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Abstract

We introduce a new variant of the tempered stable distribution, named
the modified tempered stable (MTS) distribution and we develop a GARCH
option pricing model with MTS innovations. This model allows the de-
scription of some stylized empirical facts observed in financial markets,
such as volatility clustering, skewness, and heavy tails of stock returns.
To demonstrate the advantages of the MTS-GARCH model, we present
the results of the parameter estimation.
Key words: option pricing, GARCH process, tempered stable distribu-
tion, volatility clustering

1 Introduction

Since Black and Scholes [2] introduced the pricing and hedging theory for the

option market, their model has been the most popular model for option pricing.

However, the model which assumes homoskedasticity and lognormality, cannot

explain stylized empirical facts such as skewness, heavy tails, and volatility

clustering of stock returns.

To explain these empirical facts, Mandelbrot [12, 13] was the first to use a

non-normal Lévy process as an asset price process. Hurst, Platen and Rachev

[9] used a model based on stable processes to price options. However, stable

distributions have infinite moments of the second or higher order because of

the heavy distributional tails. To have more adaptability, the class of tem-

pered stable processes has been introduced under different names including:

“truncated Lévy flight” (Koponen [11]), “KoBoL” process (Boyarchenko and

Levendorskĭi [3]), and “CGMY” process (Carr et al. [4]). Rosiński [17] general-

ized the notion of tempered stable processes. In his extension, tempered stable

processes are characterized by the spectral (Rosiński) measure. Moreover, sev-

eral concrete subclasses of the generalized tempered stable distributions and

related Ornstein-Uhlenbeck processes have been presented in [20]. By assuming

a Markovian stock return process and by considering the generalized Fourier

transform, Carr et al. [4] obtained a close form solution to price European op-

tions. However, the Markov property is often rejected by the empirical evidence
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as in the case in which stock returns exhibit volatility clustering.

The GARCH option pricing models have been developed to price options un-

der the assumption of volatility clustering. GARCH models of Duan [6], Heston

and Nandi [8] are remarkable works on the non-Markovian structure of asset re-

turns even though they did not take into account conditional leptokurtosis and

skewness. Duan et al. [7] modified the classical GARCH model by adding jumps

to the innovation processes. Furthermore, Menn and Rachev [15, 16] introduced

an enhanced GARCH model with innovations which follow the smoothly trun-

cated stable (STS) distribution; it also has a finite variance and at the same

time allows for conditional leptokurtosis and skewness.

In this paper, we introduce a variant of the tempered stable distributions,

called a modified tempered stable (MTS) distribution, and apply it to the

GARCH option pricing model.

The MTS distribution is obtained by taking an α-stable law and multiplying

the Lévy measure by a modified Bessel function of the second kind onto each

half of the real axis. It is infinitely divisible, has a closed form characteristic

function, finite moments of all orders. Its Lévy measure behaves asymptotically

like the α-stable distribution near zero and has exponential decay of the tails.

We can show that MTS distribution is not included in the class of Rosiński’s

tempered stable distributions, but has properties similar to the tempered stable

distributions.

The GARCH option pricing model presented in this paper follows the method

introduced by Menn and Rachev [15, 16]. However, instead of STS innovations,

we assume that the innovations of the classical GARCH model follow the MTS

distribution with zero mean and unit variance, and we are able to describe both

leptokurtosis and skewness. In contrast to the STS distribution, the Laplace

transform of a MTS distribution is analytic, therefore it is more tractable. More-

over, it is infinitely divisible and its characteristic function provides a concrete

method to find an equivalent martingale measure by applying a general result
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on density transformations for Levy processes, presented by Sato [19].

The remainder of this paper is organized as follows: Section 2 introduces the

MTS distribution. The characteristic function, the cumulant, and asymptotic

behavior of the MTS distribution are presented in the first subsection, followed

by measure changes of the MTS distributions. The GARCH model with MTS

innovations and its empirical investigations are reported in the third section.

Section 4 is a summary of our conclusions. Proofs are presented in the Appendix.

2 The Model

2.1 Tempered Stable Distributions

Before introducing the MTS distribution and the MTS-GARCH model, let

us review the tempered stable distribution. It is well known that α-stable dis-

tributions have infinite p-th moments for all p ≥ α. This is due to the fact

that its Lévy density decays polynomially. Tempering of the tails with the ex-

ponential rate is one choice to ensure finite moments. The Tempered Stable

(TS) distribution is obtained by taking a symmetric α-stable distribution and

multiplying the Lévy measure with exponential functions on each half of the

real axis. Indeed, it is defined in the following:

Definition 2.1. An infinitely divisible distribution is called a tempered stable

(TS) distribution with parameter (C1, C2, λ+, λ−, α), if its Lévy triplet (σ2, ν, γ)

is given by σ = 0, γ ∈ R and

(2.1) ν(dx) =
(

C1e
−λ+x

x1+α
1x>0 +

C2e
−λ−|x|

|x|1+α
1x<0

)
dx,

where C1, C2, λ+, λ− > 0 and α < 2.

This process was first introduced by Koponen [11] under the name of Trun-

cated Lévy Flights. In particular, if C1 = C2 = C > 0, then this distribution

is called the CGMY distribution which has been used in Carr et al. [4] for

financial modeling. In the above definition, λ+ and λ− give the tail decay rates,
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α describes the jumps near zero, and C1 and C2 determine the arrival rate of

jumps for a given size.

The characteristic function φTS for a tempered stable distribution is given

by

φTS(u) = exp(iuµ + C1Γ(−α)((λ+ − iu)α − λα
+)(2.2)

+ C2Γ(−α)((λ− + iu)α − λα
−)),

for some µ ∈ R. Moreover, φTS can be extended to the region {z ∈ C : Im(z) ∈
(−λ−, λ+)}. The proof can be found in [4, 5, 10]. Using the characteristic

function, we obtain cumulants

cm(X) =
dm

dum
log φTS(u)

∣∣∣
u=0

of all orders.

Proposition 2.2. Let X be a tempered stable distributed random variable whose

characteristic function is given by (2.2). The cumulant cn(X) of X is given by

cn(X) = Γ(n− α)C1λ
α−n
+ + (−1)nΓ(n− α)C2λ

α−n
− , for n ∈ N, n ≥ 2,

and c1(X) = µ + Γ(1− α)C1λ
α−1
+ − Γ(1− α)C2λ

α−1
− .

2.2 Rosiński’s Generalization of Tempered Stable Distri-
butions

In this section we will review the definition of the generalized tempered

stable distributions introduced by Rosiński [17]. Let the Lévy measure M0 of

an α-stable distribution on Rd in polar coordinates be of the form

(2.3) M0(dr, du) = r−α−1dr σ(du)

where α ∈ (0, 2) and σ is a finite measure on Sd−1. A (generalized) tempered

α-stable distribution is defined by tempering the radial term of M0 as follows:
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Definition 2.3 (Definition 2.1. in [17]). Let α ∈ (0, 2) and σ be a finite measure

on Sd−1. A probability measure on Rd is called tempered α-stable (denoted as

TαS) if is infinitely divisible without Gaussian part and whose Lévy measure M

can be written in polar coordinates as

(2.4) M(dr, du) = r−α−1q(r, u)dr σ(du).

where q : (0,∞) × Sd−1 7→ (0,∞) is a Borel function such that q(·, u) is com-

pletely monotone with q(∞, u) = 0 for each u ∈ Sd−1. A TαS distribution is

called a proper TαS distribution if limr→0+ q(r, u) = 1 for each u ∈ Sd−1.

