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ABSTRACT 

 

 

Hedge funds are alternative investment vehicles where the fund manager’s is to general  
positive returns  regardless of the market conditions.  A fund of hedge funds is a 
portfolio of hedge funds generally characterized by positive return and a high degree of 
diversification. In this paper, we analyse two portfolio optimization models for 
constructing a fund of hedge funds. Both models, which we refer to as the two-step 
model and the single-step model, are based on a zero-value strategy, a strategy which 
combines long and short selling in order to attain(ignoring margin and the cost of short 
selling) a zero initial investment. The principal difference between the two models is the 
selection techniques of the funds included in the long/short portfolio. The two-step 
model requires as the first step the classification of the funds into winner and loser 
groups according their historical performance as is done in the literature on momentum 
strategies. After the pre-selection step, the model is solved via linear programming, the 
model’s second step.  The single-step model avoids the pre-selection of hedge funds at 
the cost of introducing binary variables to exclude the possibility that a hedge fund is 
present in both the short and long portfolios. Both models are solved with respect to a 
set of scenarios, based either on historical scenarios, or forecasted scenarios generated 
by GARCH modeling. Combining the two models and the two sets of scenarios, we end 
up with four strategies.  Finally, we evaluate the ex post one-year performance of the 
four strategies with monthly portfolio rebalancing  using hedge fund data from that  
encompasses  the sub-prime crisis. 
 
Key words: hedge funds, fund of hedge funds, linear programming, zero-value strategy  
 
JEL Classification: C15, C61, P45, G11 
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Introduction  

 
Hedge funds are funds pursue aggressive investment strategies, including short selling, 
leverage, derivatives, risk arbitrage, and securities with complex structures. As of this 
writing, hedge funds are exempt from many of the regulatory requirements governing 
types of investment companies. Hedge funds are restricted by federal securities law to 
limit the number of investors per fund, and the types of investors that are permitted to 
invest in the funds (i.e., qualified investors). Consequently, typically hedge funds 
impose extremely high minimum investment amounts. As with mutual funds, investors 
in hedge funds pay a management fee; however, hedge funds also collect a percentage 
of the profits (usually 20%).  
 

The primary investment goal of most hedge funds is to reduce risk at minimal 
possible capital cost.  The strategies formulated by hedge funds seek to generate 
positive returns regardless of the movement of the market for the asset class in which 
they invest .  Empirical evidence suggests that hedge funds are scarcely correlated with 
traditional investment during normal market conditions and, as such, the inclusion of 
hedge funds into an investment portfolio may provide diversification not otherwise 
available in traditional investment vehicles. There are a large number of hedge fund 
investment styles – many uncorrelated with each other under normal market conditions 
– that provide investors with a wide choice of hedge fund strategies to meet their 
investment objectives. [1, 7, 8, 9, 11, 18] 

 
The complexity of their management is mainly due to the high number of 

instruments that can be involved in a hedge fund, the correlation among the different 
instruments and the ability to implement winning selection strategies. 
Knowing and understanding the characteristics of the many different hedge fund 
strategies is essential to capitalizing on their variety of investment opportunities. Some 
strategies which are not correlated to equity markets are able to deliver consistent 
returns with extremely low risk of loss, while others may be as or more volatile than 
mutual funds. A successful fund of hedge funds recognizes these differences and blends 
various strategies and asset classes together to create more stable long-term investment 
returns than any of the individual funds. [7,10,19] 
 

In recent years, investors’ interest in funds of hedge funds has increased. In 2007, 
for example, funds of hedge funds received about US $60 billion of net new assets under 
management, increasing the amount of global capital invested in this type of fund of funds 
to around US $800 billion.  Some market observers believe that fund of hedge funds will 
attract the majority of capital invested in the fund of funds, an industry that has steadily 
grown since 1960s. Compared with the total amount invested in the fund of funds 
industry that has  US $ 1,208 billion of assets under management as reported by the 
Barclay group,  hedge funds  represent about two thirds of  that amount [19]. 
 
 

In this paper, we use various indices of hedge funds mainly based on distinct investment 
strategies, each offering different degrees of risk and return to determine the optimal 
hedge fund combinations using a zero-investment strategy. To do so, in section 1 we 
introduce two portfolio optimization models based on this strategy, a strategy 
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characterised by the value of the long portfolio equal  to the value of the short portfolio 
so that  that the portfolio’s net investment is zero. This self-financing strategy involves 
short selling which, under U.S. securities law requires,  that a margin account be funded 
at the outset of the strategy and maintained throughout until the short sale is closed. The 
obligation to maintain a term deposit (in cash or securities) equal to 50% of the value of 
the shorted securities, has two implications. First, the strategy is no longer a self-
financing strategy because of the need to post margin. Second, it effectively make  it 
necessary to close the strategy’s short positions if the losses become too high. The 
introduction of a marginal account will be considered in our discussion but do not affect 
the selection model. 

The first model we refer to as the two-step model, so-named because it is based 
on two steps: (1) a pre-selection of the hedge funds to be included in the long portfolio 
(the portfolio consisting of winners) and the short portfolio (the portfolio consisting of 
losers) and (2) an optimisation procedure. This approach is in line with the zero-
investment momentum strategies discussed in the literature [2,12] based on the 
empirical finding of persistence of stock returns continuation at least in the short period.  
The simplest decision criterion is based on the computation of compounded total 
monthly return in selecting the winners and losers over some defined ranking period. 
Given the empirical evidence that returns exhibit non-normality, it is important to 
incorporate this information into the pre-selection criterion in order to include not only a 
return but also a risk component and construct a return/ risk profile of the assets. To 
achieve that goal, we rank all the hedge funds according to the modified Sharpe ratio [4] 
performance measure, and we determine the winners as the top 50% and the losers as 
the bottom 50%  
 

The implementation of the momentum strategy involves decisions on the length 
of the data used for the ranking of the assets and the length of the holding period. The 
ranking of the assets is ideally computed based on the last year data.  Since we consider 
monthly data, we used a longer period and found that the sets of winner loser hedge 
funds are quite stable for different lengths of the ranking period.  The holding period is 
one year with monthly rebalancing. 
 

