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Abstract. Most of the important models in finance rest on the assumption that
randomness is explained through a normal random variable. However there is
ample empirical evidence against the normality assumption, since stock returns
are heavy-tailed, leptokurtic and skewed. Partly in response to those empirical
inconsistencies relative to the properties of the normal distribution, a suitable
alternative distribution is the family of tempered stable distributions. In gen-
eral, the use of infinitely divisible distributions is obstructed by the difficulty
to calibrate and simulate them. In this paper, we address some numerical is-
sues resulting from tempered stable modelling, with a view toward the density
approximation and simulation.

M.S.C. classification: 60E07.

Key words: tempered stable distributions, density approximation, shot noise
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1 Introduction

Since Mandelbrot introduced the α-stable distribution in modelling financial
asset returns, numerous empirical studied have been done in both natural and
economic sciences. The works of Rachev and Mittnik [19] and Rachev et al.
[18], see also references therein, have focused attention on a general framework
for market and credit risk management, option pricing, and portfolio selection
based on the α-stable distribution. While the empirical evidence does not sup-
port the normal distribution, it is also not always consistent with the α-stable
distributional hypothesis. Asset returns time series present heavier tails rela-
tive to the normal distribution and thinner tails than the α-stable distribution.
Moreover, the stable scaling properties may cause problems in calibrating the
model to real data. Anyway, there is a wide consensus to assume the presence
of a leptokurtic and skewed pattern in stock returns, as showed by the α-stable
modelling. Partly in response to the above empirical inconsistencies, and to
maintain suitable properties of the stable model, a proper alternative to the
α-stable distribution is the family of tempered stable distributions.

Tempered stable distributions may have all moments finite and exponential
moments of some order. The latter property is essential in the construction of
tempered stable option pricing models. The formal definition of tempered stable
processes as been proposed in the seminal work of Rosiński [21]. The KoBol [4],
the CGMY [5], the Inverse Gaussian (IG) and the tempered stable of Tweedie
[23] are only some parametric examples in this class, that have an infinite di-
mensional parametrization by a family of measures [25]. Further extensions
or limiting cases are also given by the fractional tempered stable framework
[10], the bilateral gamma [15] and the generalized tempered stable distribution
[7, 16]. The general formulation is difficult to use in practical applications, but
it allows one to prove some interesting results regarding the calculus of the char-
acteristic function and the random numbers generation. The infinite divisibility
of this distribution allows one to construct the corresponding Lévy process and
to analyze the change of measure problem and the process behavior as well.

The purpose of this paper is to show some numerical issues arising from the
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use of this class in applications to finance with a look to the density approxima-
tion and the random number generation for some particular cases, such as the
CGMY and the KR case. The paper is related to some previous works of the
authors [13, 14] where the exponential Lévy and the tempered stable GARCH
models has been studied. The remainder of this paper is organized as follows.
In Section 2 we review the definition of tempered stable distributions and focus
our attention on the CGMY and KR distributions. An algorithm for the evalu-
ation of the density function for the KR distribution is presented in Section 3.
Finally, Section 4 presents a general random number generation method and an
option pricing analysis via Monte Carlo simulation.

2 Basic definitions

The class of infinitely divisible distribution has a large spectrum of appli-
cations, and in recent years, particularly in mathematical finance and econo-
metrics, non-normal infinitely divisible distributions have been widely studied.
Before explaining the construction of tempered stable (TSα) distributions, we
want to recall the following well known result [22].

Theorem 1 (Lévy-Khintchine formula). A real valued random variable X is
infinitely divisible with characteristic exponent ψ(z), i.e.

E[eizX ] = eψ(z)

with z ∈ R, if and only if there exists a triple (ah, σ, ν) where ah ∈ R, σ ≥ 0, h
is a given truncation function, ν is a measure on R\{0} satisfying∫

R\{0}
(1 ∧ x2)ν(dx) <∞

and
ψ(z) = iahθ −

1
2
σ2z2 +

∫
R\{0}

(eizx − 1− izh(x))ν(dx) (2.1)

for every z ∈ R.

Let us now define the Lévy measure of a TSα distribution.

