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ABSTRACT

This paper investigates the usefulness of a hedge fund trading strategy known as “pairs
trading” applied to energy futures markets. The profit of a simplified pairs trading strategy is
modeled by using a mean-reverting process of the futures price spread. According to the com-
parative statics of the model, the strong mean-reversion and high volatility of the spread give
rise to the high expected return from trading. Analyzing energy futures (more specifically, WTI
crude oil, heating oil, and natural gas futures) traded on the New York Mercantile Exchange,
we present empirical evidence that pairs trading can produce a relatively stable profit. We also
identify the sources of the profit from a pair trading strategy, focusing on the characteristics of
energy. The results suggest that natural gas futures trading may be more profitable than WTI
crude oil and heating oil due to its strong mean-reversion and high volatility, while seasonality
may also be relevant to the strategy’s profitability. Moreover, natural gas futures trading may
be more vulnerable to event risk (as measured by price spikes) than the others. Finally, we
investigate the profitability of cross commodities pairs trading.
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1. Introduction

One well-known trading strategy employed by hedge funds is “pairs trading” and it is typically

applied to common stock. This trading strategy is categorized as a statistical arbitrage and con-

vergence trading strategy. In pairs trading, the trader identifies two brands of stock prices that

are highly correlated based on their price histories and then starts the trades by opening the long

and short positions of the two brands selected. Gatev, Goetzmann, and Rouwenhorst (2006) con-

duct empirical tests of pairs trading from common stock. They show that a pairs trading strategy

is profitable, even after taking into account transaction costs. Jurek and Yang (2007) compare the

performance of their optimal mean-reversion strategy with that of Gatev, Goetzmann, and Rouwen-

horst (2006) using simulated data. They show that their strategy provides even better performance

than that of Gatev, Goetzmann, and Rouwenhorst. While a pairs trading strategy has been applied

primarily as a stock market trading strategy, there is no need to limit the strategy to that asset class.

A pairs trading strategy simply requires two highly correlated prices. To the best of our knowledge,

a pairs trading has not been investigated for energy markets. A priori, there is reason to expect that

pairs trading might be successful in energy markets: As reported by Alexander (1999), energy

futures with different maturities are characterized by highly correlated prices.

In attempting to apply pair trading as used in the stock market to the energy market, care must

be exerted. Energy prices exhibit unique characteristics compared to stocks. These characteristics

include strong seasonality, strong mean-reversion, high volatility, and sudden price spikes (see

Eydeland and Wolyniec (2003)). Because these characteristics may have a positive or negative

impact on a pairs trading strategy, in this paper we investigate the impact of these characteristics

on the profitability of a pairs trading strategy.

In order to examine the profitability of pairs trading applied to energy markets, we propose a

simplified profit model for pairs trading, focusing on how the convergence and divergence of pairs

generate profits and losses. We begin by modeling the price spread of energy futures using a mean-

reverting process as in Dempster, Medova, and Tang (2008). Then, we obtain the profit model by

calculating the total gain and loss stemming both from the profits of spread convergence during

the trading period and from the losses of spread divergence at the end of the period. In addition,

we examine the comparative statics of total profit by changing the mean-reversion strength and

the volatility of the spread. We show that the total profit is positively correlated with the mean-

reversion spread and the volatility of the spread.

We conduct empirical analyses of pairs trading by using energy futures prices for WTI crude

oil, heating oil, and natural gas traded on the New York Mercantile Exchange (NYMEX). We find

that pairs trading can produce relatively stable profits for all three energy markets. We then in-

1



vestigate the principal factors impacting the total profits, focusing on the characteristics of energy:

strong seasonality, strong mean-reversion, high volatility, and large price spikes. Since we observe

that seasonality for heating oil and natural gas affects the strategies profitability, the total profits

may be determined by taking into account seasonality. Then, we find that mean-reversion and

volatility appear to be a key to the profitability of the trading strategy. In addition, we examine

event risk in pairs trading, as gauged by price spikes, by analyzing the correlation between the

pairs obtained from the dynamic conditional correlation model (see Engle (2002)). Our results

suggest that natural gas futures trading may be more vulnerable to event risk as measured by price

spikes than WTI crude oil and heating oil trading. Finally, we investigate the profitability of cross

commodity trading that employs all three energy futures prices.