The second approach, the single-step model, avoids this ex ante ranking with the 
introduction of binary variables in the optimization model, forcing the assets to be 
included in only one of the sets of winners and losers. 
 

Section 2 describes the data and the procedure for generating the scenarios. We 
consider both historical and forecasted scenarios. The latter are obtained by identifying 
a set of orthogonal factors which explain the variability of the indices’ returns via 
principal component analysis. Isolating the most relevant factors, we estimate the 
residuals on which we fit univariate GARCH models. The scenarios are then obtained 
via simulations on a correlated set of innovations. Finally, in Section 3 we describe the 
empirical results and compare the different strategies.  
 

 

1. The Zero-Investment Strategy  
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The zero-investment strategy allows building a portfolio divided into a long portfolio 
and a short portfolio whose market values are the same such that the strategy involves 
no investment outlay.  
 

1.1 The Two-Step Model 

 

With the two-step model, the optimal solution for a given (unit) period is obtained 
through a two-step process. In the first step we perform the pre-selection of the hedge 
funds in the database we use, classifying the hedge funds into winners and losers. We 
rank hedge funds according to a pre-specified criterion2 and then  split the ranked hedge 
funds  in half with, the top half representing the winners and the bottom half the losers. 
The next step, the solution of the programming problem (1) below, involves minimizing 
the portfolio’s average value-at-risk (AVaR)3 subject to a constraint on the expected 

return that must be greater than a minimum valueµ. We denote this average value-at-
risk by AVaRα 
    

As Rockefellar and Uryasev [16, 17] demonstrate, it is possible to linearise  the 

AVaRα  by  introducing a vector of auxiliary variables, solving a  linear problem where 
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The linear programming problem that we solve is formalised in (1) below where 
the third and the fourth constraints require that the sum of the weights of the long and 
short portfolios must be equal to 1 and –1, respectively, while the last two constraints 
set some bounds on the weights, in order to guarantee a minimum diversification. 

 

                                                 
2 In order to rank the hedge funds, we use the modified Sharpe ratio defined as the average return  over 
the  modified Cornish-Fisher[4,6] VaR (see appendix A). 
 

3 VaRα(R),  on a probability space (Ω,ℑ,P), is defined as [ ]{ }( ) inf PrVaR R r R rα α= − ∈ℜ ≤ ≥  

at tail probability α. For continuous return distributions, the AVaRα(R)   is defined as the average VaR 
beyond a given VaR level. Not only does AVaR have an intuitive definition, but there are also convenient 
ways of computing and estimating it. As a result, AVaR turns into a superior alternative to VaR suitable 
for managing portfolio risk and dealing with optimal portfolio problems. In general, AVAR is define as 
follows: 

0

1
( ) ( )pAVaR R VAR R dp

ε
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ε

= ∫   where α denotes the tail probability[15]. 
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where 
w = vector of the weights composing the zero-investment portfolio; 
E(r) = vector of expected returns of the hedge funds composing the portfolio. 

µ = minimum expected return required for the portfolio; 
+I  and −I  = sets of the winner and the loser portfolios, respectively; 

UB and LB =  upper bound and  lower bound on the weights of the winners and 
losers portfolios, respectively, in order to ensure a certain degree of 
diversification.   

 
Finally, we determine the optimal asset allocation of the zero-investment 

portfolio for different values of µ, and then we chose the optimal portfolio which 

maximise the ratio between the expected return and the its AVaRα. This risk/return ratio 
is called the STARR ratio and described in [2]. 

  
 

 

1.2 The Single-Step Model 

          
The single-step model avoids the ex-ante selection by introducing binary variables, (i.e., 
there is no need to rank the hedge fund candidates in order to obtain the sets of winners 
and losers). With this approach the optimization problem for a given (unit) period is 
solved through a single-step process, and the selection of the hedge funds to include in 
the long and short portfolio positions is obtained via binary variables according to 
programming problem (2) below. 
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Many of the equations in (2) are the same as in  (1). In the programming 

problem (2), we introduce a new set of variables /i iw w
+ −  which are respectively the 

weights of the i-th item in the long/short portfolio. Note that in this model, /i iw w
+ −  are 

always positive and iλ  is a binary variable associated with the i-th stock of the zero-

investment portfolio, with the set  I of all hedge funds. 
 

Also in this case, the objective function is given by the minimization of the 

AVaRα with confidence levelα . The first two constraints simply require that the sum of 
the weights for both the long and the short portfolio positions must equals unity and the 
third constraint forces the weights of the zero-investment portfolio to be equal to the 
difference between those of the long and short portfolios. The fourth constraint requires 
that the portfolio offers a minimum level of expected return, while the fifth constraint is 
used to linearise the objective function. Finally, the last two constraints represent the 

real novelty inside this model: the introduction of the binary variables iλ  guarantee that 

the product i iw w
+ −  must be zero for all funds.  

 
As we did in the two-step model, we solved the optimization problem for 

different values of expected return µ and chose the optimal asset allocation as the one 
maximising the  STARR ratio. 
 