The completely monotonicity of q(·, u) means that (−1)n d
dr q(r, u) > 0 for

all r > 0, u ∈ Sd−1, and n = 0, 1, 2, · · · .
TαS distributions are characterized by the spectral measure or Rosiński mea-

sure defined in Definition 2.4 in [17]. Moreover, [17] presents the characteristic

function, short and long time behavior, absolute continuity, and shot-noise-type

series representation for TαS distributions and Lévy processes induced by the

TαS distributions.

2.3 The Modified Tempered Stable Distributions

In this section, we introduce a variant of the tempered stable distribution

named Modified Tempered Stable (MTS) distribution. The MTS distribution

is defined as follows:

Definition 2.4. An infinitely divisible distribution is said to be a modified

tempered stable (MTS) distribution if its Lévy triplet is given by

σ2 = 0

ν(dx) = C


λ+

α+1
2 Kα+1

2
(λ+x)

x
α+1

2

1x>0 +
λ−

α+1
2 Kα+1

2
(λ−|x|)

|x|α+1
2

1x<0


 dx

γ = µ + C

(
Γ

(
1−α

2

)

2
α+1

2

(
λα−1

+ − λα−1
−

)− λ
α−1

2
+ Kα−1

2
(λ+) + λ

α−1
2− Kα−1

2
(λ−)

)
,
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where C > 0, λ+, λ− > 0, µ ∈ R, α ∈ (−∞, 2) \ {1} and Kp(x) is the modified

Bessel function of the second kind (See [1, p.290]). We denote an MTS dis-

tributed random variable X by X ∼ MTS(α, C, λ+, λ−, µ). The Lévy measure

ν(dx) is called the MTS Lévy measure with parameter (α, C, λ+, λ−).

The MTS distribution is obtained by taking a symmetric α-stable distribu-

tion with α ∈ (0, 2) and multiplying the Lévy measure with (λ|x|)α+1
2 Kα+1

2
(λ|x|)

on each half of the real axis. The measure can be extended to the case of α ≤ 0.

If α = 1, then γ may not be defined. Hence, we remove it. The following result

shows that ν(dx) is a Lévy measure.

Proposition 2.5. Let ν be a Borel measure on R such that ν(0) = 0 and

(2.5) ν(dx) = C


λ+

α+1
2 Kα+1

2
(λ+x)

x
α+1

2

1x>0 +
λ−

α+1
2 Kα+1

2
(λ−|x|)

|x|α+1
2

1x<0


 dx,

where C > 0, λ+, λ− > 0, and α < 2. Then the measure ν is a Lévy measure

on R.

The next result follows from (A.2) and (A.3) in the Appendix.

Proposition 2.6. Let

f(x) = C


λ+

α+1
2 Kα+1

2
(λ+x)

x
α+1

2

1x>0 +
λ−

α+1
2 Kα+1

2
(λ−|x|)

|x|α+1
2

1x<0


 ,

where C > 0, λ+, λ− > 0 and α ∈ (0, 2) \ {1}. Then

f(x) ∼ 2
α−1

2 CΓ
(

α + 1
2

)
1

xα+1
, as x → 0,(2.6)

f(x) ∼
√

π

2
Cλ

α
2
+

e−λ+x

x
α
2 +1

, as x →∞,(2.7)

f(x) ∼
√

π

2
Cλ

α
2−

e−λ−|x|

|x|α
2 +1

, as x → −∞.(2.8)

Remark 2.7. The Lévy measures of MTS distribution behaves like α-stable

distribution near zero and decreases exponentially with rates λ+ and λ− at the

tails.

7



The Lévy measure ν of the MTS distribution can be reformed in polar co-

ordinates as

ν(dx) = MMTS(dr, du) = r−α−1qMTS(r, u)dr σ(du),

where σ is a finite measure on S0 = {−1, 1} such that

σ({1}) = σ({−1}) = 2
α−1

2 CΓ
(

α + 1
2

)
,

and the polar coordinate function qMTS : (0,∞)× S0 7→ (0,∞) is given by

(2.9) qMTS(r, u) =





2
1−α

2

(
Γ

(
α + 1

2

))−1

(λ+r)
α+1

2 Kα+1
2

(λ+r), u = 1

2
1−α

2

(
Γ

(
α + 1

2

))−1

(λ−r)
α+1

2 Kα+1
2

(λ−r), u = −1
.

The MTS distribution is not in the class of the tempered α stable distribution

generalized by Rosiński, while MMTS(dr, du) looks like equation (2.4). Indeed,

qMTS(∞, u) = 0 and limr→0+ qMTS(r, u) = 1, but ∂2

∂r2 qMTS(r, u) is not always

positive. Figure 1 shows the graph of y = ∂2

∂r2 qMTS(r, 1) provided that λ+ = 1

and α = 1.5. We can show that ∂2

∂r2 qMTS(r, 1) < 0 if 0 < r < 1. It means,

qMTS(·, u) is not completely monotone, and hence the MTS distribution does

not satisfy the condition of complete monotonicity in Definition 2.3.

The characteristic function of the MTS distribution is given in the following

result.

Theorem 2.8. Let X ∼ MTS(α, C, λ+, λ−, µ). Then the characteristic func-

tion of X is given by

φX(u; α, C, λ+, λ−, µ) = exp(iuµ + GR(u;α,C, λ+, λ−) + GI(u;α,C, λ+, λ−)),

where for u ∈ R,

GR(u; α, C, λ+, λ−)

=

{ √
π2−

α
2− 3

2 CΓ(−α
2 )

(
(λ2

+ + u2)
α
2 − λα

+ + (λ2
− + u2)

α
2 − λα

−
)

if α 6= 0
√

π2−
3
2 C

(
log

(
λ2

+

λ2
++u2

)
+ log

(
λ2
−

λ2
−+u2

))
if α = 0
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Figure 1: Graph of y = ∂2

∂r2 qMTS(r, 1) where λ+ = 1 and α = 1.5.

and

GI(u; α,C, λ+, λ−)

=
iuCΓ

(
1−α

2

)

2
α+1

2

(
λα−1

+ F

(
1,

1− α

2
;
3
2
;− u2

λ2
+

)
− λα−1

− F

(
1,

1− α

2
;
3
2
;− u2

λ2−

))
,

where F is the hypergeometric function See [1, p.361]. Moreover, φX can be

extended to the region {z ∈ C : |Im(z)| < λ+ ∧ λ−}.

Corollary 2.9. Let X ∼ MTS(α, C, λ+, λ−; µ). Then the Laplace transform

of X is given by

E[exp(uX)](2.10)

= exp (uµ + GR(−iu;α,C, λ+, λ−) + GI(−iu; α, C, λ+, λ−))

for u ∈ C with |Re(u)| < λ+ ∧ λ−.

Using the characteristic function, we obtain the cumulants of all orders.