This paper is organized as follows. Section 2 proposes a profit model for a simplified pairs

trading strategy. Section 3 explains how the model is modified for energy futures. Section 4

analyzes the usefulness of pairs trading in energy futures markets; our conclusions are summarized

in Section 5.

2. The Profit Model

As explained earlier, in general, pairs trading involves the simultaneous purchase of one financial

instrument and sale of another financial instrument with the objective of profiting from not the

movement of the absolute value of two prices, but the movement of the spread of the prices. The

basic and most common case of pairs trading involves simultaneously selling short one financial

instrument with a relatively high price and buying one financial instrument with a relatively low

price at the inception of the trading period, expecting that in the future the higher one will decline

while the lower one will rise. If the two prices converge during the trading period, the position

is closed at the time of the convergence. Otherwise, the position is forced to close at the end of

the trading period. For example, suppose we denote byP1,t andP2,t the relatively high and low

financial instrument prices respectively at timet during the trading period. When the convergence

of price spread occurs at timeτ during the trading period, the profit is the price spread at time 0

denoted byx = P1,0−P2,0. In contrast, when the price spread does not converge until the end of

the trading period at timeT, the profit stems from the difference between the spreads at times 0

andT asx−y = (P1,0−P2,0)− (P1,T −P2,T), wherey represents the price spread at timeT. Thus,

pairs trading produces a profit or loss from the relative price movement, not the absolute price

movement.1

1The position will be scaled such that the strategy will be self-financing. Even in this case, the price spread is
relevant to the profit.
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In this section, we present a profit model for this basic and most common pairs trading strategy.

To do so, we need to take into account in the model (1) the price spread movement and (2) the

frequency of the convergence. We utilize these modeling components to derive our profit model in

order to formulate a general model that can be applied to pairs trading regardless of the financial

instrument.

Let’s look first at the modeling of the price spread movement. As a first-order approximation,

we assume that the price spread of a pairs trade, denoted bySt , follows a mean-reverting process

given by

dSt = κ(θ−St)dt+σdWt . (1)

For simplicity, we assume thatκ, θ, andσ are constant. Equation (1) was used by Jurek and Yang

(2007) as a general formulation for an investor facing a mean-reverting arbitrage opportunity and

by Dempster, Medova, and Tang (2008) for valuing and hedging spread options on two commodity

prices that are assumed to be cointegrated in the long run.

Next, we need to capture how frequently the price spread converges. Assume that a sample

path of a stochastic process with an initial valueX at time 0 reachesY at time τ for the first

time. τ is refereed to as the “first hitting time.” Linetsky (2004) provides an explicit analytical

characterization for the first hitting time (probability) density for a mean-reverting process that can

be applied to modeling interest rates, credit spreads, stochastic volatility, and convenience yields.

Here we apply it to modeling pair trading because it occurs to us that the behavior such thatX

reachesY for the first time can help to express the convergence of price (i.e., price spreadX at time

0 converges onY = 0 at timeτ.). Moreover, we believe that the correponding probability density

is useful to calculate the expected profit from the pairs trading strategy.

Finally, we calculate the profit from pairs trading using a mean-reverting price spread model

and first hitting time density for a mean-reverting process. This calculation takes into account the

convergence and failure to converge of the price spread during the trading period. First, consider

the case of convergence (i.e., when price spread convergence occurs which is responsible for pro-

ducing the strategy’s profit). In this case, the expected profit, denoted byrp,c, is calculated as the

product of price spreadx at time 0 and the probability for price spread convergence until the end of

the trading period, becausex is given and fixed as an initial value. Since the spread becomes 0 from

the initial valuex> 0, the first hitting time density for a mean-reverting process in Linetsky (2004)

is employed. Now let’s look at the case when the price spread reachesy at the end of the trade,

failing to converge during the trading period. The expected profit, denoted byrp,nc, is calculated

as the integral (with respect toy) of the product ofx− y and the probability density for failure to

converge during trading period, resulting in the arrival aty at the end of the trading period, where

3



the probability is again obtained from the first hitting time density for a mean-reverting process in

Linetsky (2004).

Given the above, we can now derive our profit model, denoted byrp , from a simple pairs

trading strategy. Suppose thatx is the price spread of two assets used for pairs trading at time 0

when trading begins by constructing the long and short positions. Suppose further that the price

spread is given by a mean-reverting model as in equation (1).