Definition 2. A real valued random variable X is TSα if is infinitely divisible
without Gaussian part and has Lévy measure ν that can be written in polar
coordinated

ν(dr, du) = r−α−1q(r, u)dr σ(du), (2.2)

where α ∈ (0, 2) and σ is a finite measure on Sd−1. and

q : (0,∞)× Sd−1 7→ (0,∞)

is a Borel function such that q(·, u) is completely monotone with q(∞, u) = 0
for each u ∈ Sd−1. A TSα distribution is called a proper TSα distribution if

lim
r→0+

q(r, u) = 1

for each u ∈ Sd−1.
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Furthermore, by [21, Theorem 2.3], the Lévy measure ν can be also rewritten
in the form

ν(A) =
∫

Rd
0

∫ ∞

0

IA(tx)αt−α−1e−tdtR(dx), A ∈ B(Rd). (2.3)

where R is a unique measure on Rd such that R({0}) = 0{ ∫
Rd(‖x‖2 ∧ ‖x‖α)R(dx) <∞, α ∈ (0, 2)∫
Rd(log(1 + 2‖x‖2) ∧ 1)R(dx) <∞, α = 0

(2.4)

Sometimes the only knowledge of the Lévy measure cannot be enough to obtain
analytical properties of tempered stable distributions. Therefore, the defini-
tion of Rosiński measure R allows one to overcome this problem and to obtain
explicit analytic formulas and more explicit calculations. For instance, the char-
acteristic function can be rewritten by using directly the measure R instead of
ν (see [21, Theorem 2.9]). Of course, given a measure R it is always possible
to find the corresponding tempering function q; the converse is true as well. As
consequence of this, the specification of a measure R satisfying conditions (2.4)
or the specification of a completely monotone function q, defines uniquely a TSα
distribution.

Now, let us define two parametric examples. In the first example the measure
R is the sum of two Dirac measures multiplied for opportune constants, while
the spectral measure R of the second example has a nontrivial bounded support.
If we set

q(r,±1) = e−λ±r, λ > 0, (2.5)

and the measure
σ({−1}) = c− and σ({1}) = c+, (2.6)

we get
ν(dr) =

c−
|r|1+α−

e−λ−rI{x<0} +
c+

|r|1+α+
e−λ+rI{x>0}. (2.7)

The measures Q and R are given by

Q = c−δ−λ− + c+δλ+ (2.8)

and
R = c−λ

α
−δ− 1

λ−
+ c+λ

α
+δ 1

λ+
, (2.9)

where δλ is the Dirac measure at λ (see [21] for the definition of the measure
Q).

Then the characteristic exponent has the form

ψ(u) =iub+ Γ(−α)c+((λ+ − iu)α − λα+ + iαλα−1
+ u)

+ Γ(−α)c−((λ− + iu)α − λα− − iαλα−1
− u),

(2.10)

where we are considering the Lévy-Khinchin formula with truncation function
h(x) = x. This distribution is usually referred to as the KoBoL or generalized
tempered stable (GTS) distribution. If we take λ+ = M , λ− = G, c+ = c− = C,
α = Y and m = b, we obtain that X is CGMY distributed with expected value
m. The definition of the corresponding Lévy process follows.
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Definition 3. Let Xt the process such that X0 = 0 and E[eiuXt ] = etψ(u) where

ψ(u) =ium+ Γ(−Y )C((M − iu)Y −MY + iY MY−1u)

+ Γ(−Y )C((G+ iu)Y −GY − iY GY−1u).

We call this process the CGMY process with parameter (C, G, M , Y , m) where
m = E[X1].

A further example is given by the KR distribution [13], with a Rosińsky
measure of the following form

R(dx) = (k+r
−p+
+ I(0,r+)(x)|x|p+−1 + k−r

−p−
− I(−r−,0)(x)|x|

p−−1) dx. (2.11)

where α ∈ (0, 2), k+, k−, r+, r− > 0, p+, p− ∈ (−α,∞) \ {−1, 0}, and m ∈ R.
The characteristic function can be calculated by [21, Theorem 2.9] and it is
given in the following result [13].

