attracted a lot of research interest. Andersen et al. (2001) improve the inference procedures for using
intra-daily data forecasts. Bollerslev and Wright (2001) propose a method to model volatility dynamics
by fitting an autoregressive model to log-squared, squared or absolute returns of intra-daily data. They
show that when working with intra-daily data, using a simple autoregressive model can provide a better
prediction for forecasting future volatility than standard GARCH or exponential GARCH (EGARCH)
models. They suggest that intra-daily data can be easily used to generate superior daily volatility fore-
casts. Blair et al. (2001) offer evidence that intra-daily returns provide much more accurate forecasts of
realized volatility than daily returns. In the context of stochastic volatility models, Barndorff-Nielsen
and Shephard (2002) investigate the statistical properties of realized volatility. Corsi et al. (2005) study
the time-varying volatility of realized volatility. Using a GARCH diffusion process, Martens (2001) and
Marten et al. (2002) point out that using intra-daily data can improve the out-of-sample daily volatility
forecasts. Bollen and Inder (2002) use the vector autoregressive heteroskedasticity and autocorrelation
(VARHAC) estimator to estimate daily realized volatility from intra-daily data. Andersen et al. (2003)
propose a modeling framework for integrating intra-daily data to predict daily return volatility and
return distribution. Thomakos and Wang (2003) investigate the statistical properties of daily realized
volatility of futures contracts generated from intra-daily data. Using 5-minute intra-daily foreign ex-
change data, Morana and Beltratti (2004) illustrate the existence of structural breaks and long memory
in the realized volatility process. Fleming et al (2003) indicate that the economic value of the realized
volatility approach is substantial and deliver several economic benefits for investment decision mak-
ing. Andersen et al. (2005a) summarize the parametric and non-parametric methods used in volatility
estimation and forecasting.

4.2 Studies of Liquidity

A topic of debate in finance is the meaning of liquidity. Some market participants refer to liquidity as
the ability to convert an asset into cash quickly, some define liquidity in terms of the low transaction
cost, and some think high transaction activity is liquidity, see Easley and O’Hara (2003) and Schwartz
and Francioni (2004). Schwartz and Francioni point out that a better approach for defining liquidity
should be based on the attributes of liquidity. They define the depth, breadth, and resiliency as the
dimensions of liquidity, while Harris (2003) identifies immediacy, width, and depth as the relevant
attributes of liquidity. In the microstructure literature, the bid/ask spread proxies for liquidity, see
Easley and O’Hara (2003). Schwartz and Francioni (2004) show that liquidity can be approximated by
the trade frequency of an asset traded in the market. The frequency can be measured by the magnitude
of short-term price fluctuation for such asset. Chordia et al. (2002) find that order imbalances affect
liquidity and returns at the aggregate market level. They suggest using order imbalance as a proxy for
liquidity.

Using bid/ask spread as a proxy for liquidity, Chung et al. (2001) compare the bid/ask spread on
the NYSE and Nasdaq. They find that the average NYSE specialist spreads are significant smaller than
the Nasdaq specialist spreads. Huang and Stoll (2001) report that dealer markets have relative higher
spreads than auction markets. By comparing spreads in different markets, they found that the spreads
on London Stock Exchange are larger than that for the same stocks listed on the NYSE and the spreads
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in the Nasdaq are larger than that on stocks listed on the NYSE. By checking the growth of electronic
communication networks (ECNs) in Nasdaq, Weston (2002) confirms that the electronic trading system
has the ability to improve the liquidity on the Nasdaq. Kalay et al. (2004) report that the opening is
more liquid than the continuous trading stage. For small price changes and small quantities, there is a
less elastic supply curve than demand curve.

From the perspective of liquidity providers, researchers usually use the order book data. Coughenour
and Deil (2002) catagorize the specialist firms on the NYSE into two types: owner-specialist firms and
employee-specialist firms. By investigating the influence of these two types of liquidity providers, they
show that with similar trading costs, the owner-specialist firms have greater frequency of large trades and
have greater incentive to reduce adverse selection costs. For employee-specialist firms, the stocks traded
exhibit less sensitivity between change in quoted depth and quoted spreads. Meantime, these stocks
show price stability at the opening. Peterson and Sirri (2002) investigate order submission strategies
and find that limit orders perform worse than market orders involving the trading costs. But investors
still prefer limit orders, suggesting that individual investors are less able to choose an optimal trading
strategy.

4.3 Studies of Market Microstructure

Market microstructure refers to the description of trading processes for obtaining a better understanding
of how prices adjust in order to reflect new information. Researchers in this field are typically willing
to investigate the information contained in intra-daily data. The trading mechanisms and the price
information flows are the major interest of market microstructure studies. Madhavan (2000) provides a
good survey of market microstructure research based on four topics: price formation, market structure
and design, transparency, and other applications.

Transaction costs, private information, and alternative trading systems have been investigated in
the research on trading processes. Transaction costs are “market frictions” and reduce the trading
frequency of investors. O’Hara (1995) and Madhavan (2000) demonstrate that private information will
impact the investors’ belief of the asset value. If investors possess private information, new information
arrivals can be reflected by the order flows. The market structure might influence the size of trading
costs. Different market structures have different functions for finding prices and matching buyers and
sellers. The transparency of certain market structure also affects the functioning of market mechanisms,
see Bollmfield and O’Hara (1999, 2000), O’Hara (1995), Spulber (1999), and Madhavan (2000).

How are prices determined in the financial market? As Madhavan (2000) notes, studying the market
maker is the logical starting point for any analysis of market price determination. In market microstruc-
ture studies, inventory and asymmetric information are the factors that influence the price movement.
Naik and Yadav (2003) examine whether equivalent inventories or ordinary inventories dominate the
process of trading and pricing decisions by dealer firms. They find that ordinary inventories play the
main role consistent with the decentralized nature of market making. Bollen et al. (2004) propose a
new model based on intra-daily data to understand and measure the determinants of bid/ask spread
of market makers. Using the vector autoregressive model, Dufour and Engle (2000) find that time
durations between transaction impact the process of price formation. Engle and Lunde (2003) develop
a bivariate model of trades and quotes for NYSE traded stocks. They find that high trade arrival rates,
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large volume per trade, and wide bid/ask spreads can be regarded as information flow variables that
revise prices. They suggest that if such information is flowing, prices respond to trades more quickly.