First, let’s consider the spread convergence case in which price spreads at times 0 andτ are fixed

asx and 0, respectively. Assuming that the first hitting time density for the price spread process

is fτx→0(t), the expected returnrp,c for this spread convergence is represented as the expectation

value:

rp,c = x
Z T

0
fτx→0(t)dt. (2)

We assumed the process follows a mean-reverting process. By Proposition 2 in Linetsky

(2004), the first hitting time density of a mean-reverting process moving fromx to 0 is approx-

imately:

fτx→0(t)'
∞

∑
n=1

cnλne−λnt , (3)

whereλn andcn have the following large-n asymptotics:

λn = κ
{
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2
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+
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x̄ andȳ are expressed by

x̄ =
√

2κ
σ

(x−θ) andȳ =
√

2κ
σ

(−θ).

Thus, the profit model for the convergence case is modeled by

rp,c' x
∞

∑
n=1

cn
(
1−e−λnT)

. (4)

Next consider the case where there is a failure to converge during the trading period. This case

holds if the price spread does not converge on 0 during the trading period and then reaches any price
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spready at the end of the trading period. Note thaty is greater than or equal to 0, otherwise, the

process converges on 0 before the end of the trading period. The event for this case is represented

by the difference between two events: (1) when the process with initial value ofx at time 0 reaches

y at timeT and (2) when it arrives aty at timeT after the process with initial value ofx at time 0

converges on 0 at any timet during the trading period. We denote the corresponding distribution

functions byg(y;x,T) andk(y;x,T), respectively. In addition, the payoff of the trading strategy is

given byx− y. A profit model for pairs trading due to the failure to converge is expressed by the

expectation value:

rp,nc =
Z ∞

0
(x−y)

{
g(y;x,T)−k(y;x,T)

}
dy. (5)

The probability density for the latter event,k(y;x,T), is represented by the product of the first

hitting time densityfτx→0(t) and the densityg(y;0,T− t), meaning that the process reachesy after

the first touch because both events occur independently. Sincet can be taken as any value during

the trading period, the density functionk(y;x,T) is calculated as the integral of the product with

respect tot, as given by

k(y;x,T) =
Z T

0
fτx→0(t)g(y;0,T− t)dt. (6)

A profit from pairs trading for the failure to converge case is

rp,nc =
Z ∞

0
(x−y)

{
g(y;x,T)−

Z T

0
fτx→0(t)g(y;0,T− t)dt

}
dy. (7)

Because the price spreadSt follows a mean-reverting process, the corresponding probability den-

sity is given by

g(y;x,T) =
1√

2πσS(T)
e
− 1

2
(y−µS(x,T))2

σS(T)2 , (8)

where

µS(x,T) = xe−κT +θ(1−e−κT) andσS(T) =
√

σ2

2κ(1−e−2κT).

In addition, recall that the first hitting time density for a mean-reverting process is given by

equation (3). The expected profit from the failure to converge case is approximately modeled as

follows:

rp,nc'
Z ∞

0
(x−y)

{
g(y;x,T)−

Z T

0

∞

∑
n=1

cnλne−λntg(y;0,T− t)dt

}
dy. (9)
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Thus, the total profit model for pairs trading is expressed by

rp = rp,c + rp,nc, (10)

whererp,c andrp,nc are calculated from equations (4) and (9), respectively.

Since bothx̄ andȳ embedded in the coefficients of equations (4) and (9) are expressed by func-

tions of the mean-reversion strength and volatility of the spread denoted byκ andσ, respectively

in equation (1), the expected profit from a simple pairs trading strategy is influenced by the degree

of mean-reversion and volatility. More precisely, we have formulated the expected return from

spread convergence and failure to converge cases using a simple mean-reverting spread model

characterized byκ andσ. The model is general in that it does not specify the financial instrument.

The requirement is that price spread follows a mean-reverting process. In addition, the model ex-

presses a basic and most common case for pairs trading in that if price spread converges during the

trading period, the profit is recognized, otherwise, the loss or profit is recognized at the end of the

trading period.

While the profit model presented in this section applies to any financial instrument, there are

nuisances when seeking to apply the model to specific sectors of the financial market that require

the model be modified. In Section 3, we apply pairs trading to energy futures and explain how the

profit model must be modified.