Definition 4. Let Xt be a process with X0 = 0 and corresponding to the spectral
measure R defined in (2.11) with conditions p 6= 0, p 6= −1, α 6= 1 and let
m = E[X1]. By considering the Lévy-Khinchin formula with truncation function
h(x) = x, we have E[eiuXt ] = etψ(u) with

ψ(u) =
k+Γ(−α)

p+

(
2F1(p+,−α; 1 + p+; ir+u)− 1 +

iαp+r+u

p+ + 1

)
k−Γ(−α)

p−

(
2F1(p−,−α; 1 + p−;−ir−u)− 1− iαp−r−u

p− + 1

)
+ ium,

(2.12)

where 2F1(a, b; c;x) is the hypergeometric function [1]. We call this process the
KR process with parameter (k+, k−, r+, r−, p+, p−, α, m).

3 Evaluating the density function

In order to calibrate asset returns models through exponential Lévy process
or tempered stable GARCH model [13, 14], one needs a correct evaluation of
both the pdf and cdf functions. With the pdf function it is possible to construct
a maximum likelihood estimator (MLE), while the cdf function allows one to
assess the goodness of fit. Even if the MLE method may lead to local maximum
rather than to a global one due to the multi dimensionality of the optimization
problem, the results obtained seem to be satisfactory from the point of view
of goodness of fit tests. Actually, an analysis on estimation methods for this
kind of distributions would be interesting, but it is far from the purposes of this
work.

Numerical methods are needed to evaluate the pdf function. By the de-
finition of the characteristic function as the Fourier transform of the density
function [8], we consider the inverse Fourier transform that is

f(x) =
1
2π

∫
R
e−iuxE[eiuX ]du (3.1)

where f(x) is the density function. If the density function has to be calculated
for a large number of x values, the fast Fourier Transform (FFT) algorithm
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can be employed as described in [24]. The use of the FFT algorithm largely
improves the speed of the numerical integration above and the function f is
evaluated on a discrete and finite grid, consequently a numerical interpolation
is necessary to x values out of the grid. Since a personal computer cannot
deal with infinite numbers, the integral bounds (−∞,∞) in equation (3.1) are
replaced with [−M,M ], where M is large value. We take M ∼ 216 or 215 in our
study and we have also noted that smaller values of M generate large errors in
the density evaluation given by a wave effect in both density tails. We have to
point out that the numerical integration as well as the interpolation may causes
some numerical errors. The method above is a general method that can be used
if the density function is not known in closed form.

While the calculus of the characteristic function in the CGMY case involves
only elementary functions, more interesting is the evaluation of the character-
istic function in the KR case that is connected with the Gaussian hypergeo-
metric function. Equation (2.12) implies the evaluation of the hypergeomet-
ric 2F1(a, b; c; z) function only on the straight line represented by the subset
I = {iy | y ∈ R} of the complex plane C. We do not need a general algorithm
to evaluate the function on the entire complex plane C, but just on a subset
of it. This can be done by means of the analytic continuation, without having
recourse neither to numerical integration nor to numerical solution of a differ-
ential equation [17] (for a complete table of the analytic continuation formulas
for arbitrary values of z ∈ C and of the parameters a, b, c, see [3] or [9]). The
hypergeometric function belongs to the special function class and often occurs
in many practical computational problems. It is defined by the power series

2F1(a, b, c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1. (3.2)

where (a)n := Γ(a+ n)/Γ(n) is the Ponchhammer symbol. By [1] the following
relations are fulfilled

2F1(a, b, c; z) = (1− z)−b2F1

(
b, c− a, c,

z

z − 1

)
if
∣∣∣∣ z

z − 1

∣∣∣∣ < 1

2F1(a, b, c; z) = (−z)−aΓ(c)Γ(b− a)
Γ(c− a)Γ(b) 2F1

(
a, a− c+ 1, a− b+ 1,

1
z

)
+ (−z)−bΓ(c)Γ(a− b)

Γ(c− b)Γ(a) 2F1

(
b, b− c+ 1, b− a+ 1,

1
z

)
if
∣∣∣∣1z
∣∣∣∣ < 1

2F1(a, b, c;−iy) = 2F1(a, b, c; iy) if y ∈ R.
(3.3)

First by the last equality of (3.3), one can determine the values of 2F1(a, b, c; z)
only for the subset I+ = {iy | y ∈ R+} and then simply consider the conjugate
for the set I− = {iy | y ∈ R−}, remembering that 2F1(a, b, c; 0) = 1. Second,
we split the positive real line R+ in three subsets without intersection,