In the study of market quality, much of the debate in the literature, according to Madhavan (2000),
centers on floor versus electronic markets, and auctions versus dealer system. Using intra-daily data for
Bund futures contracts, Frank and Hess (2000) compare the electronic system of the DTB (Deutsche
Terminbörse) and the floor trading of the LIFFE (London International Financial Futures Exchange).
They find that the floor trading turns out to be more attractive in periods of high information intensity,
high volatility, high volume, and high trading frequency. The reason they offer for this finding is that
market participants infer more information from observing actual trades. Coval and Shumway (2001)
confirm the claim that market participants gather all possible information rather than only relying on
easily observable data, say, past prices, in determining their trade values. They suggest that subtle
but non-transaction signals play important roles. The electronic exchanges they find lose information
that can be mirrored by a face-to-face exchange setting. Based on the co-existence of the floor and
electronic trading system in the German stock market, Theissen (2002) argues that when employing
intra-daily data, both systems contribute to the price discovery process almost equally. Based on testing
whether the upstairs intermediation can lower adverse selection cost, Smith et al. (2001) report that
the upstairs market is complementary in supplying liquidity. Bessembinder and Venkataraman (2004)
show that the upstairs market does a good job of complementing to the electronic exchange because
the upstairs market is efficient for many large trades and block-sized trades.

By confirming that market structure does impact the incorporation of news into market prices,
Masulis and Shivakumar (2002) compare the speed of adjustment on the NYSE and Nasdaq. They
demonstrate that there are faster price adjustments to new information on the Nasdaq. Weston (2002)
confirms that the electronic trading system has improved the liquidity of the Nasdaq. Boehmer et
al. (2005) suggest that since the electronic trading reveals more information, market quality could be
increased by such exposed information in the electronic trading system.

Huang and Stoll (2001) point out that tick size, bid/ask spread, and market depth are not indepen-
dent from market structure. They are linked to market structure. It is necessary to take account of
tick size, bid/ask spread, and market depth when analyzing the market structure. Numerous studies
investigate how market structure impacts price discovery and trading costs in different securities mar-
kets. Chung and Van Ness (2001) show that after introducing new order handling rules in the Nasdaq,
bid/ask spreads decreased, confirming that market structure has a significant effect on trading costs
and the price forming process.

Market transparency is the ability of market participants to observe information about the trading
process, see O’Hara (1995). Referring to the time of the trade, Harris (2003) defines ex ante (pre-trade)
transparency and ex post (post trade) transparency. Comparing market transparency is complicated by
the lack of absence of a criterion that can be used to judge the superiority of one trading system over
another such as floor market versus electronic market, anonymous trading versus disclosure trading,
and auction system versus dealer system. According to Madhavan (2000), there is broad agreement of
the influence of market transparency. Market transparency does affect informative order flow and the
process of price discovery. Madhavan also points out that while partial disclosure will improve liquidity
and reduce trading costs, complete disclosure will reduce liquidity, a situation Harris (2003) refers to as
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the “ambivalence” from the viewpoint of trader’s psychology. By investigating the OpenBook1 in NYSE,
Boehmer et al. (2005) find there is a higher cancel rate and a short time-to-cancel of limit orders in the
book, suggesting that traders attempt to manipulate the exposure of their trades. By confirming market
design does impact the trading strategy of investors, they support increasing pre-trade transparency
and suggest that market quality can be enhanced by greater transparency of the limit order book.

4.4 Studies of Trade Duration

There is considerable interest in the information content and implications of the spacing between con-
secutive financial transactions (referred to as trade duration) for trading strategies and intra-day risk
management. Market microstructure theory, supported by empirical evidence, suggests that the spacing
between trades be treated as a variable to be explained or predicted since time carries information and
closely correlates with price volatility (see, Bauwens and Veredas (2004), Engle (2000), Engle and Rus-
sell (1998), Hasbrouck (1996), and O’Hara (1995)). Manganelli (2005) finds that returns and volatility
directly interact with trade durations and trade order size. Trade durations tend to exhibit long-range
dependence, heavy tailedness, and clustering (see, Bauwens and Giot (2000), Dufour and Engle (2000),
Engle and Russell (1998), and Jasiak (1998)). Several studies have modeled durations based on point
processes in order to discover the information they contain. Before reviewing the major studies of trade
duration in this section, we will introduce the mathematics underlying duration models, that is, point
processes.

4.4.1 Point Processes in Modeling Duration

Point processes are stochastic processes. Let us first define the stochastic process. Given a probability
space (Ω,A,P), a family of random variables (Xt)t∈T on Ω with values in some set M , (i.e., for all
t ∈ T and T is some index set), Xt : (Ω,A) → (M,B) is defined as a stochastic process with index set T
and state space M . The point process is then the sequence (Tn)n∈N of positive real random variables if
Tn(ω) < Tn+1(ω) for all ω ∈ Ω and all n ∈ N ; and limn→∞ Tn(ω) = ∞, for all ω ∈ Ω. In this definition,
Tn is called the nth arrival time and Tn =

∑n
i=1 τi; and τn = Tn − Tn−1 (where τ1 = T1) is called the

nth waiting time (duration) for the point process.

Point processes and counting processes are tightly connected. A stochastic process (Nt)t∈[0,∞) is a
counting process if: Nt : (Ω,A) → (N0,P(N0)) for all t ≥ 0, N0 ≡ 0; Ns(ω) ≤ Nt(ω), for all 0 ≤ s < t

and all ω ∈ Ω; lims→t,s>tNs(ω) = Nt(ω), for all t ≥ 0 and all ω ∈ Ω; Nt(ω)− lims→t,s>tNs(ω) ∈ (0, 1),
for all t > 0 and all ω ∈ Ω; and limt→∞Nt(ω) = ∞, for all ω ∈ Ω. A point process (Tn)n∈N corresponds
to a counting process (Nt)t∈[0,∞) and vice versa, i.e.,

Nt(ω) = |{n ∈ N : Tn(ω) ≤ t}| (17)

for all ω ∈ Ω and all t ≥ 0. For all ω ∈ Ω and all n ∈ N ,

Tn(ω) = min{t ≥ 0 : Nt(ω) = n} (18)

The mean value function of the counting process is m(t) = E(Nt), for t ≥ 0, and m : [0,∞) →
[0,∞),m(0) = 0. m is an increasing and a right continuous function with limt→∞m(t) = ∞. If the

1OpenBook was introduced in January 2002 allowing traders off the NYSE floor exchange to find each price in real

time for all listed securities. Before OpenBook, only best bid/ask could be observed.
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mean value function is differentiable at t > 0, then the first-order derivative is called the intensity of
the counting process. Defining λ(t) = dm(t)/dt ,

lim
∆t→0,∆t6=0

1
|∆t|

P (|Nt+∆t −Nt| = 1) = λ(t) (19)

and
lim

∆t→0,∆t6=0

1
|∆t|

P (|Nt+∆t −Nt| ≥ 2) = 0 (20)