3. Application of the Profit Model to Energy Futures Markets

3.1. The profit model for energy futures

Recall that the requirement to use the profit model proposed in the previous section was just that

the price spread process follows a mean-reverting process in equation (1). If price spreads of

energy futures mean revert, the profit model can be directly applicable to energy futures. We will

empirically examine the mean-reversion issue for energy futures here. Figure 1 shows the term

structure of the NYMEX natural gas futures, which comprise six delivery months (shown on the

maturity axis) and whose daily observations cover from April 3, 2000 to March 31, 2008 (shown

on the time axis). As can be seen, the shape of the futures curve with six delivery months fluctuates

as time goes on during the period.
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A closer look at Figure 1 illustrates that the futures curve sometimes exhibits backwardation

(e.g., April 2002) and at other times contango (e.g., April 2004).2 The existence of backwarda-

tion and contango at different moments gives rise to the existence of the flat term structure that

switches from backwardation to contango, or vice versa. Thus, energy futures prices that have

different maturities converge on the flat term structure, even though price deviates from the others

owing to the backwardation or contango. These attributes that we observe for the term structure

of energy futures prices may be useful in obtaining the potential profit in energy futures markets

using the convergence of the price spread between the two correlated assets as in pairs trading.

More importantly, the transition of price spreads from backwardation or contango to the flat term

structure can be considered as a mean-reversion of the spread.

[INSERT FIGURE 1 ABOUT HERE]

In order to support this conjecture, we estimate the following autoregressive 1 lag (AR(1))

model for price spreads (Pi−P j ) for i and j month natural gas futures (i 6= j).

Pi
t −P j

t = Ci j +ρi j (Pi
t−1−P j

t−1)+ εt , (11)

whereεt ∼ N(0,σ2
i, j). The results are reported in Table 1.

[INSERT TABLE 1 ABOUT HERE]

As can be seen from the table, AR(1) coefficients for all combinations of the price spreads are

statistically significant and greater than 0 and less than 1. Given the characteristics of the price

spreads for energy futures that we observe, we conclude that a mean-reverting model can be ap-

plicable to energy futures price spreads. In fact, as noted by Dempster, Medova, and Tang (2008),

price spreads for energy futures are modeled by a mean-reverting process. Thus, the profit model

for energy futures is directly employed as the model in equation (10) without any modification.3

3.2. Comparative statics of expected return

Since the profit model is based on a mean-reverting spread model, the expected returns are char-

acterized by the strength of mean-reversion and volatility. Considering that strong mean-reversion

2When the future curve increases in maturity, it is called “contango”. When it decreases in maturity, it is called
“backwardation”.

3The model may be extended so as to capture the non-Gaussian distribution of the spread and the volatility clus-
tering, but we employ a mean-reverting model for simplicity in order to observe the impact of mean reversion and
volatility on the profit from pairs trades in energy futures markets in Section 3.2 .
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and high volatility in prices are often observed in energy futures markets, it may be significant to

evaluate the influence of both characteristics on the profitability of the trade using the profit model

for energy futures. We conducted comparative statics of the expected return using the simple profit

model we propose in equation (10). As a base case, we used the following values for the parame-

ters of equation (1):κ = 0.027, θ = 0, and σ = 0.013. Moreover, we assumed that the maturity

is 120 days andx = 2σ. Based on the estimated parameters and the assumptions made, we calcu-

lated the expected return for the simple profit model (rp) to be 0.0140.4 Thus, the model predicts

that the initial spread ofx = 2σ = 0.0260will produce a profit of 0.0140 from pairs trading during

a 120-day trading period.

We calculated the expected returns by changing the mean-reversion strengthκ and the volatility

σ, respectively, in a way that one is changed and the other is fixed. First, we only increase the mean-

reversionκ from 0.024 to 0.027. As can be seen in Figure 2, the corresponding expected return

increases from 0.0119 to 0.0140. This suggests that higher mean-reversion produces a higher

expected return for the model. This is consistent with intuition: If mean-reversion of the spread is

stronger, the spread converges more immediately and the convergence generates more profit.

[INSERT FIGURE 2 ABOUT HERE]

Second, we increase the volatilityσ from 0.0112 to 0.0130, holding mean-reversion constant

at 0.027. Figure 3 shows that the return increases from 0.0114 to 0.0140. This result suggests

that higher spread volatility produces higher expected return. This is also consistent with intuition:

If spread volatility is higher, the chance of spread convergence increases, resulting in a greater

return. Thus, this simple comparative analysis of the influence of spread behavior on the profits

suggests that stronger mean-reversion and higher spread volatility may produce higher profit from

a pairs trading strategy. Recognizing that strong mean-reversion and high spread volatility are

often observed in energy markets, this suggests that a pairs trading strategy applied to this market

may be profitable.