We observe that the two-step model is formulated as a linear programming 

problem, while the single step model is a mixed integer programming problem due to 

the presence of the binary variables iλ . Since the number of binary variables equals the 

number of assets, in this case, the computational burden increases significantly.  
 

2. The data and scenario generation 

 

In the application of the two models, we focus our attention on the optimal composition 
of hedge funds, to be more precise of indices of hedge funds. Our dataset is the time 
series of monthly returns from May 1994 to October 2007 of 13 indices representative 
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of the 13 style-based investment strategies of the hedge fund universe.4  The database is 
obtained from the Credit Suisse/Tremont Hedge Fund Index Group webpage 
(http://www.hedgeindex.com). 
  
 

We split the sample in two sets and we use a rolling window of 150 monthly 
returns starting from May 1994 to October 2006 for parameters estimation. The selected 
period includes, of course, several financial crises —the failure of Granite Partners, a 
hedge fund also known as Askin Capital Management, in 1994 and the major problems 
in the collateralized mortgage obligations market that followed, the 1997 Bhat crisis, 
and the 1998 Russian ruble crisis in August 1998 followed by the collapse of a major 
hedge fund (Long-term Capital Management) in September 1998.  The last 12 months 
of our dataset — November 2006 to October 2007 — are used to evaluate and compare 
the performance of the different strategies using the aggregate wealth value at the end of 
the holding period.  Note that the holding period includes the subprime mortgage crisis 
that began in the summer of 2007.  

 
All the hedge fund indices were ranked on the basis of their performance as 

measure by the modified Sharpe Ratio, as commonly done in evaluating momentum 
strategies.  The implementation of the momentum strategy involves decisions on the 
length of the time period used for the ranking of the hedge funds and the length of the 
holding period. The ranking of the hedge funds is ideally computed using data for the 
prior year.  However, because we consider monthly data we use a longer period and in 
doing so we found that the winner and loser portfolios are quite stable for different time 
periods. 
 

In Table 1 we report the statistics for the 13 time series, Standard & Poor’s 500, 
J.P. Morgan U.S. Government Bond Index, and the CGSY commodity index. We 
include the three indices in Table 1 in order to compare the performance of the hedge 
fund indices with the other asset classes: stocks,  bonds and commodities. We observed 
the following: (1) the volatility of most of the hedge fund indices were less than the 
S&P500 and CGSY commodity indices while at the same time having a higher average; 
(2) there is strong evidence of non-normality for most of the time series due to the high 
kurtosis present in the monthly data; and, (3) the abnormal returns are all concentrated 
at the end of 1998, corresponding to the Russian crisis. We report the correlation matrix 
in Table 2. Note that the correlation of the hedge fund indices with the other asset 
classes is low, confirming the commonly held belief that hedge funds are an alternative 
investment vehicle. 
 

The optimisation problems described in the previous section are solved for the 
12 consecutive months for two sets of scenarios: historical scenarios and simulated 
ones.  In the historical approach we considered as scenarios the monthly data using a 
window of 150 months; the k-th  historical scenario is the vector of monthly returns of 
the 13 indices in month k: this means that a scenario is given by the vector 

1 2 13, ,...,K K K Kr r r r =
 

 with 1,..., 150k n= = , where the first month considered as the 

first scenario is May 1994 and K

ir  denotes the k-th historical monthly return for the i-th 

index.  

                                                 
4 A description of the indices and the corresponding strategies is provided at www.hedgeindex.com. 
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On the basis of these scenarios we solve the optimisation problems presented 

above, repeating this procedure for 12 months using a moving windows of length (n) of 
150. Each time we select as the optimal solution the one maximizing the STARR ratio. 
In other words, we repeat the optimisation procedure 12 times, and every time we use 
the solution to the problem to compute the final wealth accumulated by the portfolio. 
  

For the simulated scenarios, an econometric model is used to generate the 
forecasted scenarios for the next unit period. We use the data in the rolling window to 
estimate the parameters of the econometric model in order to generate the 150 
forecasted scenarios which are the input into the optimisation model. We generated for 
each month from November 2006 to October 2007, 150 different one-step ahead 
scenarios and, on the basis of these scenarios, we solved the two models.  This 
procedure has the advantage of reducing the volatilities of the scenarios since we 
generate 150 future realisations of the returns in the next month and not the dynamics of 
an asset in the next 150 months as when  the historical scenarios are used.  
 

The procedure we employed in the forecasting approach for scenario generation 
basically involves two distinct steps. Commencing with the historical returns, we utilize 
principal component analysis (PCA) to find three orthogonal factors that have an 
explanatory power of more than 80% of the variability for the 13 hedge fund indices.   
 

Thus, we compute the residuals not explained by the three factors obtained from 
the PCA and we then model the variance of the residuals with a ARMA-GARCH model 
in order to capture the dependence of returns. These models incorporate (1)  a 
dependence effect given by the relevance of the observations of the immediate past 
(conditional term) and (2) a feedback mechanism with which past observations are taken 
into consideration to explain the present volatility value (autoregressive part). Roughly 
speaking, if a time series exhibits GARCH effects, it means it is heteroscedastic; that is, 
its variance may be well described by a time-varying process.  
 

The importance of GARCH modelling is due to the fact that it considers two 
important characteristics of most time series: the excess kurtosis effect and volatility 

clustering. Hence, in general a GARCH model is able to forecast (ex-ante analysis) or to 
explain (ex-post analysis) quite accurately the variances derived from different hedge 
fund index returns.   
 