From the viewpoint of the point processes intra-daily financial data can be described as marked point
processes; that is, the state space M is a product space of R2 ⊗M where M is the mark space. Engle
(2000) pointed out that ultra-high frequency transaction data contain two types of processes: (1) time
of transactions and (2) events observed at the time of the transaction. Those events can be identified or
described by marks, such as trade prices, posted bid and ask price, and volume. As explained earlier, the
amount of time between events is the duration. The intensity is used to characterize the point processes
and is defined as the expected number of events per time increment considered as a function of time. In
survival analysis, the intensity equals the hazard rate. For n durations, d1, d2, ..., dn, which are sampled
from a population with density function f and corresponding cumulative distribution function F , the
survival function S(t) is:

S(t) = P [di > t] = 1− F (t) (21)

and the intensity or hazard rate λ(t) is:

λ(t) = lim
∆t→0

P [t < di ≤ t+ ∆t | di > t]
∆t

(22)

The survival function and the density function can be obtained from the intensity,

λ(t) =
f(t)
S(t)

=
−d log(S (t))

dt
(23)

4.4.2 Major Duration Models

Several models have been proposed to model durations by estimating the intensity. The favored models
in the literature is the autoregressive conditional duration (ACD) model proposed by Engle and Russell
(1998), the stochastic conditional duration (SCD) model by Bauwens and Veredas (2004), and the
stochastic volatility duration (SVD) model by Ghysels et al. (2004).

The ACD model expresses the conditional expectation of duration as a linear function of past
durations and past conditional expectation. The disturbance is specified as an exponential distribution
and as an extension the Weibull distribution. The SCD model assumes that a latent variable drives the
movement of durations. Then expected durations in the SCD model is expressed by observed durations
driven by a latent variable. The SVD model seeks to capture the mean and variance of durations.

After these models were proposed, the following extensions appeared in the literature:

• Jasiak (1998): the fractional integrated ACD model;

• Bauwens and Giot (2000): the logarithmic ACD model;

• Zhang et al. (2001): the threshold ACD model;
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• Bauwens and Giot (2003): the asymmetric ACD model;

• Feng et al. (2004): the linear non-Gaussian state-space SCD model.

The ACD(m,n) model specified in Engle and Russell (1998) is

di = ψi εi (24)

ψi = ω +
m∑
j=0

αj di−j +
n∑
j=0

βj ψi−j (25)

Bauwens and Giot (2000) give the logarithmic version of the ACD model as follows

di = eψi εi (26)

Two possible specifications of conditional durations are

ψi = ω +
m∑
j=0

αj log di−j +
n∑
j=0

βj ψi−j (27)

and

ψi = ω +
m∑
j=0

αj log εi−j +
n∑
j=0

βj ψi−j (28)

Zhang et al. (2001) extend the conditional duration to a switching-regime version. Defining Lq =
[lq−1, lq), and q = 1, 2, ..., Q for a positive integer Q, where −∞ = l0 < l1 < ... < lq = +∞ are the
threshold values, di follows a q-regime threshold ACD (TACD(m,n)) model; that is:

ψi = ω(q) +
m∑
j=0

α
(q)
j di−j +

n∑
j=0

β
(q)
j ψi−j (29)

For example, if there is a threshold value lh and 0 < h < q, the TACD(1,1) model can be expressed as
follows:

ψi =

{
ω1 + α1 di−1 + β1 ψi−1 if 0 < di−1 ≤ lh

ω2 + α2 di−1 + β2 ψi−1 if lh < di−1 <∞
(30)

The threshold lh determines the regime boundaries.

Fernandes and Gramming (2005) propose nonparametric tests for ACD models and suggested the
practical application for estimation of intra-daily volatility patterns. Sun et al. (2006) model the trade
durations of 18 Dow Johns index component stocks using the ACD model with the positive defined
fractal processes and find that these fractal processes do describe the data better than the ACD model
with i.i.d. distributions.

The SCD model given by Bauwens and Veredas (2004) takes the following form:

di = Ψi εi (31)

where
Ψi = eψi (32)
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ψi = ω + β ψi−1 + ui (33)

in which |β| < 1, denotes Ii−1 the information set before di, ui|Ii−1 ∼ N(0, σ2), εi|Ii−1 follows some
distribution with positive support, and ui is independent of εj |Ii−1 for any i and j.

Ghysels et al. (2004) propose a SVD model by assuming that durations are independently and
exponentially distributed with gamma heterogeneity. More explicitly, their model can be expressed as:

di =
Ui
cVi

(34)

where Ui and Vi are two independent variables with exponential distribution and gamma(a, a) distribu-
tion. Then this expression can be transferred with suitable nonlinear transformations to the expression
with Gaussian factors:

di =
Ψ(1,Φ(F1))
cΨ(a,Φ(F2))

=
H(1, F1)
cH(1, F2)

(35)

where F1 and F2 are i.i.d standard normal variables, Φ is the cdf of the standard normal distribution,
and Ψ(a, .) is the quantile function of the gamma(a, a) distribution.

5. Long-Range Dependence

Long-range dependence is the dependence structure across long time periods. As stated earlier, it
denotes the property of a time series to exhibit persistent behavior, i.e., a significant dependence between
very distant observations and a pole in the neighborhood of the zero frequency of their spectrum. In
time domain, if {Xt, t ∈ T} exhibits long-range dependence, its autocovariance function γ(k) has the
property of

∑
|γ(k)| = ∞, where k measures the distance between two observations, i.e., the order

of lags. In frequency domain, if {Xt, t ∈ T} exhibits long-range dependence, its spectral density f(λ)
(−π < λ < π) has a “pole” at frequency zero, i.e., f(0) = 1/2π

∑∞
k=−∞ γ(k) = ∞.

5.1 Estimation and Detection of LRD in Time Domain

5.1.1 The Rescaled Adjusted Range Approach

The rescaled adjusted range method, denoted by R/S, was proposed by Hurst (1951) and discussed in
detail in Mandelbrot and Wallis (1969), Mandelbrot (1975), Mandelbrot and Taqqu (1979), and Beran
(1994). For a time series, {Xt, t ≥ 1}, let YT =

∑T
t=1Xt and

S2(t, k) =
1
k

t+k∑
i=t+1

(Xi −Xt,k)2 (36)

where Xt,k = k−1∑t+k
i=t+1Xi, then define the adjusted range

R(t, k) = max
0≤i≤k

[
Yt+i − Yt −

i

k
(Yt+k − Yt)

]
− min

0≤i≤k

[
Yt+i − Yt −

i

k
(Yt+k − Yt)

]
(37)

the standardized ratio R(t, k)/S(t, k) is the rescaled adjusted range, i.e., the R/S statistic. Hurst
observed that for a large k based on the Nile River data, logE[R/S] ≈ a +H log k with H > 0.5. To
determine H by using the R/S statistic, we can do the following:

1. Divide the time series of length N into K blocks.
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2. For each lag t, starting at points ti = iT/K + 1, compute R(ki, t)/S(ki, t), i = 1, 2, · · ·, for all
possible k such that ti + k ≤ N .