[INSERT FIGURE 3 ABOUT HERE]

In the next section, we present our empirical findings on the pairs trading strategy applied to

the NYMEX energy futures market.

4We numerically calculatedrp using equation (10) via equations (4) and (9).
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4. Empirical Studies for Energy Futures Prices

4.1. Data

In this study, we use the daily closing prices of WTI crude oil (WTI), heating oil (HO), and natural

gas (NG) futures traded on the NYMEX. Each futures product includes six delivery months – from

one month to six months. The time period covered is from April 3, 2000 to March 31, 2008. The

data are obtained from Bloomberg. Summary statistics for WTI, HO, and NG futures prices are

provided in Tables 2, 3, and 4, respectively.5,6 These tables indicate that WTI, HO, and NG have

common skewness characteristics. The skewness of WTI, HO, and NG futures prices is positive,

meaning that the distributions are skewed to the right.

[INSERT TABLE 2 ABOUT HERE]

[INSERT TABLE 3 ABOUT HERE]

[INSERT TABLE 4 ABOUT HERE]

4.2. Pairs trading in energy futures markets

Here we will discuss the empirical tests of the pairs trading strategy in the energy markets using

the historical prices of energy futures described in Section 4.1. We explain the practical concept of

pairs trading using Figure 4 in accordance with Gatev, Goetzmann, and Rouwenhorst (2006). The

prices are first normalized with the first day’s price as in the figure, which represent the cumulative

returns. A pairs trading strategy involves selecting the most correlated pair of prices during the

period. This period is referred to as theformation period.7 Specifically, two assets are chosen such

that the standard deviation of the price spreads in the formation period is the smallest in all combi-

nations of pairs.8 Then, the trade is implemented by using the selected pairs during the consecutive

period, referred to as thetrading period.When the price spread of the selected pairs reaches a user

specified multiple of the standard deviation calculated in the formation period, a zero-cost portfolio

5The kurtosis of the normal distribution is 3.
6We denote the maturity month by a subindex. For example, WTIi representsi month maturity WTI futures.
7Since two futures contracts on the same commodity form a “natural pair,” one might not think that a formation

period is required for pairs trading in energy futures markets. However, there are many combinations of pairs in this
yield curve play. It is safe for investors to select the most correlated pairs even for two futures contracts on the same
commodity. Thus, we introduce a formation period for energy futures pairs trading.

8It corresponds to the selection of the highly correlated pairs in practice.
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is constructed. In our study, we specify a multiple of 2. The zero-cost portfolio is constructed such

that the higher and lower price assets are set to short and long positions, respectively. If the pairs

converge during the trading period, then the positions are closed and the profit is recognized. Oth-

erwise, the positions are forced to close and it may cause a loss from the trade. We then calculate

the total profit from the trades by computing the sum of the trading gains and losses.9

[INSERT FIGURE 4 ABOUT HERE]

Now we empirically examine the profitability of pairs trading in energy futures markets of

WTI, HO, and NG stemming from the convergence of the different maturity futures price spreads.

We discuss the source of the profitability taking into account characteristics of energy prices: sea-

sonality, mean-reversion, and volatility.10 Following Gatev, Goetzmann, and Rouwenhorst (2006),

we set both the formation period and trading period at 120 trading days. Fifteen pairs are chosen

during the formation period based on the small standard deviation of the spreads. Then, we set 88

formation and trading periods whose starting points are determined by rolling over 20 trading days

in an effort to exploit the available data effectively.11 We report the annualized profits from the

WTI, HO, and NG futures trades in Figure 5. The results suggest that each trade tends to generate

a profit except around trade#25 whose trading period starts from September 3, 2002 to February

25, 2003. These findings suggest that pairs trading in WTI, HO, and NG futures markets may be

profitable.

[INSERT FIGURE 5 ABOUT HERE]

Having established that a pairs trading strategy is profitable, we next turn our investigation

to the source of the profitability in terms of the characteristics of energy. In order to examine

the influence of seasonality, mean-reversion, and volatility in energy prices on the total profit, we

summarized all the trades in Tables 5 and 6. Note that we refer to the total profit as the excess

return because the trading gains and losses are calculated over long and short positions of one

dollar and they are considered as the excess returns on the undervalue above overvalue futures as

in Gatev, Goetzmann, and Rouwenhorst (2006).