The variables to be modelled are the residuals series obtained by the PCA. We 
applied the following univariate ARMA(1,1)-GARCH(1,1) to each of them: 
 

2

1

2

1

2
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**

−−

−−
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+++=

ttt

tttt
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where 
 

RESt = residuals from the PCA; 
C = constant in the ARMA(1,1) model; 
AR =  autoregressive term in the ARMA(1,1) model; 
MA =  moving average in the ARMA(1,1) model; 
GARCH  = GARCH coefficient in the GARCH(1,1) model; 
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ARCH = ARCH coefficient in the GARCH(1, 1) model. 
2
t

σ = conditional variance process of the residuals ; 

εt = innovation of the time series process with t t tzε σ=  and zt is a Gaussian iid 

process with zero mean and unit variance. 
 

In Appendix B we report the estimate of the ARMA(1,1)-GARCH(1,1)  models, 
standard errors and asymptotic t-statistics.  
 

We generate the scenarios using the one step forecast of the variance of the 
residuals for the next month obtained with the GARCH (1,1) model, updating the 
diagonal of the next month covariance matrix of the residuals and adjusting the off 
diagonal elements with the historical correlations. We draw a vector of residuals 
simulating the innovations from the multivariate Gaussian with a zero-mean and the 
updated covariance matrix. Note that, in order to apply the Cholesky decomposition, the 
covariance matrix must be positive definite, so we applied the spectral decomposition.5 
Once we obtain the simulated residuals, we reconstruct the forecasted scenarios using 
the estimated three principal factors.  
 
 
3. Empirical Result  

 
Overall, we had four strategies to evaluate: 
  

Strategy 1: Two-step model with historical scenarios 
Strategy 2: Two-step model with simulated scenarios 
Strategy 3: Single-step model with historical scenarios 
Strategy 4: Single-step model with simulated scenarios 

 
In order to implement the first two strategies, we determine the winner and the loser 

sets for each month. In Table 3 we report the two sets of winners and losers for the first 
month of the analysis. We compute each month the modified Sharpe ratio and we 
observe that the relative ranking changes but the set of winner and losers remain 
unchanged in all the periods of the analysis. Most of the assets with the highest kurtosis 
are included in the winners set. 
 

In Table 4 we report the average composition of the long and short portfolios and 
the standard deviation of the composition. The results for the two-step model and 
single-step model in panels (a) and (b), respectively.  Even if the compositions  among 
the different strategies for each month differs significantly, it is interesting to notice that 
the selection via binary variables on average is concentrated on the same indices of the 
pre-selection procedure when we consider simulated scenarios. In contract, the 
composition of the optimal portfolios via binary variables with historical scenarios leads 
to a completely different selection of long and short portfolios. Three  of the hedge fund 
indices (GM, MULTI, MULTI1) classified as winners according to the momentum 
strategy are always selected in the short portfolios and two hedge fund indices (CA, 
FIA), classified as losers, are always in the long portfolio.  

                                                 
5 For making a semi-positive definite matrix a positive definite one, the spectral decomposition was used. 
More details may be found in Appendix C. 
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Table 5 shows the performance of the four strategies in terms of expected return and 
risk. The ex ante STARR ratios  are significatively smaller in the case of the  of the two-
step model with historical scenarios due to a considerably higher value for the optimal 
AVAR.   
 

In order to evaluate each strategies’ performance on the basis of an ex post analysis, 
we solved the programming problems (1) and (2) using the historical and simulated 
scenarios for 12 consecutive months, from November 2006 to October 2007, 
rebalancing each period. We solve the problems using  Gams [3], a high-level modeling 
system for mathematical programming and optimization, and in particular the Cplex 
solver for the mixed programming problems. 

 
 We computed cumulative returns for the different strategies, the Sharpe ratio, and 

the aggregated wealth per unit capital invested at the end of the holding period.  From a 
practical point of view a margin account of 50% on the short part must be paid to the 
broker for short selling activities. 
 

In Table 6 we report the net return and the cumulative net return for the different 
strategies and for the Tremont AllHedge index, the geometric mean, the volatility, the 
Sharpe ratio, and β, considering the Tremont index as the market benchmark.   The 
Tremont Index is an asset-weighted hedge fund index derived from the market leading 
Credit Suisse/Tremont Hedge Fund Index. In order to compare the strategies, we 
consider the final net cumulative return and the volatility of the return. Unfortunately, 
we do not have a sufficient number of data points to compute the ex-post STARR ratio. 
We observe that the best strategy is the two-steps model with historical scenarios and 
the worst is the one-step model, with historical scenarios. The simulated scenarios for 
both models lead to very good results. 
 

Figure 1 we show the computed  cumulated returns. We find  that, apart from the 
single-step model with historical simulation, the other strategies have a similar 
behaviour and all outperform the Tremont index. Up until  the subprime crisis, the two-
step model with simulated scenarios outperforms the other strategies, but the forecasting 
procedure fails as the market volatility dramatically increases.  This call for a more 
accurate modelling of the innovation in order to capture extreme movements in the 
market [13,14,15,21]. These extreme movements are present in the historical data which 
includes many financial  crisis (the failure of Granite Partners, a hedge fund also known 
as Askin Capital Management, in 1994 and the major problems in the collateralized 
mortgage obligations market that followed, the 1997 Bhat crisis, and the 1998 Russian 
ruble crisis in August 1998 followed by the collapse of a major hedge fund (Long-term 
Capital Management )in September 1998 ). 