Proposition 2.10. Let X ∼ MTS(α, C, λ+, λ−, µ) with α ∈ (−∞, 1) \ { 1
2}.
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The cumulants cm(X) of X are given as follows :

(2.11)

cm(X) =





µ + 2−
α+1

2 CΓ
(

1−α
2

) (
λα−1

+ − λα−1
−

)
if m = 1

2m−α+3
2

(
m− 1

2

)
!CΓ

(
m− α

2

) (
λα−m

+ − λα−m
−

)
if m = 3, 5, 7, · · ·

2−
α+3

2
√

π
m!(
m
2

)
!
CΓ

(
m− α

2

) (
λα−m

+ + λα−m
−

)
if m = 2, 4, 6 · · ·

Remark 2.11. Let X ∼ MTS(α, C, λ+, λ−, µ).

1. By Proposition 2.10, we obtain the mean, variance, skewness and excess

kurtosis of X which are given as follows :

E[X] = c1(X) = µ + 2−
α+1

2 CΓ
(

1− α

2

) (
λα−1

+ − λα−1
−

)

Var(X) = c2(X) = 2−
α+1

2
√

πCΓ
(
1− α

2

) (
λα−2

+ + λα−2
−

)

s(X) =
c3(X)
c2(X)

3
2

=
2

α+9
4 Γ

(
3−α

2

) (
λα−3

+ − λα−3
−

)

π
3
4 C

1
2

(
Γ

(
1− α

2

) (
λα−2

+ + λα−2
−

)) 3
2

k(X) =
c4(X)
c2(X)2

=
3 · 2α+3

2 Γ
(
2− α

2

) (
λα−4

+ + λα−4
− )

)
√

πC
(
Γ

(
1− α

2

)
(λα−2

+ + λα−2
− )

)2 .

2. Figure 2 illustrates the dependence of skewness s(X) and excess kurtosis

k(X) on λ+ and λ− when α and C are fixed.

3. λ+ and λ− control the rate of decay on the positive and negative part,

respectively. If λ+ > λ− (λ+ < λ−), then the distribution is skewed to

the left (right). Moreover, if λ+ = λ−, then it is symmetric. Figure 3

illustrates this fact.

4. C controls the kurtosis of the distribution. If C increases, then the peak-

ness of the distribution decreases. Figure 4 shows the effect of C.

5. Figure 5 shows that as α decreases, the distribution has fatter tails and in-

creased peakness. Indeed, we can show that the Lévy process corresponding

to the MTS distribution has finite activity if α < 0 and infinite activity if
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Figure 2: Skewness and Excess Kurtosis of MTS distributions : dependence on
λ+ and λ−. Parameters : α = 1.4, C = 0.02, µ = 0, t = 1.

α ≥ 0. Moreover it has finite variation if α < 1 and infinite variation if

α ≥ 1 (See Proposition 3.5.4 of [10]).

If we put

C = 2
α+1

2

(√
πΓ

(
1− α

2

) (
λα−2

+ + λα−2
−

))−1

and

µ = −2−
α+1

2 CΓ
(

1− α

2

) (
λα−1

+ − λα−1
−

)
,

then X ∼ MTS(α, C, λ+, λ−, µ) has zero mean and unit variance. In this case,

we say that the random variable X has the standard MTS distribution, and

denote X ∼ stdMTS(α, λ+, λ−).

2.4 Measure Change On Modified Tempered Stable Dis-
tributions

To apply the MTS distributions to no-arbitrage option pricing, we would

need to determine an equivalent martingale measure (EMM). In this section,
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figSkewnessOfMTL

we review a general result of equivalence of measures presented by Sato [19] and

apply it to the MTS distribution. The following theorem is a particular case of

Theorem 33.1 in [19].

Theorem 2.12. Let (X,P) and (X,Q) be two infinitely divisible random vari-

ables on R with Lévy triplet (σ2, ν, γ) and (σ̃2, ν̃, γ̃) respectively. Then P and

Q are equivalent if, and only if, the Lévy triplet satisfies

(2.12) σ2 = σ̃2,

(2.13)
∫ ∞

−∞
(eψ(x)/2 − 1)2ν(dx) < ∞,

where ψ(x) = log
(

ν̃(dx)
ν(dx)

)
. If σ2 = 0 then

(2.14) γ̃ − γ =
∫

|x|≤1

x(ν̃ − ν)(dx).
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Figure 4: Probability density of the MTS distributions: dependence on C.
Parameters : C ∈ {0.0025, 0.005, 0.01, 0.02}, α = 1.4, λ+ = 50, λ− = 50, µ = 0.

Since MTS distributions are infinitely divisible, we can apply Theorem 2.12

to obtain the change of measure.

Proposition 2.13. Let (X,P) and (X,Q) be two MTS distributed random vari-

ables on R with parameters (α,C, λ+, λ−, µ) and (α̃, C̃, λ̃+, λ̃−, µ̃), respectively.

Then P and Q are equivalent if, and only if, C = C̃, α = α̃ and µ = µ̃.

3 The MTS-GARCH Option Pricing Model

The MTS-GARCH stock price model is defined over a filtered probabil-

ity space (Ω, F, (Ft)t∈N,P) which is constructed as follows: Consider a sequence

(εt)t∈N of iid real random variables on a sequence of probability spaces (Ωt,Pt)t∈N,

such that εt ∼ stdMTS(α, λ+, λ−) on the space (Ωt,Pt). Next, we define

Ω :=
∏

t∈N Ωt, Ft := ⊗t
k=1σ(εk)⊗F0⊗F0 · · · , F := σ (∪t∈NFt) , and P := ⊗t∈NPt,

where F0 = {∅,Ω} and σ(εk) means the σ-algebra generated by εk on Ωk.
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We propose the following model for the stock price dynamics:

(3.1) log
(

St

St−1

)
= rt − dt + λtσt − g(σt; α, λ+, λ−) + σtεt, t ∈ N,

where St denotes the price of the underlying asset at time t, rt and dt de-

note the risk free rate and dividend rate for the period [t − 1, t], and λt is a

Ft−1 measurable random variable. S0 is the present observed price. The func-

tion g(x;α, λ+, λ−) is the characteristic exponent of the Laplace transform for

the distribution stdMTS(α, λ+, λ−), i.e. g(x; α, λ+, λ−) = log(EPt
[exp(xεt)]).

The function g(x;α, λ+, λ−) is defined if x ∈ (−λ−, λ+) and its value can

be obtained from (2.8) if |x| < λ+ ∧ λ−, and by numerical calculation if

x ∈ {x ∈ (−λ−, λ+) | |x| ≥ λ+ ∧ λ−}. The one period ahead forecast variance

σ2
t at time t− 1 follows a GARCH(1,1) process with a restriction 0 < σt < λ+,

i.e.

σ2
t = (α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1) ∧ ρ, t ∈ N, ε0 = 0,(3.2)

where the coefficients α0, α1, and β1 are non-negative, α1 + β1 < 1, α0 > 0,

14



and 0 < ρ < λ2
+. Clearly σt is Ft−1-measurable and hence the process (σt)t∈N

is predictable. Moreover, the conditional expectation E[Ŝt/Ŝt−1|Ft−1] equals

exp(rt + λtσt) where Ŝt = St exp (
∑t

k=1 dk) is the stock price considering re-

investment of the dividends, thus λt can be interpreted as the market price of

risk.

Remark 3.1. If εt equals the standard normal distributed random variable for

all t ∈ N, g is to be the Laplace transform of εt and we ignore the restriction

σt < λ+, then the model becomes ‘the normal GARCH model’ introduced by

Duan [6].