[INSERT TABLE 5 ABOUT HERE]

9Here the pairs trading allows multiple trades during the trading period as in Figure 4.
10Price spikes are investigated in Section 4.3.
11If the first trade starts on the first trading day, the second one starts on the 21st trading day.
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[INSERT TABLE 6 ABOUT HERE]

First, we address the influence of seasonality of energy futures prices on the profit generated

from pairs trading by focusing on winter. To do this using a simple examination, we define “winter

trade” presented in Tables 5 and 6 by the trade including the days from December to February. In

Tables 5 and 6, the winter trades comprise eight periods: the trades from#1 to #4, from #12 to

#16, from #25to #29, from #37to #41, #50to #54, #62to #66, #75to #79, and#87to #88.

Table 5 shows that all winter trades of WTI, HO, and NG from#1 to #4 produce profits. From

#12 to #16, the trades of HO and NG produce profits, while the trades of WTI have annualized

losses of -0.36 and -0.09 for#12 and#13, respectively. The winter trades of WTI, HO, and NG

from #26 to #29produce profits.12 Accordingly, these findings for the winter trades suggest that

while the WTI trades produce both gains and losses in the winter, the HO and NG trades always

make profits in the winter. In addition, the trades of HO and NG in the summer from#5 to #8 and

from #17to #19produce low profits or losses while the WTI trades generate profits to some extent.

The same characteristics explained above are observed in the other winter trades in Tables 5 and

6. While the profits from the WTI trades are not relevant to the season, seasonality in profitability

from HO and NG trades exists in the sense that the trades of HO and NG in the winter tend to

cause high profits while those in the summer show low profits or losses. The results correspond

to the existence of seasonality explained in Pilipovic (1998) such that HO and NG futures prices

exhibit seasonality contrary to WTI futures prices.

Since we are interested in the influence of seasonality on the total profit from energy futures

pairs trading, we compared the annualized average profits between WTI, HO, and NG. According

to the results reported in Table 6, the profits from six WTI, HO, and NG futures trades are 0.61,

0.74, and 3.15, respectively. We found that the NG trading generates the largest total profits (i.e.,

the highest excess return) of the three contracts investigated during the trading periods as in Table

6, while the HO and the WTI showed the second and the third highest excess return, respectively.

Since the profits from the WTI trades without seasonality are less than those from the HO and NG

trades with seasonality, this factor may determine the total profit.

Second, we can shed light on the mean-reversion and volatility of the spread as the source of

the total profits from pairs trading. For all combinations of the spreads for each energy futures, we

estimate the parameters of AR(1) coefficientρ and standard deviationσ, which represent mean-

reversion strength and volatility, respectively, using equation (11). Then, we take the averageρ̄
andσ̄ of the estimatedρ’s andσ’s, respectively, in order to capture the average trend of the mean-

reversion and volatility of each energy futures market. The results are shown in Table 7. As can

12Later in this paper we discuss trade#25as a special case.
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be seen, the price spread of NG futures has the strongest mean-reversion and the highest volatility

of the three, because the AR(1) coefficient is the smallest (0.981) and the standard deviation is

the largest (0.257) of the three. Considering that the NG trades generate the highest average return

(3.15) of the three, the highest total profit of pairs trading applied to NG futures may come from the

strongest mean reversion and highest volatility of the spread. The comparative statics in Section

3.2 suggested that the strong mean-reversion and high volatility of price spreads may produce high

profit from pairs trading. Thus, the results obtained in this section may also be supported by the

results from the comparative statics.

[INSERT TABLE 7 ABOUT HERE]

As is discussed, the results from the empirical analyses document that strong mean-reversion

and high volatility of price spreads, as well as seasonality, may influence the total profit from pairs

trading of energy futures.

4.3. Pairs Trading and Event Risk

When we studied the influence of seasonality on the profit from pairs trading in the previous sec-

tion, trade#25 was not relevant to the seasonality-based profit in the sense that the HO and NG

trades exhibited huge losses in spite of winter trades. In this section, we attempt to explain the

reason for the exception by exploring the influence of event risk as measured by price spikes on

the profit from pairs trading.