 
Finally, we perform the Fama decomposition [5] in Table 7. That is, we decompose 

the excess realised return in the risk premium  that the portfolio should have earned 
given its beta, market return, and risk-free rate and the risk premium due to the 
manager's skill. The manager’s skill is the sum of two components: diversification and 
pure selectivity. The diversification premium is the difference between the return 
explained by the total risk of the portfolio and the systematic risk of the portfolio.  This 
will be zero for perfectly diversified portfolios. The pure selectivity premium is the 
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difference between the risk premium due to selectivity and diversification. We observe 
that the single-step model using historical scenarios completely fails in the selection of 
the losers and the winners.  We can confirm that the two-step model is the model with 
the best behaviours performance using both historical and simulated data, while the 
single-step model is not able to properly select the winner/loser hedging at least on 
historical scenarios. 

 

We compute the aggregated wealth at the end of the holding period per unit of invested 
capital, considering a margin account of 50% to be deposited with  the broker for short 
selling activity. We do not consider the influence of the transaction costs for monthly 
rebalancing since they affect pretty much all strategies in the same way, resulting in no 
change in the final ranking of the best approaches.  
 

If we look at the net realised returns, the two-steps model with historical 
scenarios offers the best performance with a final wealth per unit of invested capital 6 of 
39.39%.   The single-step model with simulated scenarios provides a return of 26,94%, 
followed by the 24.22% return offered by the two-step  model with simulated scenarios. 

Finally, the single-step model with historical scenarios basically offers a return of close 
to zero (-0.10%).  
 
 
 
Conclusions   

 

In this paper we quantified and analyzed the results of two different optimization 
models: one based on an ex-ante ranking of the best and worst hedge funds, while the 
other introduces binary variables avoiding the pre-selection prior to any optimization. 
Both models seek to find the optimal hedge fund  allocation of a zero-investment 
portfolio strategies for a funds of hedge funds indices. The solution to both models 
requires the generation of scenarios in order to predict the future. We solved the two 
optimization problems using two scenario generation techniques:  (1) assuming that the 
past could be considered as a good forecast of the future (historical scenarios) and (2)  
using principal component analysis via an ARMA-GARCH model, we simulated the 
future scenarios (simulated scenarios).   
 

With the exception of the single-step model using historical scenarios, the other 
strategies considerably over performed the Tremont index. The single-step model using 
simulated scenarios selects the same set of winners and losers for the short and long 
portfolios that were explicitly selected by the ex-ante ranking procedure. These results 
suggest that the introduction of binary variables and the related complex mixed integer 
programming  does not lead to an improvement in the performance over the two-step 
model. The two-step model is the best performing model and furthermore (i)  for the 
first period the one solved on simulated scenarios (see (2)) has the best performance, but 
(ii) after the subprime crisis, as soon as a dramatic increase in the market volatility 
occurs, the historical method (see (1)) outperformed (2). The GARCH model with 

                                                 
6 The return of the strategy over the period is computed assuming that the size of the short portfolio is S, 
and that 0.30%S is the initial investment. After 12 months, the margin is refunded and the final wealth is  

( Re ) 0.5 0.5 Re

0.5 0.5

CumNet turn S S S CumNet turn
R

S

+ −
= =   
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normal innovations seems to be incapable of adequately capturing the changes in 
volatility that are present in the historical dataset which includes the Russian crisis, as 
shown the high value of the STARR ratio. These results suggest the line for future 
researches with the introduction of non Gaussian innovation.  
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Appendix A: Modified Sharpe Ratio 

 

The Sharpe ratio is simply the return per unit of risk (represented by variability). The 
higher the Sharpe ratio is, the better the performance given the level of risk. The Sharpe 
ratio 
is a risk-adjusted measure of return that where the standard deviation  is a poxy for risk.   
 

Applied to the hedge fund universe, traditional performance measures that 
assume a mean-variance framework  are misleading becauseof the non-normality of 
returns. We propose an improvement to the original Sharpe ratio through the use of the 
modified value-at-risk7 (MVaR). The new performance measure is named the Modified 
Sharpe ratio. 

In the equation of the modified Sharpe ratio, the modified VaR is introduced instead of 
the standard deviation. It is defined as follows: 

pp

FpFp

zr

rr

MVaR

rr
SharpeM

σαˆ+

−
=

−
=−  

( ) ( ) ( )( ) ppppp
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MzzMzzMzzr

rr
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
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
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−
=−

2'33''43'32 52
36

1
3

24

1
1

6

1
 

Where: 

pr :  is the return of the portfolio (i.e. a hedge fund or a Fund of hedge funds) 

Fr : is the risk-free rate 

αz :  is a quantile of the standard normal distribution 

pσ : is the standard deviation of the portfolio 

'3

pM : is the skewness 

''4

pM : is the Kurtosis 

The replacement of the standard definition by the MVaR is justified by the fact that the 
latter takes into account skewness and kurtosis in addition to mean and standard 
deviation and so, can handle non-normal distribution.  
 
 
 

                                                 
7 Modified Cornish-Fisher VaR. 
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Appendix B 

 
In this appendix, we provide the parameters estimate of the ARMA(1, 1)-GARCH(1,1) 
model for the last month of the ex-post analysi(October 2007) and the t-statistics in 
brackets. 
      