Proposition 3.2. Let t ∈ N be fixed and εt ∼ stdMTS(α, λ+, λ−) under Pt.

Suppose positive real numbers λ̃+ and λ̃− satisfy the equation

(3.3) λα−2
+ + λα−2

− = λ̃α−2
+ + λ̃α−2

− .

Let

(3.4) k = 2−
α+1

2 CΓ
(

1− α

2

) (
λα−1

+ − λα−1
− − λ̃α−1

+ + λ̃α−1
−

)
,

where

C = 2
α+1

2

(√
πΓ

(
1− α

2

)
(λα−2

+ + λα−2
− )

)−1

.

Then, there is a probability measure Qt equivalent to Pt, such that (εt + k) ∼
stdMTS(α, λ̃+, λ̃−).

Assumption (A) (i) There exist λ̃+ and λ̃− satisfying equations (3.3) and

λ̃+ ≥ λ+. (ii) The market price of risk λt is given by λt = k−(g(σt;α, λ̃+, λ̃−)−
g(σt; α, λ+, λ−))/σt, for each 0 ≤ t ≤ T , where k is defined as (3.4).

Under Assumption (A), let Qt be the measure described in Proposition 3.2.

Definition 3.3. Let T ∈ N be the time horizon. Define a new measure Q on

FT equivalent to measure P, with a Radon-Nikodym derivative dQ
dP = ZT where

15



the density process (Zt)0≤t≤T is defined according to

Z0 ≡ 1,

Zt :=
d(P1 ⊗ · · · ⊗Pt−1 ⊗Qt ⊗Pt+1 ⊗ · · · ⊗PT )

dP
Zt−1, t = 1, 2, · · · , T.

Lemma 3.4. The measure Q satisfies the following requirements:

(a) The discount asset price process (e−rt Ŝt)1≤t≤T is a Q-martingale w.r.t.

the filtration (Ft)1≤t≤T .

(b) We have

VarQ

(
log

(
St

St−1

) ∣∣∣Ft−1

)
a.s.= VarP

(
log

(
St

St−1

) ∣∣∣Ft−1

)
, 1 ≤ t ≤ T

(c) The stock price dynamics under Q can be written as

log
(

St

St−1

)
= rt − dt − g(σt; α, λ̃+, λ̃−) + σtξt, 1 ≤ t ≤ T

where (ξt)1≤t≤T is a sequence of real random variables on Ωt satisfying

ξt ∼ stdMTS(α, λ̃+, λ̃−) under Qt for 1 ≤ t ≤ T . The variance process

under Q has the form

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − k)2 + β1σ

2
t−1) ∧ (λ2

+(1− ε)), t ∈ N, ξ0 = 0.

The stock price dynamics under Q which is stated in Lemma 3.4 (c) is called

the MTS-GARCH risk neutral price process. The arbitrage free price of a call

option with strike price K and maturity T is given by

(3.5) Ct = exp

(
−

T∑

k=t+1

rk

)
EQ[(ST −K)+|Ft]

where the stock price ST at time T is given by

ST = St exp

(
T∑

k=t+1

(
(rk − dk)− g(σt; α, λ̃+, λ̃−) + σkξk

))
.
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3.1 Estimation of the Parameters for the GARCH models

In this section, we report on the maximum likelihood estimation (MLE)

of both normal-GARCH and MTS-GARCH models. In our empirical study,

we use a data set including the S&P 500 index (SPX), International Business

Machines (IBM), Johnson and Johnson (JNJ), and 3M (MMM) from April 1,

1996 to March 31, 2006. Data are supplied by Yahoo! Finance. For the daily

risk-free rate, we pick the yields of the 3-month T-bills and change them to the

continuous compound rate. To simplify the estimation, we impose a constant

market price of risk λ. For IBM, JNJ, and MMM, we use the adjusted-closing

prices to estimate the market parameters with the MLE. The adjusted-closing

prices adjust for all applicable stock splits and stock dividend distributions.

Our estimation procedure is as follows : First, we estimate the parameters

α0, α1, β1, and the constant market price of risk λ from the normal-GARCH

model. Second, we fix α0, α1, β1, and λ and then estimate α, λ+, and λ−

from the MTS-GARCH model. Here we assume that σ2
0 = α0/(1 − α1 − β1)

and ρ = max{σ2
t : t is the observed date.}. We list the estimated GARCH

parameters and the parameters for the standard MTS distribution in Table 1.

For the assessment of the goodness-of-fit, we use the Kolmogrov-Smirnov

(KS) test. Moreover, we calculate the Anderson-Darling (AD) statistic to better

evaluate the tail fit. The KS statistic is defined as

KS = sup
xi

|F (xi)− F̂ (xi)|,

and the AD statistic is defined as

AD = sup
xi

|F (xi)− F̂ (xi)|√
F (xi)(1− F (xi))

,

where F is the cumulative distribution function and F̂ is the empirical cumu-

lative distribution function for a given observation {xi}. Table 2 provides the

KS statistic and their p-values. The p-values of the KS statistic are calculated

17



Table 1: Estimated parameters

GARCH Parameters Standard MTS
β1 α1 α0 λ α λ+ λ−

SPX 0.9138 0.0767 1.2762e-6 0.0653 1.5479 2.0152 1.0091
IBM 0.9067 0.0904 3.5746e-6 0.0621 1.6705 0.3623 0.4803
JNJ 0.9179 0.0756 2.1964e-5 0.0523 1.4832 0.8032 1.0797

MMM 0.8496 0.1042 1.3184e-6 0.0524 1.4768 0.6163 0.8969

Table 2: Statistic of the goodness of fit tests

Standard Normal Standard MTS
KS(p-value) AD KS(p-value) AD

SPX 0.0307 (0.0180) 435.19 0.0273 (0.0482) 0.6982
IBM 0.0539 (0.0000) 33665 0.0245 (0.0985) 0.4716
JNJ 0.0395 (0.0008) 3656.0 0.0194 (0.3058) 1.2341

MMM 0.0473 (0.0000) 59987 0.0188 (0.3423) 1.2136

using the calculator designed by Marsaglia et al.[14]. According to this table, p-

values of the MTS-GARCH model are larger than those of the normal-GARCH

model. Moreover, we can see that the values of the AD statistic for the stan-

dard MTS case are significantly smaller than that of the standard normal case.

That means the MTS-GARCH model explains the extreme event of the real

innovation process better than the normal-GARCH model does. We give an

example of QQ-plots for the IBM in Figure 6. The empirical density more or

less deviates from the normal distribution and this deviation almost disappears

when we use the MTS distributed innovation process.

3.2 Implied Volatility for the GARCH Option Price mod-
els

In this section, we discuss the property of the implied volatility for the MTS-

GARCH option price model. To determine the risk-neutral parameters, it is

necessary to find λ̃+, λ̃−, and k satisfying (A.1) and (A.2) which is impossible if

the market price of risk λt is a constant. For this reason, the market parameters
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Figure 6: QQ-plots of the MLE fit for the residual distribution of IBM return
process. The left graph is the QQ-plot of the standard normal and empirical
distribution of the innovation processes, and the right graph is the QQ-plot of
the standard MTS and empirical distribution of the innovation processes.

λ+, λ−, α, and the risk-neutral parameters λ̃+, λ̃−, k have to be estimated

simultaneously, in order to obtain the non-constant market price of risk λt.