3. Plot its logarithm against the logarithm of k. This plot is sometimes called the pox plot for the
R/S statistic.

4. The parameter H is the estimated slope of the line in the pox plot.

The R/S method requires cutting off both the low and high end of the plot to make reliable estimates.
The low end of the plot stands for the short-range dependence in the time series and there are too few
points on the high end. In the literature it is also argued that the R/S cannot provide the confidence
intervals for the estimates and cannot discriminate slight LRD from no LRD. Compared with other
methods, the R/S approach is less efficient. When the time series is non-stationary and departs from
the normal distribution, this method is not robust, see Lo (1991), Taqqu et al. (1995), and Taqqu and
Teverovsky (1998).

Lo modifies the R/S approach and proposes a test procedure for the null hypothesis of no LRD. In
Lo’s method, he suggests using a weighted sum of autocovariance for S instead of the sample standard
deviation to normalize R. Meantime, his modification suggests not considering multiple lags but only
using the length N of the series, i.e.,

S2
q (N) =

1
N

N∑
j=1

(Xj −XN )2 +
2
N

q∑
j=1

ωj(q)
( N∑
i=j+1

(Xi −XN )(Xi−j −XN )
)

(38)

where XN denotes the sample mean of the time series, and ωj(q) := 1 − j
q+1 , q < N . We can use

the following term to represent Sq(N) by adding the weighted sample autocovariances to the sample
variance, i.e.,

S2
q (N) = S2 + 2

q∑
j=1

ωj(q)γ̂j (39)

where γ̂j are the sample autocovariances. Lo shows that the distribution of the statistic

Vq(N) :=
N−1/2R(N)
Sq(N)

(40)

is asymptotic to
W1 = max

0≤t≤1
W0(t)− min

0≤t≤1
W0(t) (41)

where W0 is the standard Brownian bridge. This fact allows the computation of a 95% confidence
interval for W1. Thus, Lo uses the interval [0.809, 1.862] as the asymptotic 95% acceptance region of
the null hypothesis of no LRD.

Since Lo only provides the method to test if LRD is present or not without suggesting an estimator
of H, Teverovsky et al. (1999) modified Lo’s method to get an estimator of H. They suggest using Vq
with a wide range of values of q, and then ploting the estimates as was done for the pox plot.
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5.1.2 ARFIMA Model

Conventional analysis of time series under the stationary assumption typically relies on the standard
integrated autoregressive moving average model, i.e. ARIMA model of following form:

α(L)(1− L)dXt = β(L)εt (42)

where, εt ∼ (0, σ2), and α(L) is the autoregressive polynomials in the lag operator L such that α(L) =
1 − α1(L)−, ...,−αp(L)p. β(L) is the moving average polynomials in the lag operator L such that
β(L) = 1 + β1(L)−, ...,−βq(L)q. All roots of α(L) and β(L) lie outside the unit circle. Granger and
Joyeux (1980) and Hosking (1981) generalize d to a non-integer value by the fractional differencing
operator defined by

(1− L)d =
∞∑
k=0

Γ(k − d)Lk

Γ(−d)Γ(k + 1)
(43)

where Γ(·) is gamma function. That is the Autoregressive Fractional Integrated Moving Average
(ARFIMA) model allows a non-integer value of d. The ARFIMA model has the ability to capture
significant dependence between distant observations compared with ARIMA model. Hosking (1981)
shows that autocorrelation function ρ(k) of an ARFIMA process has a slower hyperbolic decay pattern,
that is ρ(k) ∼ k2d−1, with d < 0.5 when k → ∞ and the autocorrelation of ARIMA decay follows an
exponential pattern, that is, ρ(k) ∼ rk, with r ∈ (0, 1) when k → ∞. The memory of time series is
captured by d, therefore the existence of long memory can be tested based on the statistical significance
of the fractional differencing parameter d.

For the first different of the series Yt, Yt = (1− L)Xt, the equation

(1− L)dXt = α−1(L)β(L)εt = ut (44)

can be used to estimate d. In this case, the Hurst index is 1/2 + d.

5.1.3. Variance-Type Method

Teverovsky and Taqqu (1995), Taqqu et al. (1995), and Taqqu and Teverovsky (1996) discuss the
variance-type methods for estimating the Hurst index: the aggregated variance method and differenced
variance method.

For the aggregated variance method, the variance of X is of order N2H−2 suggesting:

1. For an integer m between 2 and N/2, divide a given series of length N into blocks of length m,
and compute the sample mean over each k-th block.

X
(m)
k :=

1
m

km∑
t=(k−1)m+1

Xt

where k = 1, 2, ·, [N/m]

2. For each m, compute the sample variance of X(m)
k ,

s2m :=
1

[N/m]− 1

[N/m]∑
k=1

(X(m)
k −X)2
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3. Plot log s2m against logm

4. For the large values of m, the result should be a straight line with a slope of 2H − 2. Then
the slope can be estimated by fitting a least-squares line in the log-log plot. If the series has no
long-range dependence and finite variance, then H = 0.5 and the slope of the fitted line is −1.

There are two types of non-stationarity, one is jumps in the mean and the other is slowly declining
trends. Teverovsky and Taqqu (1995) distinguish these from long-range dependence by using the differ-
enced variance method. They difference the variance and study the sample variance s2mi+1− s2mi

, where
mi are the successive values of m as defined above. Using it together with the original aggregated vari-
ance method, the difference variance method can detect the presence of the two types of non-stationary
effects mentioned above.

Another method involving the variance is the variance of residuals method introduced by Peng et
al. (1994). Similar to the aggregated variance method, the series is divided into blocks with size of m.
Next, the partial sums are computed within each block, i.e.,

Y (k)(m) :=
km∑

t=(k−1)m+1

Xt

where k = 1, 2, · · · , [N/m]. A regression line a+ bk is fitted to the partial sums within each block, and
the sample variance of the residuals s(m) is computed. Taqqu et al. (1995) prove that in the Gaussian
case, the variance of residuals is proportional to m2H . By plotting log s(m) against logm, the slope, i.e.,
2H, can be estimated (see Taqqu and Teverovsky (1996) for more details).

5.1.4. Absolute Moments Method

The absolute moments method is a generalization of the aggregated variance method. Using this method

1. For an integer m between 2 and N/2, divide a given series of length N into blocks of length m,
and compute the sample mean over each k-th block.