I1
+ = {iy | 0 < y ≤ 0.5}
I2
+ = {iy | 0.5 < y ≤ 1.5}
I3
+ = {iy | y > 1.5},
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then we use (3.2) to evaluate 2F1(a, b, c; z) in I1
+. Then, the first and the second

equalities of (3.3) together with (3.2) are enough to evaluate 2F1(a, b, c; z) in I2
+

and I3
+ respectively. This subdivision allows one to truncate the series (3.2) to

the integer N = 500 and obtain the same results as Mathematica. We point
out that the value of y ranges in the interval [−M,M ] previously defined. This
method together with the MATLAB vector calculus increase considerably the
speed with respect to algorithms based on the numerical solution of differential
equation [17]. Our method is grounded only on basic summations and multi-
plication. As a result the computational effort in the KR density evaluation
is comparable to that of CGMY one. The KR characteristic function is neces-
sary also to price options, not only for MLE estimation. Indeed, by using the
approach of Carr and Madan [6] and the same analytic continuation as above,
risk-neutral parameters may be directly estimated from option prices, without
calibrate the underlining.

4 Simulation of TSα processes

In order to generate random variate from TSα processes, we will consider the
general shot noise representation of proper TSα laws given in [21]. There are
different methods to simulate Lévy processes, but most of these methods are not
suitable for the simulation of tempered stable processes due to the complicated
structure of their Lévy measure. As emphasized in [21], the usual method of
the inverse of Lévy measure [20] is difficult to implement, even if the spectral
measure R has a simple form. We will apply [21, Theorem 5.1] to the previously
considered parametric examples.

Proposition 5. Let {Uj} a i.i.d. sequence of uniform random variables in
(0, T ), {Ej} and {E′j} i.i.d. sequences of exponential variables of parameter 1
and {Γj} = E′1 + . . . + E′j, {Vj} a i.i.d. sequence of discrete random variables
with distribution

P (Vj = −G) = P (Vj = M) =
1
2
,

a positive constant 0 < Y < 2 and ‖σ‖ = σ(Sd−1) = 2C. Furthermore, {Uj},
{Ej}, {E′j} and {Vj} are mutually independent. Then

Xt
d=

∞∑
j=1

[(
Y Γj
2C

)−1/Y

∧ EjU1/Y
j |Vj |−1

]
Vj
|Vj |

I{Uj≤t} + tbT t ∈ [0, T ],

(4.1)
where

bT =


−Γ(1− Y )C(MY−1 −GY−1), 0 < Y < 2 and Y 6= 1
(2γ + log(2TC))C(MY−1 −GY−1)

−C(GY−1 logG−MY−1 logM), Y = 1,
(4.2)

and γ is the Euler constant [1, 6.1.3], converges a.s. and uniformly in t ∈ [0, T ]
to a CGMY process with parameters (C, G, M , Y , 0).

This series representation is not new in the literature, see [2, 12]. It is a slight
modification of the series representation of the stable distribution [11], but here
big jumps are removed. The shot noise representation for the KR distribution
follows.
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Proposition 6. Let {Uj} be a i.i.d. sequence of uniform random variables in
(0, T ), {Ej} and {E′j} i.i.d. sequences of exponential variables of parameter 1
and {Γj} = E′1 + . . . + E′j, and constants α ∈ (0, 2), k+, k−, r+, r− > 0 and,
p+, p− ∈ (−α,∞) \ {−1, 0}. Let {Vj} be a i.i.d. sequence of random variables
with density

fV (r) =
1
‖σ‖

(
k+r

−p+
+ I{r> 1

r+
}r
−α−p+−1 + k−r

−p+
− I{r<− 1

r−
}|r|−α−p−−1

)
where

‖σ‖ =
k+r

α
+

α+ p+
+

k−r
α
−

α+ p−
.