Instead of estimating risk-neutral parameters, we provide an example of the

risk-neutral parameters in this paper, and give the implied volatility curve for

the call option price given by (3.5).

Since we do not have an efficient analytical form of the option price (3.5),

the call option prices are determined by Monte Carlo simulation with 50,000

sample paths. We let β1 = 0.90, α1 = 0.09, and α0 = 3.5E − 5. Since the

constant market price of risk λ for the normal-GARCH option pricing model

plays the same role as the parameter k does for the MTS-GARCH option pricing

model, we let λ = k = 0.05. The daily risk-free rate of return is assumed to

be constant rt ≡ r = 1.6E − 4. The risk-neutral parameters of the standard

MTS innovation are α = 1.60, λ̃1 = 0.30, and λ̃2 = 0.10 and we assume that

ρ = (0.09)2 = 0.0081 and σ0 = 0.0075. Figure 7 shows the calculated implied

volatilities of the MTS-GARCH and the normal-GARCH model prices of call

options for given parameters. The curves indicate that the volatility curve for

the MTS-GARCH model has larger convexity than the curve of the normal-
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Figure 7: The left picture shows volatility curves for 7 days of the time to
maturity, and the right picture shows the curves for 14 days of the time to
maturity. The dashed line and solid line indicate the implied volatility curve of
the normal-GARCH model and of the MTS-GARCH model, respectively. The
x-axis is the strike price and the y-axis is the implied volatility. We assume that
S0 = 100.

GARCH model. The skewness of the curve for the MTS-GARCH model is also

larger than that of the normal-GARCH model. In the end, we can obtain a

more flexible implied volatility curve using the parameters (α, λ̃1, λ̃2) of the

MTS innovation distribution.

4 Conclusion

This paper introduces an alternative class of tempered stable distributions

which we call the Modified Tempered Stable distribution. It has similar proper-

ties as the TS distribution, but it is not fully included in the generalized class of

the tempered stable distributions by Rosiński. It can properly describe skewness

and kurtosis of asset returns. Next, we introduced an enhanced GARCH-model,

namely the MTS-GARCH model, by applying MTS innovations to the classi-

cal GARCH model. As a result, the MTS-GARCH time series model for stock

returns explains the volatility clustering phenomenon, the leverage effect, and

both conditional skewness and leptokurtosis. The risk neutral measure is ob-

tained by applying a change of measure to the MTS distribution.
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We obtained encouraging results from the empirical study. The empiri-

cal analysis on the S&P 500 index and three different stocks (IBM, JNJ, and

MMM) shows that the values of the goodness-of-fit statistics decrease under the

GARCH model with MTS innovations. By modeling the innovations with the

MTS law, we improved goodness-of-fit statistics for the GARCH model on the

S&P 500 index and the data of four different stock prices. Furthermore, the

Kolmogrov-Smirnov p-values for the MTS-GARCH model are larger than those

for the normal-GARCH model and the Anderson-Darling statistic of the MTS-

GARCH model is significantly smaller than that of the normal-GARCH model.

In the risk-neutral return process, the MTS-GARCH option pricing model offers

a more flexible implied volatility curve than the normal-GARCH model. The

skewness and fat tails of the MTS innovations seem to generate the difference.

Consequently, the MTS-GARCH model can be a more realistic model than the

normal-GARCH model.
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A Appendix

A.1 Special Functions

The modified Bessel function of the second kind (See [1, p290]) is defined as

Kp(x) =
π

2 sin pπ

( ∞∑

k=0

(x/2)2k−p

k!Γ(k − p + 1)
−

∞∑

k=0

(x/2)2k+p

k!Γ(k + p + 1)

)
.(A.1)
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Its asymptotic behavior can be described as follows

(A.2) Kp(x) ∼ e−x

√
π

2x
, p ≥ 0, x →∞

and

(A.3) Kp(x) ∼ Γ(p)
2

(
2
x

)p

, p > 0, x → 0+.

The integral representation of Kp(x) is given by

Kp(x) =
1
2

(x

2

)p
∫ ∞

0

e−t− x2
4t t−p−1 dt

and recurrence formula is given by

(A.4)
d

dx
(xpKp(x)) = −xpKp−1(x).

The following lemma is useful.

Lemma A.1. If µ− p > −1 and a > 0 then
∫ ∞

0

xµKp(ax)dx =
2µ−1

aµ+1
Γ

(
1 + µ + p

2

)
Γ

(
1 + µ− p

2

)
.

Proof. See [1, p299].

Now define the hypergeometric function. Before defining it, let us introduce

a useful notation

(A.5) (a)0 = 1, (a)n = a(a + 1) · · · (a + n− 1), n = 1, 2, 3, · · · , a ∈ R

called the Pochhammer symbol (See [1, p358]). This symbol can also be defined

by

(A.6) (a)n =
Γ(a + n)

Γ(a)
, n = 0, 1, 2, 3, · · · .

The function

(A.7) F (a, b; c; x) =
∞∑

n=0

(a)n(b)n

(c)n

xn

n!
, |x| < 1

is called the hypergeometric function (See [1, p361]).
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Lemma A.2. For k = 1, 2, 3 · · · ,

(A.8)
dk

dxk
F (a, b; c;x) =

(a)k(b)k

(c)k
F (a + k, b + k; c + k; x).

Proof. See [1, p367].

A.2 Proofs of Proposition 2.5

Proof. It suffices to show that

∫ ∞

0

(x2 ∧ 1)
Kα+1

2
(λx)

x
α+1

2

dx < ∞.

We first note that

∫ ∞

0

x2 exp
(
− (λx)2

4t

)
dx =

4t
3
2

λ3

∫ ∞

0

y
1
2 e−ydy =

4
λ3

t
3
2 Γ

(
3
2

)
=

2
√

π

λ3
t

3
2 .

Hence we have

∫ ∞

0

x2
Kα+1

2
(λx)

x
α+1

2

dx =
1
2

(
λ

2

)α+1
2

∫ ∞

0

∫ ∞

0

x2 exp
(
− (λx)2

4t

)
dx e−tt−(α+3

2 )dt

=
1
2

(
λ

2

)α+1
2 2

√
π

λ3

∫ ∞

0

e−tt−
α
2 dt

=
λ

α−5
2
√

π

2
α+1

2

Γ
(
1− α

2

)
.

Therefore, we have

∫ ∞

0

(x2 ∧ 1)
Kα+1

2
(λx)

x
α+1

2

dx ≤
∫ ∞

0

x2
Kα+1

2
(λx)

x
α+1

2

dx < ∞.

A.3 Proofs of Theorem 2.8 and Proposition 2.10

Lemma A.3. Let λ > 0. Then

λ
α+1

2

∫ 1

0

Kα+1
2

(λx)

x
α−1

2

dx =

{
λα−1

2
α+1

2
Γ

(
1−α

2

)− λ
α−1

2 Kα−1
2

(λ) if α < 1

∞ if α ≥ 1
.

Proof. See Lemma 3.3.1 in [10].
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Lemma A.4. Let u2 < λ2.