X
(m)
k :=

1
m

km∑
t=(k−1)m+1

Xt

where k = 1, 2, ·, [N/m]

2. For each m, compute the n-th absolute moment of X(m)
k ,

AM (m)
n =

1
[N/m]− 1

[N/m]∑
k=1

|X(m)
k −X|n

3. The AM (m)
n is asymptotically proportional to mn(H−1).

4. Plot logAM (m)
n against logm.

5. For the large values of m, the result should be a straight line with a slope of n(H − 1). Then
the slope can be estimated by fitting a least-squares line in the log-log plot. If the series has no
long-range dependence and finite variance, then H = 0.5 and the slope of the fitted line is −n/2.
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Similar to the absolute moments method, Higuchi (1988) suggests the fractal dimension method,
see Taqqu and Teverovsky (1998). The difference between these two methods is that the absolute
moments method (when n = 1) uses a moving window to compute the aggregated series, while the
fractal dimension method uses the non-intersecting blocks. The fractal dimension method requires
intensive computation and increases accuracy in shorter time series. Taqqu et al. (1995), and Taqqu
and Teverovsky (1998) discuss these two methods in detail.

5.2 Estimation and Detection of LRD in Frequency Domain

5.2.1 Periodogram Method

Geweke and Porter-Hudak (1983) introduced a semi-nonparametric procedure to test long memory
based on the slope of spectral density around the angular frequency ω = 0. For the periodogram of Xt

at frequency ωj , i.e., g(ω), which is defined as follows

g(ω) =
1

2πT

∣∣∣∣∣
T∑
t=1

eitω(Xt −X)

∣∣∣∣∣
2

(45)

the differencing parameter d can be consistently estimated by the regression

ln g(ω) = c− d ln(4 sin2(
ωj
2

)) + ηj , j = 1, 2, ..., n (46)

where ωj = 2πj/T, (j = 1, ..., T − 1) denotes the Fourier frequencies of the sample, T is the sample
size, and n = f(T ) << T is the number of Fourier frequencies included in the spectral regression. As
Geweke and Porter-Hudak (1983) show, the slope of the line in log-log plot is 1− 2H.

Extensions and improvements to the periodogram method, for example, the continuous periodogram
method and the averaged (comulative) periodogram method, have been discussed in the literature, see,
for example, Robinson (1995a), Taqqu et al. (1995), Taqqu and Teverovsky (1998), Moulines and Soulier
(1999), and Hurvich and Brodski (2001).

5.2.2 Whittle-Type Methods

The Whittle estimator is the extension of the periodogram method. If the time series Xt follows Gaus-
sianity, the Gaussian maximum likelihood estimate (MLE) might have optimal asymptotic statistical
properties and can be used for approximation, see Whittle (1951) and Hannan (1973). The periodogram
of Xt at frequency ωj is defined as g(ω),

g(ω) =
1

2πT

∣∣∣∣∣
T∑
t=1

Xte
itω

∣∣∣∣∣
2

(47)

which is an estimator of the spectral density. It is evaluated at the Fourier Frequencies ωj = 2πjT .

Beran (1994) shows that the following equation is an approximation to the Gaussian likelihood,

LW (θ) = − 1
2π

[T/2]∑
j=1

log fθ(ωj) +
IN (ωj)
fθ(ωj)
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and the Whittle estimator is found by minimizing it for a given parametric spectral density fθ(ω).
The Gaussian likelihood can be replaced by different approximations without affecting first-order limit
distributional characteristics. Robinson (2003) shows that the estimates which maximize such approx-
imations are all

√
n-consistent and of the same limit normal distribution as the Gaussian MLE. Fox

and Taqqu (1986) show the Whittle estimate Ĥ of H is asymptotically normal with rate of convergence
T 1/2 and the asymptotic distribution of

√
T (Ĥ − H) is Gaussian. Relaxing Gaussianity, Giraitis and

Surgailis (1990) discuss the properties of the Whittle estimate Ĥ of H.

Robinson (1995b) develops the local Whittle method and Taqqu and Teverovsky (1998) provide
further discussion about it. The local Whittle method is a semi-parametric estimator. It only specifies
the parametric form of the spectral density with ω approaching to zero. It assumes that

fc,H(ω) = c ω1−2H

for frequencies ω close to the origin. One estimate minimizes

m∑
j=1

log fc,H(ωj) +
IT (ωj)
fc,H(ωj)

with respect to c and H for some m < [T/2], T being the length of the data.

Taqqu and Teverovsky (1998) introduce the aggregated Whittle method which provides a robust
Whittle estimator without considering exact parametric information about the spectral density. It can
be used for longer time series. This method suggests aggregating the data to create a shorter series.

Xi :=
1
m

mt∑
t=m(i−1)+1

Xt

If the aggregation level of m is high enough and long-range dependence occurs, then the new series will
approach to a fractional Gaussian noise. In the finite variance case, the Whittle estimator can increase
the estimation accuracy with an underlying fractional Gaussian noise assumption.

5.3 Econometric Modeling of LRD

Several econometric models have been extended to describe long-range dependence, for example, ex-
tending the ARMA model to the ARFIMA model discussed in the previous section. In this section,
we introduce four types of extensions, i.e., GARCH-type extension, stochastic volatility type extension,
unit root type extension, and regime switching type extension.

5.3.1 GARCH-Type Extension

Robinson (1991) suggests extending GARCH model by using fractional differences in order to accom-
modate the existence of long-range dependence. The fractional differencing operator is defined as in
equation (43) by Baillie et al. (1996). The fractionally integrated GARCH (FIGARCH) model is then

(1− L)dβ(L)(h2
t − µ) = α(L)(r2t − µ) (48)
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For the well-defined process, the parameters αj , βj , and d are constrained. Then the coefficients θj are
all nonnegative in

h2
t = µ + (1− L)−d α(L)β−1(L) r2t = µ +

∞∑
j=0

θ(r2t−1−j − µ) (49)

Implied by equation (49), the parameters αj and βj are constrained as in the standard GARCH
model. This also implies that the parameter d is constrained to be positive. Breidt et al. (1998) argue
that the rt in equation (49) is not covariance stationary and the autocovariance function of rt is not
defined. Bollerslev and Mikkelsen (1996) formulate a fractionally integrated EGARCH model of the
following form

log h2
t = µt + θ(L)φ(L)−1(1− L)−dg(εt−1) (50)

where θ(z) = 1 + θ1z+, · · · ,+θpzp for |z| ≤ 1 is an autoregressive polynomial, and φ(z) = 1 −
φ1z−, · · · ,−φpzp is a moving average polynomial and φ(z) has no roots in common with θ(z). The
fractional integrated EGARCH model gives a strictly stationary and ergodic process. Nelson (1991)
shows that (log h2

t − µt) is covariance stationary under certain condition and d < 0.5.