Hedge  
Fund Index 

C AR(1) MA(1) K GARCH (1) ARCH (2) 

Equity Market 
Neutral 

-0.0002 
(-0.4246) 

0.4464 
(1.5536) 

-0.2329 
(-0.7212) 

0.0000 
(1.1224) 

0.5230 
(1.5531) 

0.1620 
(1.6224) 

Event Driven 
Distressed 

0.0004 
(0.6649) 

0.6795 
(3.0933) 

-0.4945 
(-1.7891) 

0.0001 
(4.4146) 

0.0000  
(0.0000 ) 

0.4417 
(4.7217) 

Event Driven 0.0003 
(0.6349) 

0.7513 
(4.7352) 

-0.5608  
(-2.9877) 

0.0000 
(1.7087) 

0.6833 
(9.1228) 

0.2386 
(3.9111) 

Global Macro 0.0025 
(1.3384) 

-0.8831 
 (-21.516) 

1.0000 
(50.8795) 

0.0000 
(0.9212) 

0.8324 
(13.3215) 

0.1676 
(2.6308) 

Long/Short Equity 0.0004 
(0.3245) 

0.2829 
(0.5444) 

-0.0789 
(-0.1507) 

0.0000 
(2.176) 

0.7430 
(9.3411) 

0.1679 
(2.9999) 

Multi Strategy 0.0004 
(0.641) 

0.7294 
(2.863) 

-0.6085 
 (-2.0153) 

0.0000 
(1.4995) 

0.7534 
(10.2735) 

0.2096 
(2.6651) 

Event Driven Multi 
Strategy 

0.0007 
(0.7941) 

0.2434 
(0.3225) 

-0.0944 
 (-0.1228) 

0.0000 
(0.7827) 

0.9170 
(20.725) 

0.0830 
(2.0926) 

Convertible 
Arbitrage 

0.0004 
(0.8224) 

0.5256 
(4.1543) 

-0.0760  
(-0.4819) 

0.0000 
(4.7083) 

0.0000 
(0.000) 

0.7769 
(3.0449) 

Event Driven Risk 
Arbitrage 

0.0002 
(0.1382) 

-0.5986  
(-2.1629) 

0.7632 
(3.538) 

0.0000 
(1.048) 

0.7982 
(7.1823) 

0.1321 
(2.1157) 

Fixed Income 
Arbitrage 

0.0002 
(0.1545) 

-0.0230  
(-0.0512) 

0.3343 
(0.7934) 

0.0001 
(0.5917) 

0.0000  
(0.0000) 

0.0629 
(0.4445) 

Emerging Markets 0.0047 
(1.2573) 

-0.7332  
(-4.8475) 

0.8857 
(9.1835) 

0.0000  
(0.8729) 

0.8574 
(17.2709) 

0.1426 
(2.9918) 

Managed Futures 0.0006 
(0.4348) 

-0.4181  
(-1.6732) 

0.6908 
(3.4714) 

0.0000 
(0.8147) 

0.5670 
(1.1518) 

0.0799 
(0.7724) 

Dedicated Short Bias -0.0015 
 (-1.1259) 

-0.6154 
 (-1.8134) 

0.7415 
(2.5503) 

0.0000 
(0.8567) 

0.8427 
(11.5752) 

0.1389 
(2.4452) 

 
 

 



 17

Appendix C: Spectral decomposition 

 
The spectral decomposition is a technique allowing one to approximate a non-positive 

definite matrix, R; into a positive definite one, R̂ , and it may be briefly described as 
follows.  
 

Let R be a pp ×  matrix, thus it can be written as  

 
'VVR Σ=  

 
where  
 

Σ  = a pp × diagonal matrix of eigenvalues iλ , with pi ,...,2,1=  

 

V =  a pp × matrix, whose columns coincide with the corresponding   

eigenvectors  
 
Obviously, if the matrix R is not positive definite, then only some of its eigenvalues, say 

r, with pr < , are positive. The trick involves exploiting only these r positive 

eigenvalues to find a positive definite approximation R̂ of the original matrix R.  
In particular, this matrix may be written as 
 

'ˆˆˆˆ VVR Σ=  
 
where 

R̂  = a pp ×  matrix; 

V̂  = a rp ×  matrix whose columns are given by the eigenvectors corresponding 

to the r positive eigenvalues; 

Σ̂  =  a rr ×  diagonal matrix of the r positive eigenvalues only.  
 
Hence, in this way a positive definite approximation of the original matrix R is 
obtained. 
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HEDGE FUND 

INDEX 

SYMBOL MEAN MEDIAN STD. 

DEVIATION 

KURTOSIS ASYMMETRY 

Convertible 
Arbitrage 

 CA 0.76% 1.03% 1.30% 6.87 -1.43 

Dedicated Short Bias DSB -0.13% -0.62% 4.85% 5.27 0.88 

Emerging Markets EM 0.92% 1.57% 4.43% 8.87 -0.82 

Equity Market 
Neutral 

EMN 0.82% 0.81% 0.82% 3.54 0.31 

Event Driver ED 0.98% 1.07% 1.58% 29.27 -3.60 

Event Driven-
Distressed 

DIS 1.11% 1.22% 1.76% 24.64 -3.14 

Event Driven Multi-
Strategy 

MULTI 0.91% 0.96% 1.72% 19.89 -2.55 

Event Driven-Risk 
Arbitrage 

RA 0.64% 0.60% 1.18% 9.80 -1.20 

Fixed Income 
Arbitrage 

FIA 0.54% 0.72% 1.04% 21.19 -3.19 

Global Macro GM 1.19% 1.18% 2.98% 6.79 0.07 

Long/Short Equity LSE 1.06% 1.01% 2.84% 7.40 0.19 

Managed Futures MF 0.53% 0.20% 3.50% 3.15 0.03 

Multi-Strategy MULTI1 0.80% 0.84% 1.18% 6.37 -1.12 

 
 