1. If α < 1, then

∞∑
n=1

(iu)n

n!
λ

α
2 + 1

2

∫ ∞

0

xn−α
2− 1

2 Kα+1
2

(λx)dx(A.9)

=





2−
α
2− 3

2
√

πΓ(−α
2 )((λ2 + u2)

α
2 − λα)

+iu2−
α
2− 1

2 λα−1Γ( 1
2 − α

2 )F
(
1, 1

2 − α
2 ; 3

2 ;−u2

λ2

) if α 6= 0

√
π2−

3
2 log

(
λ2

λ2+u2

)

+iu2−
1
2 λ−1Γ( 1

2 )F
(
1, 1

2 ; 3
2 ;−u2

λ2

) if α = 0

.

2. If α ∈ (1, 2), then

∞∑
n=2

(iu)n

n!
λ

α
2 + 1

2

∫ ∞

0

xn−α
2− 1

2 Kα+1
2

(λx)dx(A.10)

=
√

π

2
α
2 + 3

2
Γ(−α

2
)((λ2 + u2)

α
2 − λα)

+
iuλα−1Γ( 1

2 − α
2 )

2
α
2 + 1

2

(
F

(
1,

1
2
− α

2
;
3
2
;−u2

λ2

)
− 1

)
.

Proof. See Lemma 3.3.2 in [10].

Proof of Theorem 2.8. Let

H(α, λ, u) =
∫ ∞

0

(eiux − 1− iux1|x|≤1)λ
α
2 + 1

2
Kα+1

2
(λx)

x
α
2 + 1

2
dx,

where λ > 0 and |iu| < λ. Let α < 1. Then, we have

H(α, λ, u) = λ
α
2 + 1

2

∫ ∞

0

(eiux − 1)
Kα+1

2
(λx)

x
α
2 + 1

2
dx− iuλ

α
2 + 1

2

∫ 1

0

Kα+1
2

(λx)

x
α
2− 1

2
dx.

By Lemma A.3 and the series expansion of the exponential function, we have

H(α, λ, u) =
∞∑

n=1

(iu)n

n!
λ

α
2 + 1

2

∫ ∞

0

xn−α
2− 1

2 Kα+1
2

(λx)dx

− iu

(
λα−1

2
α
2 + 1

2
Γ

(
1
2
− α

2

)
− λ

α
2− 1

2 Kα−1
2

(λ)
)

.
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By Lemma A.4, we obtain that

H(α, λ, u) =
√

π2−
α
2− 3

2 Γ
(
−α

2

)
((λ2 + u2)

α
2 − λα)1α 6=0

+
√

π2−
3
2 log

(
λ2

λ2 + u2

)
1α=0 +

iuλα−1Γ( 1
2 − α

2 )

2
α
2 + 1

2
F

(
1,

1
2
− α

2
;
3
2
;−u2

λ2

)

− iu

(
λα−1

2
α
2 + 1

2
Γ

(
1
2
− α

2

)
− λ

α
2− 1

2 Kα−1
2

(λ)
)

.

Let α ∈ (1, 2). Then, we have

H(α, λ, u) = λ
α
2 + 1

2

∫ ∞

0

(eiux−1−iux)
Kα+1

2
(λx)

x
α
2 + 1

2
dx+iuλ

α
2 + 1

2

∫ ∞

1

Kα+1
2

(λx)

x
α
2− 1

2
dx.

Since we can show that λ
α
2 + 1

2
∫∞
1

x−
α
2 + 1

2 Kα+1
2

(λx)dx = λ
α
2− 1

2 Kα−1
2

(λ) for α ∈
(1, 2), we have

H(α, λ, u) = λ
α
2 + 1

2

∫ ∞

0

(eiux − 1− iux)
Kα+1

2
(λx)

x
α
2 + 1

2
dx + iuλ

α
2− 1

2 Kα−1
2

(λ).

By the series expansion of the exponential function, we obtain

H(α, λ, u) =
∞∑

n=2

(iu)n

n!
λ

α
2 + 1

2

∫ ∞

0

xn−α
2− 1

2 Kα+1
2

(λx)dx + iuλ
α
2− 1

2 Kα−1
2

(λ).

By Lemma A.4, we have

H(α, λ, u) =
√

π

2
α
2 + 3

2
Γ

(
−α

2

)
((λ2 + u2)

α
2 − λα)

+
iuλα−1Γ( 1

2 − α
2 )

2
α
2 + 1

2
F

(
1,

1
2
− α

2
;
3
2
;−u2

λ2

)
− iu

(
Γ( 1

2 − α
2 )

2
α
2 + 1

2
λα−1 − λ

α
2− 1

2 Kα−1
2

(λ)
)

.

So, for α ∈ (−∞, 1) ∪ (1, 2) and |iu| < λ+ ∧ λ−, we have

iuγ +
∫ ∞

−∞
(eiux − 1− iux1|x|≤1)ν(dx)

= iuγ + CH(α, λ+, u) + CH(α, λ−, u)

= iuµ + GR(u; α, C, λ+, λ−) + GI(u; α, C, λ+, λ−).

By the Lévy-Kintchine formula, we obtain the desired characteristic function in

the theorem. The characteristic function φX(u) can be extended via analytic

continuation to the region {z ∈ C : |Im(z)| < λ+ ∧ λ−}.
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Proof of Proposition 2.10. We first note that, if h is an infinitely differentiable

function, then we have, for n ∈ N and k ∈ R,

d2n+1

du2n+1
(uh(ku2))

∣∣∣
u=0

= 2n · 1 · 3 · · · (2n + 1)knh(n)(0),

and
d2n

du2n
(uh(ku2))

∣∣∣
u=0

= 0.

By this note and (A.8) , we obtain that

d2n+1

du2n+1

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2

)) ∣∣∣
u=0

= 2n · 1 · 3 · · · (2n + 1)λ−2n (1)n(1
2 − α

2 )n

( 3
2 )n

F

(
1 + n,

1
2
− α

2
+ n;

3
2

+ n; 0
)

=
(2n + 1)!( 1

2 − α
2 )n

( 3
2 )nλ2n

=
(

2
λ

)2n

n!
Γ

(
n + 1

2 − α
2

)

Γ
(

1
2 − α

2

)

and
d2n

du2n

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2

)) ∣∣∣
u=0

= 0.

Hence we have, for m ∈ N,

dm

dum

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2

)) ∣∣∣
u=0

=

{ (
2
λ

)m−1 (
m−1

2

)
!
Γ(m

2 −α
2 )

Γ( 1
2−α

2 ) if m = 1, 3, 5, · · ·
0 if m = 2, 4, 6, · · ·

(A.11)

On the other hand, if α 6= 0, we have

d2n

du2n
((λ2 − u2)

α
2 − λα)

∣∣
u=0

=
(2n)!
n!

(−α

2
)nλ2( α

2−n) =
(2n)!
n!

Γ(n− α
2 )

Γ(−α
2 )

λ2( α
2−n)

and
d2n+1

du2n+1
((λ2 − u2)

α
2 − λα)

∣∣
u=0

= 0,

so we obtain that

dm

dum
((λ2 − u2)

α
2 − λα)

∣∣∣
u=0

=

{
0 if m = 1, 3, 5, · · ·

m!

(m
2 )!

Γ(m
2 −α

2 )
Γ(−α

2 ) λα−m if m = 2, 4, 6, · · · .