5.3.2 Stochastic Volatility Type Extension

A long-range dependence stochastic volatility model is discussed by Breidt et al. (1998). The stochastic
volatility model is defined by

rt = ht εt, ht = h exp (ut/2),

where ut is independent of εt, εt is independent and identically distributed (i.i.d.) with mean zero and
variance one. ut in a simple long-range dependence model can be defined as

(1− L)d ut = ηt

where ηt follows i.i.d. normal distribution with zero mean and variance σ2
η, and d ∈ (−0.5, 0.5). For

long-range dependence, ut can be expressed as an ARFIMA (p, d, q) process, defined as

(1− L)d φ(L)ut = θ(L) ηt

where ηt follows i.i.d. normal distribution with zero mean and variance σ2
η.

5.3.3 Unit Root Type Extension

Robinson (1994) considers following model that nests a unit root model in order to grasp the effect of
long-range dependence:

φ(L) rt = εt, t ≥ 1, (51)

rt = 0, t ≤ 0, (52)

where εt is an I(0) process with parametric autocorrelation and

φ(L) = (1− L)d1 (1 + L)d2
n∏
j=3

(1− 2 cos ωj L+ L2)dj (53)
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where ωj are given distinct real numbers in (0, π), and the dj , 0 ≤ j ≤ n, are arbitrary real numbers.
This model also covers seasonal and cyclical components. Velasco and Robinson (2000) propose the
following model

(1− L)s rt = εt, t ≥ 1, (54)

rt = 0, t ≤ 0, (55)

(1− L)d−s εt = ut, t = 0,±1, · · · , (56)

where s is the integer part of d+1/2 and ut is a parametric I(0) process. εt is a stationary I(d−s) process.
Marinucci and Robinson (1999) discuss the difference between the two models given by equations (51)-
(52) and equations (54)-(56) with respect to the two definitions of nonstationarity I(d) processes.

5.3.4 Regime Switching Type Extension

Diebold and Inoue (2001) show that long-range dependence models and regime switching models are
intimately related in several circumstances, including a simple mixture model, stochastic permanent
break model, and Markov-switching model. They demonstrate that with suitably adapted time varying
transition probabilities these regime switching models can generate an autocovariance structure. This
autocovariance structure is similar to the fractionally integrated processes. Banerjee and Urga (2005)
provide an overiew of the recent development in the studies of modeling regime switching and long-range
dependence.

Haldrup and Nielsen (2006) propose a regime switching multiplicative seasonal ARFIMA model that
accommodates both fractional integration and regime switching simultaneously. The model is:

Ast(L) (1 − αst L
24)(1 − L)dst (yt − µst) = εst,t, εst,t ∼ nid(0, σ2

st
)

where Ast(L) is an eighth order lag polynomial capturing the within-the-day effects. The polynomial
(1 − αstL

24) stands for a daily quasi-difference filter, st = 0, 1 denotes the regime determined by a
Markov chain with transition probabilities, and µ is the mean.

6. Fractal Processes and Long-Range Dependence

Fractal processes (self-similar processes) are tightly connected with the analysis of long-range depen-
dence. Self-similar processes are invariant in distribution with respect to changes of time and space
scale. The scaling coefficient or self-similarity index is a non-negative number denoted by H, the Hurst
parameter. If {X(t + h) −X(h), t ∈ T} d= {X(t) −X(0), t ∈ T} for all h ∈ T , the real-valued process
{X(t), t ∈ T} has stationary increments. Samorodnisky and Taqqu (1994) provide a succinct expression
of self-similarity: {X(at), t ∈ T} d= {aHX(t), t ∈ T}. The process {X(t), t ∈ T} is called H-sssi if
it is self-similar with index H and has stationary increments. Long-range dependence processes are
asymptotically second-order self-similar (see, Willinger et al (1998)).
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6.1 Specification of the Fractal Processes

Lamperti (1962) first introduced semi-stable processes (which we nowadays call self-similar processes).
Let T be either R,R+ = {t : t ≥ 0} or {t : t > 0}. Then the real-valued process {X(t), t ∈ T} is
self-similar with Hurst index H > 0 (H-ss) for any a > 0 and d ≥ 1, t1, t2, ..., td ∈ T , satisfying:(

X(at1), X(at2), ..., X(atd)
)

d=
(
aHX(t1), aHX(t2), ...aHX(td)

)
. (57)

6.1.1 Fractional Gaussian Noise

For a given H ∈ (0, 1) there is basically a single Gaussian H-sssi process, namely fractional Brownian
motion (fBm) that was first introduced by Kolmogorov (1940). Mandelbrot and Wallis (1968) and
Taqqu (2003) clarify the definition of fBm as a Gaussian H-sssi process {BH(t)}t∈R with 0 < H < 1.
Mandelbrot and van Ness (1968) defined the stochastic representation

BH(t) :=
1

Γ(H + 1
2)

(∫ 0

−∞
[(t− s)H−

1
2 − (−s)H−

1
2 ]dB(s) +

∫ t

0
(t− s)H−

1
2dB(s)

)
(58)

where Γ(·) represents the Gamma function:

Γ(a) :=
∫ ∞

0
xa−1e−xdx

and 0 < H < 1 is the Hurst parameter. The integrator B is the ordinary Brownian motion. The main
difference between fractional Brownian motion and ordinary Brownian motion is that the increments
in Brownian motion are independent while in fractional Brownian motion they are dependent. As to
the fractional Brownian motion, Samorodnitsky and Taqqu (1994) define its increments {Yj , j ∈ Z} as
fractional Gaussian noise (fGn), which is, for j = 0,±1,±2, ..., Yj = BH(j − 1)−BH(j).

6.1.2 Fractional Stable Noise

Fractional Brownian motion can capture the effect of long-range dependence, but has less power to
capture heavy tailedness. The existence of abrupt discontinuities in financial data, combined with the
empirical observation of sample excess kurtosis and unstable variance, confirms the stable Paretian
hypothesis first identified by Mandelbrot (1963, 1983). It is natural to introduce stable Paretian distri-
bution in self-similar processes in order to capture both long-range dependence and heavy tailedness.
Samorodinitsky and Taqqu (1994) introduce the α-stable H-sssi processes {X(t), t ∈ R} with 0 < α < 2.
If 0 < α < 1, the Hurst parameter values are H ∈ (0, 1/α] and if 1 < α < 2, the Hurst parameter
values are H ∈ (0, 1]. There are many different extensions of fractional Brownian motion to the stable
distribution. The most commonly used is the linear fractional stable motion (also called linear fractional
Lévy motion), {Lα,H(a, b; t), t ∈ (−∞,∞)}, which is defined by Samorodinitsky and Taqqu (1994) as
follows:

Lα,H(a, b; t) :=
∫ ∞

−∞
fα,H(a, b; t, x)M(dx) (59)

where

fα,H(a, b; t, x) := a

(
(t− x)

H− 1
α

+ − (−x)H−
1
α

+

)
+ b

(
(t− x)