 
 
Asset Class Indices 

 
 
 
 
Symbol 

     

S&P 500  S&P 0.80% 1.16% 4.10% 4.70 -0.69 

J.P. Morgan US 
Government Bond 
Index 

JPM   0.06% 0.12% 1.32% 4.22 -0.50 

 CGSY commodity 
index 

CGSY 0.81% 0.98% 5.73% 3.29 0.10 

  
Table 1: Summary statistics for the hedge fund indices, S&P500, J.P. Morgan U.S. Government Bond Index,  and 
CGSY commodity indices 
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   CA DSB EM EM

N 

ED DIS MU

LTI 

RA FIA GM LSE MF MUL

TI1 

S&P JP

M   

CGS

Y 

 CA 1.00                

DSB -0.24 1.00               

EM 0.28 -0.54 1.00              

EMN 0.33 -0.31 0.24 1.00             

ED 0.57 -0.61 0.66 0.37 1.00            

DIS 0.49 -0.61 0.57 0.35 0.93 1.00           

MUL

TI 

0.57 -0.53 0.66 0.34 0.94 0.74 1.00          

RA 0.41 -0.51 0.43 0.32 0.68 0.57 0.65 1.00         

FIA 0.55 -0.07 0.25 0.13 0.37 0.31 0.41 0.16 1.00        

GM 0.28 -0.12 0.42 0.21 0.38 0.31 0.42 0.14 0.41 1.00       

LSE 0.27 -0.71 0.60 0.34 0.67 0.59 0.65 0.53 0.19 0.41 1.00      

MF -0.09 0.08 -0.06 0.14 -0.09 -0.06 -0.11 -0.13 -0.02 0.27 0.05 1.00     

MUL

TI1 

0.43 -0.12 0.05 0.24 0.27 0.18 0.32 0.14 0.34 0.19 0.24 0.09 1.00    

S&P 0.18 -0.67 0.44 0.37 0.55 0.54 0.48 0.50 0.03 0.20 0.49 -0.06 0.11 1.00   

JPM   -0.04 0.17 -0.16 0.03 -0.18 -0.14 -0.19 -0.12 -0.02 0.15 -0.04 0.28 -0.05 -0.17 1.00  

CGS

Y 

-0.02 -0.05 0.06 0.06 0.09 0.07 0.09 0.03 0.05 0.04 0.20 0.21 0.09 -0.01 0.07 1.00 

Table 2: Correlation between the hedge fund indices and asset class indices 
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 Symbol Description E(R) MVaR* Modified Sharpe Ratio 

W

i

n

n

e

r 

EMN Equity Market Neutral 0.82% 2.11% 0.1914 

DIS Distressed 1.09% 4.55% 0.1475 

ED Event Driven 0.94% 3.96% 0.1313 

GM Global Macro 1.19% 5.98% 0.1299 

LSE Long/Short Equity 1.03% 5.38% 0.1146 

MULTI Multi-Strategy 0.77% 3.11% 0.1138 

MULTI1 Multi-Strategy1 0.86% 4.14% 0.1063 

L

o

s

e

r 

CA Convertible Arbitrage 0.74% 3.35% 0.0974 

RA Risk Arbitrage 0.62% 2.79% 0.0713 

FIA Fixed Income Arbitrage 0.55% 2.61% 0.0509 

EM Emerging Markets 0.80% 8.83% 0.0440 

MF Managed Futures 0.53% 6.13% 0.0193 

DSB Dedicated Short Bias -0.11% 6.50% -0.0804 

Table 3: Pre-selection  for the Modified value at risk 
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•  

 HISTORICAL 
SCENARIOS 

SIMULATED 
SCENARIOS 

 HISTORICAL 
SCENARIOS 

SIMULATED 
SCENARIOS 

Winner Mean Std Mean Std Loser Mean Std Mean Std 

EMN 35.00% - 11.19% 14.19% CA -0.53% 1.84% -11.28% 15.05% 

DIS 19.65% 12.77% 15.47% 15.73% RA -34.99% 0.03% -22.35% 16.31% 

ED -  - 11.98% 15.12% FIA -35.00% - -31.06% 8.39% 

GM 20.41% 4.03% 31.33% 6.48% EM -7.00% 0.99% -15.22% 13.19% 

LSE 11.99% 6.91% 3.05% 10.07% MF -6.27% 1.10% -9.65% 10.68% 

MULTI 12.94% 9.95% 6.09% 12.13% DSB -16.20% 1.29% -10.43% 5.36% 

MULTI1 -  - 20.90% 15.04%         

Panel (a) Average compositions and standard deviation of the optimal portfolios for the two-step  model. 
The indices are classified as winners and losers 

 

 HISTORICAL 
SCENARIOS 

SIMULATED 
SCENARIOS 

 HISTORICAL 
SCENARIOS 

SIMULATED 
SCENARIOS 

 Mean Std Mean Std  Mean Std Mean Std 

EMN 2.29% 8.92% 1.85% 18.43% CA 27.02% 3.60% -4.95% 27.40% 

DIS 3.66% 1.59% 14.06% 21.92% RA -1.40% 3.39% -15.21% 22.42% 

ED 21.30% 5.52% 18.22% 22.03% FIA 5.93% 3.13% -15.53% 20.94% 

GM -5.31% 0.87% 31.67% 10.08% EM -0.08% 2.01% -17.85% 14.62% 

LSE 32.82% 4.10% 1.12% 15.51% MF -4.62% 9.06% -9.05% 13.42% 

MULTI -19.75% 6.69% 4.61% 14.80% DSB -35.00% 0.00% -8.93% 5.38% 

MULTI1 -26.84% 13.00% - -         

Panel(b) Average compositions and standard deviation of the optimal portfolios for the single-step model.  
 