(A.12)
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For m ∈ N and α 6= 0, the cumulant cm(X) is given by

cm(X) =
dm

dum
(log E[euX ])

∣∣
u=0

(A.13)

=
dm

dum
(µu) +

√
πCΓ(−α

2 )

2
α
2 + 3

2

2∑

j=1

[
dm

dum
((λ2

j − u2)
α
2 − λ

α
2
j )

]

u=0

− CΓ
(

1
2 − α

2

)

2
α
2 + 1

2

2∑

j=1

[
(−1)jλα−1

j

dm

dum

(
uF

(
1,

1
2
− α

2
;
3
2
;
u2

λ2
j

))]

u=0

.

Substituting (A.11) and (A.12) into (A.13), we obtain (2.11).

Moreover, since we have

dm

dum
log

(
λ2

λ2 + u2

) ∣∣∣
u=0

=

{
0 if m = 1, 3, 5, · · ·

m!

(m
2 )!Γ

(
m
2

)
λ−m if m = 2, 4, 6, · · · ,

we obtain (2.11) by the similar arguments given above.

A.4 Proofs of Proposition 2.13

Lemma A.5. Let λ > 0, α ∈ (0, 2). Then we have

(1) (λx)
α
2 + 1

2 Kα+1
2

(λx) = 2
α
2− 1

2 Γ
(

α

2
+

1
2

)

+
2

α
2− 1

2 π

cos
(

α
2 π

)
( ∞∑

k=1

(λx/2)2k

k!Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λx/2)2k+α+1

k!Γ
(
k + α

2 + 1
2 + 1

)
)

(2)
∫ 1

0

x−α

( ∞∑

k=1

(λx/2)2k

k!Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λx/2)2k+α+1

k!Γ
(
k + α

2 + 1
2 + 1

)
)

dx

=
− cos(α

2 π)

2
α
2− 1

2 π
λ

α
2− 1

2 Kα−1
2

(λ)− 1
2Γ

(
3
2 − α

2

) +
λα−1

2αΓ
(

α
2 + 1

2

)

Proof. (1) The series form of the modified Bessel function of the second kind is
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given by (A.1). Hence we have

(λx)
α
2 + 1

2 Kα+1
2

(λx)

= (λx)
α
2 + 1

2
π

2 sin
(

α
2 + 1

2

)
π

( ∞∑

k=0

(λx/2)2k−α
2 + 1

2

k!Γ
(
k − (

α
2 + 1

2

)
+ 1

)

−
∞∑

k=0

(λx/2)2k+ α
2 + 1

2

k!Γ
(
k +

(
α
2 + 1

2

)
+ 1

)
)

=
2

α
2− 1

2 π

sin
(

α
2 + 1

2

)
π

(
1

Γ
(
1− α

2 − 1
2

) +
∞∑

k=1

(λx/2)2k

k!Γ
(
k − (

α
2 + 1

2

)
+ 1

)

−
∞∑

k=0

(λx/2)2k+α+1

k!Γ
(
k +

(
α
2 + 1

2

)
+ 1

)
)

Since Γ(x)Γ(1− x) = π
sin πx and sin

(
α
2 + 1

2

)
π = cos(α

2 π), we obtain the result.

(2) We can calculate the following equation
∫ 1

0

x−α

( ∞∑

k=1

(λx/2)2k

k!Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λx/2)2k+α+1

k!Γ
(
k + α

2 + 1
2 + 1

)
)

dx

=

(
λ

α
2− 1

2

2
α
2 + 1

2

)( ∞∑

k=1

(λ/2)2k−( α
2− 1

2 )

k!Γ
(
k − (

α
2 − 1

2

)
+ 1

) −
∞∑

k=1

(λ/2)2k+( α
2− 1

2 )

k!Γ
(
k +

(
α
2 − 1

2

)
+ 1

)
)

.

By the series form of Kα−1
2

(λ), we can obtain the result.

Proof of Proposition 2.13. Let (σ, ν, γ) and (σ̃, ν̃, γ̃) be Lévy triplets of XP and

XQ, respectively. Since σ = σ̃ = 0, (2.12) is satisfied. Let

k(α, λ, x) =
λ

α
2 + 1

2 Kα+1
2

(λx)

x
α
2 + 1

2
.

Then the function ψ(x) = ln dν̃(x)
dν(x) is given by

ψ(x) = ln

(
C̃k(α̃, λ̃+, x)
Ck(α, λ+, x)

)
1x>0 + ln

(
C̃k(α̃, λ̃−, x)
Ck(α, λ−, x)

)
1x<0,

and so
∫ ∞

−∞

(
e

ψ(x)
2 − 1

)2

ν(dx)

=
∫ ∞

0

(√
C̃k(α̃, λ̃+, x)

1
2 −

√
Ck(α, λ+, x)

1
2

)2

dx

+
∫ 0

−∞

(√
C̃k(α̃, λ̃−, x)

1
2 −

√
Ck(α, λ−, x)

1
2

)2

dx.
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If α < α̃, then for j = 1, 2, we have

lim
x→0

√
C̃k(α̃, λ̃j , x)

1
2 −√Ck(α, λj , x)

1
2

x−
α̃
2− 1

2
=

√
C̃2

α̃
2− 1

2 Γ
(

α̃

2
+

1
2

)
.

If α = α̃ but C < C̃, then for j = 1, 2, we have

lim
x→0

√
C̃k(α̃, λ̃j , x)

1
2 −√Ck(α, λj , x)

1
2

x−
α̃
2− 1

2
= (

√
C̃ −

√
C)

√
2

α̃
2− 1

2 Γ
(

α̃

2
+

1
2

)
.

Hence if α < α̃ or α = α̃ and C < C̃, then
(
e

ψ(x)
2 − 1

)2

is equivalent to x−α̃−1

near zero, so it is not integrable.

Suppose α = α̃ and C = C̃. Then we have

ψ(x) = ln

(
k(α, λ̃+, x)
k(α, λ+, x)

)
1x>0 + ln

(
k(α, λ̃−, x)
k(α, λ−, x)

)
1x<0.

We can show that limx→0 ψ(x) = 0 and limx→0 ψ′(x) = 0. Hence, there is a θ

such that ψ(x) < θ|x| for x ∈ [−1, 1]. Thus
∫

|x|≤1

(
e

ψ(x)
2 − 1

)2

ν(dx) ≤
∫

|x|≤1

(
e

θ|x|
2 − 1

)2

ν(dx) < ∞,

and ∫ ∞

1

(
e

ψ(x)
2 − 1

)2

ν(dx) ≤
∫ ∞

1

ν̃(dx) +
∫ ∞

1

ν(dx) < ∞,

and similarly, we can show that
∫ −1

−∞

(
e

ψ(x)
2 − 1

)2

ν(dx) < ∞.

Therefore, the condition (2.13) holds if, and only if, α = α̃ and C = C̃.