H− 1
α

− − (−x)H−
1
α

−

)
(60)

24



and where a, b are real constants, |a| + |b| > 1, 0 < α < 2, 0 < H < 1 H 6= 1/α, and M is an α-
stable random measure on R with Lebesgue control measure and skewness intensity β(x), x ∈ (−∞,∞)
satisfying: β(·) = 0 if α = 1. They define linear fractional stable noises expressed by Y (t), and
Y (t) = Xt −Xt−1,

Y (t) = Lα,H(a, b; t)− Lα,H(a, b; t− 1) (61)

=
∫
R

(
a

[
(t− x)

H− 1
α

+ − (t− 1− x)
H− 1

α
+

]
+ b

[
(t− x)

H− 1
α

− − (t− 1− x)
H− 1

α
−

])
M(dx)

where Lα,H(a, b; t) is a linear fractional stable motion defined by equation (3), and M is a stable random
measure with Lebesgue control measure given 0 < α < 2. In this paper, if there is no special indication,
the fractional stable noise (fsn) is generated from a linear fractional stable motion.

Some properties of these processes have been discussed in Mandelbrot and Van Ness (1968), Maejima
(1983), Maejima and Rachev (1987), Manfields et al. (2001), Rachev and Mittnik (2000), Rachev and
Samorodnitsky (2001), Samorodnitsky (1994, 1996, 1998), and Samorodinitsky and Taqqu (1994).

6.2 Estimation of Fractal Processes

6.2.1 Estimating the Self-Similarity Parameter in Fractional Gaussian Noise

Beren (1994) discusses the Whittle estimation (which we discussed earlier) of the self-similarity pa-
rameter. For fractional Gaussian noise, Yt, let f(λ;H) denote the power spectrum of Y after being
normalized to have variance 1 and let I(λ) the periodogram of Yt, that is

I(λ) =
1

2πN

∣∣∣∣∣
N∑
t=1

Yt e
i t λ

∣∣∣∣∣
2

(62)

The Whittle estimator of H is obtained by finding Ĥ that minimizes

g(Ĥ) =
∫ π

−π

I(λ)
f(λ; Ĥ)

dλ (63)

6.2.2 Estimating the Self-Similarity Parameter in FSN

Stoev et al (2002) proposed the least-squares (LS) estimator of the Hurst index based on the finite
impulse response transformation (FIRT) and wavelet transform coefficients of the fractional stable
motion. A FIRT is a filter v = (v0, v1, ..., vp) of real numbers vt ∈ <, t = 1, ..., p, and length p+ 1. It is
defined for Xt by

Tn,t =
p∑
i=0

viXn(i+t) (64)

where n ≥ 1 and t ∈ N . The Tn,t are the FIRT coefficients of Xt, that is, the FIRT coefficients
of the fractional stable motion. The indices n and t can be interpreted as “scale” and “location”. If∑p
i=0 i

rvi = 0, for r = 0, ..., q−1, but
∑p
i=0 i

qvi 6= 0, the filter vi can be said to have q ≥ 1 zero moments.
If {Tn,t, n ≥ 1, t ∈ N} is the FIRT coefficients of fractional stable motion with the filter vi that have at

25



least one zero moment, Stoev et al. prove the following two properties of Tn,t: (1) Tn,t+h
d= Tn,t, and

(2) Tn,t
d= nHT1,t, where h, t ∈ N , n ≥ 1. We suppose that Tn,t are available for the fixed scales nj

j = 1, ...,m and locations t = 0, ...,Mj − 1 at the scale nj , since only a finite number, say Mj , of the
FIRT coefficients are available at the scale nj .

By using these properties, we have

E log |Tnj ,0| = H log nj + E log |T1,0| (65)

The left-hand side of this equation can be approximated by

Ylog(Mj) =
1
Mj

Mj−1∑
t=0

log |Tnj ,t| (66)

Then we get

( Ylog(M1)
...

Ylog(Mm)

)
=

( log n1 1
...

...
log nm 1

)(
H

E log |T1,0|

)
+

( √
M
(
Ylog(M1)− E log |Tn1,0|

)
...√

M
(
Ylog(Mm)− E log |Tnm,0|

)
)

(67)

In short, we can express the above equation as follows

Y = Xθ +
1√
M
ε (68)

Equation (66) shows that the self-similarity parameter H can be estimated by a standard linear regres-
sion of the vector Y against the matrix X. Stoev et al explain this procedure.

6.3.3 Estimating the Parameters of Stable Paretian Distribution

Stable distribution requires four parameters for complete description: an index of stability α ∈ (0, 2]
(also called the tail index), a skewness parameter β ∈ [−1, 1], a scale parameter γ > 0, and a loca-
tion parameter ζ ∈ <. There is unfortunately no closed-form expression for the density function and
distribution function of a stable distribution. Rachev and Mittnik (2000) give the definition of the
stable distribution: A random variable X is said to have a stable distribution if there are parameters
0 < α ≤ 2, −1 ≤ β ≤ 1, γ ≥ 0 and ζ real such that its characteristic function has the following form:

E exp(iθX) =

{
exp{−γα|θ|α(1− iβ(sin θ) tan πα

2 ) + iζθ} if α 6= 1
exp{−γ|θ|(1 + iβ 2

π (sin θ) ln |θ|) + iζθ} if α = 1
(69)

and,

sign θ =


1 if θ > 0
0 if θ = 0

−1 if θ < 0

(70)

Stable density is not only support for all of (−∞,+∞), but also for a half line. For 0 < α < 1 and
β = 1 or β = −1, the stable density is only for a half line.

In order to estimate the parameters of the stable distribution, the maximum likelihood estimator
given in Rachev and Mittnik (2000) has been employed. Given N observations, X = (X1, X2, · · · , XN )′

for the positive half line. The log-likelihood function is of the form
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ln(α, λ;X) = N lnλ+N lnα+ (α− 1)
N∑
i=1

lnXi − λ
N∑
i=1

Xα
i (71)

which can be maximized using, for example, a Newton-Raphson algorithm. It follows from the first-order
condition,

λ = N

(
N∑
i=1

Xα
i

)−1

(72)

that the optimization problem can be reduced to finding the value for α which maximizes the concen-
trated likelihood

ln∗(α;X) = lnα+ αν − ln

(
N∑
i=1

Xα
i

)
(73)

where ν = N−1ΣN
i=1 lnXi. The information matrix evaluated at the maximum likelihood estimates,

denoted by I(α̂, λ̂), is given by

I(α̂, λ̂) =

(
Nα̂−2 ∑N

i=1X
α̂
i lnXi∑N

i=1X
α̂
i lnXi Nλ̂−2

)

It can be shown that, under fairly mild condition, the maximum likelihood estimates α̂ and λ̂ are
consistent and have asymptotically a multivariate normal distribution with mean (α, λ)′(see Rachev
and Mittnik (2000)).