Table 4: Average compositions and standard deviation of the optimal portfolios  
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 Two-Step Model Single-Step Model 

 Historical scenarios 

 

Simulated scenarios Historical scenarios Simulated scenarios 

 Return AVaR Return AVaR Return AVaR Return AVaR 

Nov 2006 0.50% 2.439% 1.70% 0.573% 0.70% 0.250% 0.60% 1.863% 

Dec 2006 0.50% 2.424% 1.60% 0.525% 0.40% 0.067% 0.40% 1.823% 

Jan 2007 0.50% 2.383% 1.70% 0.555% 0.70% 1.112% 0.50% 0.803% 

Feb 2007 0.50% 2.353% 1.70% 0.549% 0.90% 0.748% 0.80% 0.666% 

Mar 2007 0.50% 2.337% 1.70% 0.427% 0.70% 0.079% 0.70% 2.094% 

Apr 2007 0.50% 2.275% 1.70% 0.410% 0.80% 0.863% 0.50% 0.661% 

May 2007 0.50% 2.250% 1.70% 0.378% 0.50% 0.385% 0.40% 0.997% 

Jun 2007 0.50% 2.146% 1.70% 0.368% 1.20% 0.979% 1.00% 1.720% 

Jul 2007 0.60% 2.602% 1.80% 0.389% 0.60% 0.214% 0.70% 0.748% 

Aug 2007 0.60% 2.604% 1.70% 0.368% 1.20% 0.871% 1.00% 0.844% 

Sep 2007 0.60% 2.652% 1.70% 0.368% 0.80% 0.317% 0.70% 0.842% 

Oct 2007 0.50% 2.264% 1.70% 0.424% 0.50% 0.466% 0.40% 1.892% 

Table 5: Ex ante expected return and risk of the optimal portfolios 
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  Two-Step Model Single-Step Model Tremont index  

  Historical scenarios Simulated scenarios Historical scenarios Simulated scenarios     

Month Monthly Cum  Monthly Cum  Monthly Cum  Monthly Cum  Monthly Cum  

Return Return  Return Return  Return Return  Return Return  Return Return 

Nov-06 1.20% 1.20% 1.53% 1.53% -1.24% -1.24% -0.08% -0.08% 2.07% 2.07% 

Dec-06 1.22% 2.43% -0.60% 0.92% 0.83% -0.42% -0.88% -0.96% 1.83% 3.94% 

Jan-07 2.19% 4.68% 3.67% 4.62% -0.13% -0.55% 2.56% 1.58% 1.33% 3.19% 

Feb-07 0.01% 4.69% 1.16% 5.84% -0.71% -1.26% 0.38% 1.96% 0.74% 2.08% 

Mar-07 2.57% 7.38% 3.95% 10.02% -0.14% -1.39% 3.19% 5.21% 1.24% 1.98% 

Apr-07 1.76% 9.27% 1.25% 11.39% -0.93% -2.31% -0.30% 4.90% 2.02% 3.28% 

May-07 4.70% 14.40% 1.63% 13.21% 2.86% 0.48% 3.33% 8.39% 2.31% 4.38% 

Jun-07 -0.05% 14.35% 0.62% 13.91% 0.79% 1.28% -0.73% 7.60% 0.78% 3.11% 

Jul-07 -1.57% 12.55% -4.50% 8.79% 1.80% 3.10% 2.75% 10.56% 0.00% 0.77% 

Aug-07 0.68% 13.32% -0.17% 8.60% -0.90% 2.17% -1.29% 9.13% -1.53% -1.53% 

Sep-07 1.75% 15.30% 0.51% 9.15% -2.97% -0.86% 0.40% 9.57% 2.71% 1.13% 

Oct-07 3.82% 19.70% 2.72% 12.12% 0.82% -0.05% 3.56% 13.47% 3.16% 5.95% 

                      

Geometric 

 Mean 

 1.51%   0.96%   0.00%   1.06%   0.48% 

Volatility  1.71%   2.22%   1.54%   1.85%   1.28% 

Sharpe 

 Ratio 

 
0.83  0.39  -0.05  0.53 

 
0.31 

ββββ      
0.79 

 
  

 
0.68 

 
  

 
-0.04 

 
  

 
0.44 

 
  

 
1 

Table 6 Net returns and cumulative returns for the four strategies and for the Tremont AllHedge Index . 
We assume an annual risk free rate of  1%. 
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Inputs  Return Decomposition 

  Average 

Return 

Standard 

Deviation 

Portfolio 

Beta 

 Risk 

Premium 

Risk Premium Due To Risk Premium Due 

To Selectivity is the sum 

of 

Strategy      beta Selectivity Diversific

ation 

Net 

Selectivity 

1. Two Step model with 
historical scenarios 

1.51% 1.71% 0.79  1.43% 0.31% 1.11% 0.22% 0.90% 

2. Two Step model with 
simulated scenarios 

0.96% 2.22% 0.68  0.88% 0.27% 0.61% 0.42% 0.19% 

3. One Step model with 
historical scenarios 

0.00% 1.54% -0.04  -0.08% -0.02% -0.07% 0.49% -0.56% 

4. One Step model with 
simulated scenarios 

1.06% 1.85% 0.44  0.98% 0.18% 0.80% 0.40% 0.40% 

  
Table 7 Fama decomposition. We assume an annual risk free rate of  1%.  
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