Furthermore, {Uj}, {Ej}, {E′j} and {Vj} are mutually independent. If α ∈
(0, 1), or if α ∈ [1, 2) with k+ = k−, r+ = r− and p+ = p−, then the series

Xt =
∞∑
j=1

I{Uj≤t}

((
αΓj
T‖σ‖

)−1/α

∧ EjU1/α
j |Vj |−1

)
Vj
|Vj |

+ tb (4.3)

converges a.s. and uniformly in t ∈ [0, T ] to a KR tempered stable process with
parameters (k+, k+, r+, r+, p+, p+, α, 0) with

b = −Γ(1− α)
(
k+r+
p+ + 1

− k−r−
p− + 1

)
.

If α ∈ [1, 2) and k+ 6= k− (or r+ 6= r− or alternatively p+ 6= p−), then

Xt =
∞∑
j=1

[
I{Uj≤t}

((
αΓj
T‖σ‖

)−1/α

∧ EjU1/α
j |Vj |−1

)
Vj
|Vj |

− t

T

(
αj

T‖σ‖

)−1/α

x0

]
+tbT ,

(4.4)
converges a.s. and uniformly in t ∈ [0, T ] to a KR tempered stable process with
parameters (k+, k−, r+, r−, p+, p−, α, 0), where we set

bT =


α−1/αζ

(
1
α

)
T−1(T‖σ‖)1/αx0 − Γ(1− α)x1, 1 < α < 2

(2γ + log(T‖σ‖))x1 −
(
k+r+
p++1

(
log r+ − 1

p++1

)
− k−r−
p−+1

(
log r− − 1

p−+1

))
, α = 1.

with

x0 = ‖σ‖−1

(
k+r

α
+

α+ p+
−

k−r
α
−

α+ p−

)
,

x1 =
k+r+
p+ + 1

− k−r−
p− + 1

,

ζ denotes the Riemann zeta function [1, 23.2], γ is the Euler constant [1, 6.1.3].
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4.1 A Monte Carlo example

In this section, we assess the goodness of fit of random number generators
proposed in the previous section. A brief Monte Carlo study is performed and
prices of European put options with different strikes are calculated. We take
into consideration a CGMY process with the same artificial parameters of the
work [16] that is C = 0.5, G = 2, M = 3.5, Y = 0.5, interest rate r = 0.04,
initial stock price S0 = 100 and annualized maturity T = 0.25. Furthermore we
consider also a GTS process defined by the characteristic exponent (2.10) and
parameters c+ = 0.5, c− = 1, λ+ = 3.5, λ− = 2 and α = 0.5, interest rate r,
initial stock price S0 and maturity T as in the CGMY case.

Monte Carlo prices are obtained through 50,000 simulations. The Esscher
transform with θ = −1.5 is considered to reduce the variance [12]. We want
to emphasize that the Esscher transform is an exponential tilting [21], thus if
applied to a CGMY or a GTS process, it modifies only parameters but not the
form of the characteristic function.

In Table 1 simulated prices and prices obtained by using the Fourier trans-
form method [6] are compared. Even if there is a competitive CGMY random
number generator, where a time changed Brownian motion is considered [16],
we prefer to use an algorithm based on series representation. Contrary to the
CGMY case, in general there is not a constructive method to find the subordi-
nator process that changes the time of the Brownian motion, that is we do not
know the process Tt such that the TSα process Xt can be rewritten as WT (t)

[7]. The shot noise representation allows one to generate any TSα process.

Table 1: European put option prices computed using the Fourier transform method (Price)

and by Monte Carlo simulation (Monte Carlo).

CGMY
Strike Price Monte Carlo

80 1.7444 1.7472
85 2.3926 2.3955
90 3.2835 3.2844
95 4.5366 4.5383
100 6.3711 6.3724
105 9.1430 9.1532
110 12.7632 12.7737
115 16.8430 16.8551
120 21.1856 21.2064

GTS
Strike Price Monte Carlo

80 3.2170 3.2144
85 4.2132 4.2179
90 5.4653 5.4766
95 7.0318 7.0444
100 8.9827 8.9968
105 11.3984 11.4175
110 14.3580 14.3895
115 17.8952 17.9394
120 21.9109 21.9688

Conclusions

In this work, we have focused our attention on the practical implementation
of numerical methods involving the use of TSα distributions and processes in
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the field of finance. Basic definitions are given and a possible algorithm to
approximate the density function is proposed. Furthermore, a general Monte
Carlo method is developed with a look to option pricing.
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