Exercises - 1

Statistical Methods for Financial Risk Management

1. Let X_1, \ldots, X_n be an i.i.d. sequence from $N(\mu, \sigma^2)$ with an unknown set of parameters $\theta = (\mu, \sigma^2)$ and $n \geq 2$.
 - Write the log-likelihood function.
 - Find the maximum likelihood estimation for μ and σ.

2. Let X_1, \ldots, X_n be an i.i.d. sequence from $\Gamma(\alpha, \gamma)$ with an unknown set of parameters $\theta = (\alpha, \gamma)$ and $n \geq 2$.
 - Write the log-likelihood function.
 - Find the maximum likelihood estimation for γ and describe a procedure to find α.

 - Suppose that log returns are normal distributed. Estimate mean and variance.
 - Draw the qq-plot.
 - Find empirical mean, variance, skewness and kurtosis and compare them with the normal distribution obtained in the previous point.
 - Evaluate KS, AD and JB statistics.
 - Find a way to calculate the p-value in the KS Goodness of Fit Test.
 - How can we find the p-value of the AD Goodness of Fit Test?
 - Are log return normal distributed?

4. Describe a procedure to simulate compound Poisson processes. By considering the definition of standard Brownian motion, simulate a trajectory with $t \in [0, 1]$ and by taking time steps $\Delta t = 1/250$.

Some exercises can be solved with paper and pen, other have to be solved with the help of a PC. The free software R, http://www.r-project.org, is a good choice for our goal. For any problem or remark, do not hesitate to contact me, bianchi@statistik.uni-karlsruhe.de