Other methods for estimating the parameters of a stable distribution (i.e., the method of moments
based on the characteristic function, the regression-type method, and the fast Fourier transform method)
are discussed in Stoyanov and Racheva-Iotova (2004a, 2004b, 2004c).

6.4 Simulation of Fractal Processes

6.4.1 Simulation of Fractional Gaussian Noise

Paxson (1997) provides a method to generate the fractional Gaussian noise by using the Discrete Fourier
Transform of the spectral density. Bardet et al. (2003) describe a concrete simulation procedure based on
this method that overcomes some of the implementation issues encountered in practice. The procedure
is:

1. Choose an even integer M . Define the vector of the Fourier frequencies Ω = (θ1, ..., θM/2), where
θt = 2πt/M and compute the vector F = fH(θ1), ..., fH(θM/2), where

fH(θ) =
1
π

sin(πH)Γ(2H + 1)(1− cos θ)
∑
t∈ℵ

|2πt+ θ|−2H−1

fH(θ) is the spectral density of fGn.

2. Generate M/2 i.i.d exponential Exp(1) random variables E1, ..., EM/2 and M/2 i.i.d uniform
U [0, 1] random variables U1, ..., UM/2.
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3. Compute Zt = exp(2iπUt)
√
FtEt, for t = 1, ...,M/2.

4. Form the M -vector: Z̃ = (0, Z1, ...Z(M/2)−1, ZM/2, Z(M/2)−1, ..., Z1).

5. Compute the inverse FFT of the complex Z to obtain the simulated sample path.

6.4.2 Simulation of Fractional Stable Noise

Replacing the integral in equation (61) with a Riemann sum, Stoev and Taqqu (2004) generate the ap-
proximation of fractional stable noise. They introduce parameters n,N ∈ ℵ, then express the fractional
stable noise Y (t) as

Yn,N (t) :=
nN∑
j=1

(
(
j

n
)H−1/α
+ − (

j

n
− 1)H−1/α

+

)
Lα,n(nt− j) (74)

where Lα,n(t) := Mα((j + 1)/n) −Mα(j/n), j ∈ <. The parameter n is mesh size and the parameter
M is the cut-off of the kernel function.

Stoev and Taqqu (2003) describe an efficient approximation involving the Fast Fourier Transforma-
tion (FFT) algorithm for Yn,N (t). Consider the moving average process Z(m), m ∈ ℵ,

Z(m) :=
nM∑
j=1

gH,n(j)Lα(m− j) (75)

where

gH,n(j) :=
(
(
j

n
)H−1/α − (

j

n
− 1)H−1/α

+

)
n−1/α (76)

and where Lα(j) is the series of i.i.d standard stable Paretian random variables. Since Lα,n(j)
d=

n−1/αLα(j), j ∈ <, equation (74) and (75) imply Yn,N (t) d= Z(nt), for t = 1, ..., T . Then, the computing
is moved to focus on the moving average series Z(m), m = 1, ..., nT . Let L̃α(j) be the n(N+T )-periodic
with L̃α(j) := Lα(j), for j = 1, ..., n(N + T ) and let g̃H,n(j) := gH,n(j), for j = 1, ..., nN ; g̃H,n(j) := 0,
for j = nN + 1, ..., n(N + T ), then

{Z(m)}nTm=1
d=
{ n(N+T )∑

j=1

g̃H,n(j)L̃α(n− j)
}nT
m=1

(77)

because for all m = 1, ..., nT , the summation in equation (75) involves only Lα(j) with indices j in the
range −nN ≤ j ≤ nT − 1. Using a circular convolution of the two n(N + T )-periodic series g̃H,n and
L̃α computed by using their Discrete Fourier Transforms (DFT), the variables Z(n), m = 1, ..., nT (i.e.,
the fractional stable noise) can be generated.

6.5 Implications of Fractal Processes

Fractal processes have been applied to the study of computer networks. Leland et al. (1994) and
Willinger et al. (1997) employ fractal processes in modeling Ethernet traffic. Feldmann et al. (1998)
discuss the fractal processes in the measurement of TCP/IP and ATM WAN traffic. Paxson and Floyd
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(1995), Paxson (1997), and Feldmann et al. (1998) discuss the characteristics of self-similarity in wide-
area traffic with respect to the fractal processes. Crovella and Bestavros (1997) provide evidence of self-
similarity in world-wide web traffic by means of fractal processes modeling. An extensive bibliographical
review of the research in the area of network traffic and network performance involving the fractal
processes and self-similarity is provided by Willinger et al. (1996). Sahinoglu and Tekinay (1999)
survey studies on the self-similarity phenomenon in multimedia traffic and its implications in network
performance.

Baillie (1996) provides a survey of the major econometric research on long-range dependence processes,
fractional integration, and applications in economics and finance. Bhansali and Kokoszka (2006) re-
view recent research on long-range dependence time series. Recent theoretical and empirical research
on long-range dependence in economics and finance is provided by Rangarajan and Ding (2006) and
Teyssiére and Kirman (2006).

Based on the modeling mechanism of fractal processes, Sun et al. (2006) empirically compare frac-
tional stable noise with several alternative distributional assumptions in either fractal form or i.i.d. form
(i.e., normal distribution, fractional Gaussian noise, generalized extreme value distribution, generalized
Pareto distribution, and stable distribution) for modeling returns of major German stocks. The empir-
ical results suggest that fractional stable noise dominate these alternative distributional assumptions
both in in-sample modeling and out-of-sample forecasting. This finding suggests that the model built
on non-Gaussian non-random walk (fractional stable noise) performs better than those models based on
either the Gaussian random walk, the Gaussian non-random walk, or the non-Gaussian random walk.

7. Summary

In this paper, we review recent studies in finance that use intra-daily price and return data. A large
body of research confirms stylized facts (for example, random durations, heavy tailedness, seasonality,
and long-range dependence) based on intra-daily data from both the equity market and the foreign
exchange market. We summarize the stylized facts reported in the intra-daily data literature. We
discuss the research fields in finance where the use of intra-daily data have attracted increased interest
and potential applications, such as stylized facts modeling, market volatility and liquidity analysis, and
market microstructure theory.

Recent research shows that intra-daily data exhibit strong dependence structure. In order to pull
together long-range dependence study with intra-daily analysis, we briefly introduce research on long-
range dependence and fractal processes. The principal problem in long-range dependence modeling
is measuring the self-similar coefficient, i.e., the Hurst index. We review the studies on long-range
dependence from three viewpoints: in the time domain, in the frequency domain, and with respect
to econometric models. Modeling long-range dependence in intra-daily data with the help of fractal
processes is introduced.
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