We have, by Lemma A.5 (1),
∫ 1

0

x−α
(
(λ̃±x)

α
2 + 1

2 Kα+1
2

(λ̃±x)− (λ±x)
α
2 + 1

2 Kα+1
2

(λ±x)
)

dx

=
2

α
2− 1

2 π

cos
(

α
2 π

)
∫ 1

0




∞∑

k=1

(
λ̃±x/2

)2k

k!Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(
λ̃±x/2

)2k+α+1

k!Γ
(
k + α

2 + 1
2 + 1

)


 x−αdx

− 2
α
2− 1

2 π

cos
(

α
2 π

)
∫ 1

0

( ∞∑

k=1

(λ±x/2)2k

k!Γ
(
k − (

α
2 + 1

2

)
+ 1

) −
∞∑

k=0

(λ±x/2)2k+α+1

k!Γ
(
k + α

2 + 1
2 + 1

)
)

x−αdx.
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By the Lemma A.5 (2) and the fact that π
cos( α

2 π) = π
sin( α

2 + 1
2 )π

= Γ
(

α
2 + 1

2

)
Γ

(
1
2 − α

2

)
,

we obtain

∫ 1

0

x−α
(
(λ̃±x)

α
2 + 1

2 Kα+1
2

(λ̃±x)− (λ±x)
α
2 + 1

2 Kα+1
2

(λ±x)
)

dx

(A.14)

=
2

α
2− 1

2 π

cos
(

α
2 π

)
[
− cos(α

2 π)

2
α
2− 1

2 π
λ

α
2− 1

2± Kα−1
2

(λ̃±) +
λ̃α−1
±

2αΓ
(

α
2 + 1

2

)

+
cos(α

2 π)

2
α
2− 1

2 π
λ

α
2− 1

2± Kα−1
2

(λ±)− λα−1
±

2αΓ
(

α
2 + 1

2

)
]

= −
(
λ̃

α
2− 1

2± Kα−1
2

(λ̃±)− λ
α
2− 1

2± Kα−1
2

(λ±)
)

+
Γ

(
1
2 − α

2

)

2
α
2 + 1

2
(λ̃α−1
± − λα−1

± )

Providing that the α = α̃ and C = C̃, the condition (2.14) is equal to

µ̃ + C

(
Γ

(
1
2 − α

2

)

2
α
2 + 1

2

(
λ̃α−1

+ − λ̃α−1
−

)
− λ̃

α
2− 1

2
+ Kα−1

2
(λ̃+) + λ̃

α
2− 1

2− Kα−1
2

(λ̃−)

)

− µ− C

(
Γ

(
1
2 − α

2

)

2
α
2 + 1

2

(
λα−1

+ − λα−1
−

)− λ
α
2− 1

2
+ Kα−1

2
(λ+) + λ

α
2− 1

2− Kα−1
2

(λ−)

)

= C

∫ 1

0

x−α
(
(λ̃+x)

α
2 + 1

2 Kα+1
2

(λ̃+x)− (λ+x)
α
2 + 1

2 Kα+1
2

(λ+x)
)

dx

− C

∫ 1

0

x−α
(
(λ̃−x)

α
2 + 1

2 Kα+1
2

(λ̃−x)− (λ−x)
α
2 + 1

2 Kα+1
2

(λ−x)
)

dx.

Hence, by the equation (A.14), the condition holds if, and only if, µ̃ = µ.

A.5 Proofs of Proposition 3.2 and Lemma 3.4

Proof of Proposition 3.2. Let t ∈ N be fixed, λ̃+ and λ̃− satisfy equations (3.3)

and ξt = εt + k where k is defined as (3.4). Then ξt ∼ MTS(α, C, λ+, λ−,

µ + k), where

C = 2
α
2 + 1

2

(√
πΓ

(
1− α

2

) (
λα−2

+ + λα−2
−

))−1

and

µ = −2−
α
2− 1

2 CΓ
(

1
2
− α

2

)
(λα−1

+ − λα−1
− ).

For any λ+, λ− > 0, put

µ̃λ̃+,λ̃− = µ + k
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then ξt ∼ MTS(α, C, λ̃+, λ̃−, µ̃λ̃+,λ̃−) under the probability measure Qλ̃+,λ̃−

Under Qλ̃+,λ̃− , the variance equals

VarQλ̃+,λ̃−
(ξt) =

√
πΓ(1− α

2 )

2
α
2 + 1

2
C(λ̃α−2

+ + λ̃α−2
− )

=
λ̃α−2

+ + λ̃α−2
−

λα−2
+ + λα−2

−

and the mean equals

EQλ̃+,λ̃−
(ξt) = µ̃λ̃+,λ̃− + 2−

α
2− 1

2 CΓ
(

1
2
− α

2

)
(λ̃α−1

+ − λ̃α−1
− )

= k − 2−
α
2− 1

2 CΓ
(

1
2
− α

2

)
(λα−1

+ − λα−1
− − λ̃α−1

+ + λ̃α−1
− )

By (3.3) and (3.4), we have EQλ̃+,λ̃−
(ξt) = 0 and VarQλ̃+,λ̃−

(ξt) = 1. Hence, let

Qt = Qλ̃+,λ̃− . Then Qt and Pt are equivalent and ξt ∼ stdMTS(α, λ̃+, λ̃−).

Proof of Lemma 3.4. Let εt ∼ stdMTS(α, λ+, λ−), t ∈ N.

(a) Using Definition 3.3, the Laplace transform of the MTS distribution and the

measurability of σt with respect to Ft−1, we obtain

EQ[Ŝt|Ft−1] = EQ[Ŝt−1 exp(rt + λtσt − g(σt;α, λ+, λ−) + σtεt)|Ft−1]

= EQ[Ŝt−1 exp(rt − g(σt; α, λ̃+, λ̃−) + σt(k + εt))|Ft−1]

= Ŝt−1 exp(rt − g(σt; α, λ̃+, λ̃−))EQ[exp(σt(εt + k))|Ft−1]

= Ŝt−1 exp(rt − g(σt; α, λ̃+, λ̃−))EQ[EQt
[exp(σt(εt + k))|σt]|Ft−1]

= Ŝt−1 exp(rt − g(σt; α, λ̃+, λ̃−))EQ[exp(g(σt;α, λ̃+, λ̃−))|Ft−1]

= Ŝt−1 exp(rt)

(b) Since VarQ(εt + k|Ft−1)
a.s.= 1 a.s.= VarP(εt|Ft−1), we can prove the equality.

(c) Let ξt = εt + k. Then ξt ∼ stdMTS(α, λ̃+, λ̃−) under Qt for 1 ≤ t ≤ T , and

the following equality holds :

log
(

St

St−1

)
= rt − dt − g(σt; α, λ̃+, λ̃−) + σt(εt + k)

= rt − dt − g(σt; α, λ̃+, λ̃−) + σtξt.
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In the variance process, εt−1 has to be replaced by ξt−1 − k in order to achieve

the desired result.
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Lévy flights towards the Gaussian stochastic process, Physical Review E, 52

(1995), pp. 1197–1199.

[12] B. B. Mandelbrot, New methods in statistical economics, Journal of Polit-

ical Economy, 71 (1963), pp. 421–440.

[13] B. B. Mandelbrot, The Variation of Certain Speculatives Prices, Journal

of Business, 36 (1963), pp. 394–419.

[14] G. Marsaglia, W.W. Tsang G. Wang, Evaluating Kolmogorov’s Distribu-

tion, Journal of Statistical Software, 8 (2003), 18.

[15] C. Menn S.T. Rachev, A GARCH option pricing model with α-stable inno-

vations, European Journal of Operational Research, 163 (2005), pp. 201–209.

[16] C. Menn S.T. Rachev, Smoothly Truncated Stable Distributions,

GARCH-Models, and Option Pricing, Technical Report (2005),

(http://www.statistik.uni-karlsruhe.de/technical reports/sts-option.pdf).
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