We begin by examining the relationship between the risk and return for the trading strategy,

since price spikes may affect the relationship. We illustrate the return distributions of pairs trading

for three energy futures in Figure 6. The WTI trading achieves sustainable profits with small losses

as shown in the top part of Figure 6, because the distribution almost lies in the positive region and

the width of the distribution is the smallest of the three futures. It corresponds to the positive mean

(0.61) and the smallest variance (1.03) in Table 6. In contrast, the NG futures trading produces not

only large profits but also a large loss (-4.35) as shown in the bottom part of Figure 6, leading to

the largest variance (8.52) in Table 6. HO trading is in the middle in terms of the risk and return

relationship as shown in the middle part of Figure 6.

[INSERT FIGURE 6 ABOUT HERE]

In addition, we examined fat-tailed and skewed distributions for the returns by estimating the

well-known α-stable distribution parameters ofα, β, µ, andσ. The parameterα describes the
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kurtosis of the distribution with0< α≤ 2. The smaller theα, the heavier the tail of the distribution.

The parameterβ describes the skewness of the distribution,−1≤ β≤ 1. If β is positive (negative),

then the distribution is skewed to the right (left).µ and σ are the shift and scale parameters,

respectively. Ifα andβ equal 2 and 0, respectively, then theα-stable distribution reduces to the

normal one. The estimation results are reported in Table 8. Sinceαs for WTI and NG are 2, both

return distributions do not have fat tails. On the other hand, sinceα for HO is 1.464, the return

distribution has a fat tail. Then, sinceβs for WTI, HO, and NG are 1, the distributions are all

skewed to the right. Thus, the returns to pairs trades in energy futures markets may more or less be

influenced by infrequent extreme loss, resulting in what economists refer to as the “peso problem,”

observed by Milton Friedman about the Mexican peso market of the early 1970s.

[INSERT TABLE 8 ABOUT HERE]

We next investigate the source of this huge loss by analyzing the price behavior of the pairs

in detail. The huge loss in NG futures trading occurs in trade#25 in Table 5, while the loss is

included in winter trades that are expected to produce profits due to seasonality. We illustrate the

price movement of a typical pair for NG#25 trading in Figure 7 which shows the total returns of

NG 1- and 4-month futures by lines without markers and with circle markers, respectively. The

total return for the trading strategy is shown by a line with square markers. If the trade is open, the

line with square markers is described as the upper stair and otherwise, it is described as the lower

stair. According to Figure 7, after the position opens on December 11, 2002 due to the expansion

of price spread by more than two standard deviation in the formation period, the spread expands

dramatically just before the breakout of the Iraq war around the end of February 2003. The trading

position is forced to close without convergence at the end of the trading period. It gives rise to the

large loss from pairs trading. Therefore, the event risk expressed as price spikes may dramatically

adversely impact the relatively stable profit from NG futures pairs trading.

[INSERT FIGURE 7 ABOUT HERE]
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In order to support the above observation of the impact of event risk, we will capture the

correlation structure of energy futures prices by using the dynamic conditional correlation (DCC)

model for pricespt (see Engle (2002)):13

pt = φ0 +φ1pt−1 + εt , (12)

εt = Dtηt , (13)

Dt = diag[h
1
2
1t h

1
2
2t ], (14)

wherept = [p1,t p2,t ]′, φ0 = [φ1,0 φ2,0]′, andφ1 = [φ1,1 φ2,1]′.14 For i = 1, 2, we have

hit = ωi +αiε2
i,t−1 +βihi,t−1, (15)

E[εtε′t | Ft−1] = DtRtDt , (16)

Rt = Q∗−1
t QtQ

∗−1
t , (17)

Qt = (1−θ1−θ2)Q+θ1ηt−1η′t−1 +θ2Qt−1, (18)

whereQ∗t is the diagonal component of the square root of the diagonal elements ofQt .15 Here,hit s

(i = 1,2) represent the GARCH(1,1) model for pair prices, respectively. The covariance matrixQt

is represented by the past noiseηt−1 and the past covariance matrixQt−1. If either of the estimates

of θ1 or θ2 in equation (18) is statistically significant, the correlationRt of the pairs becomes

time-varying.

We estimated the parameters of the DCC model and then calculated the conditional corre-

lations, employing 1- and 2-month maturity futures prices of the WTI, HO, and NG using the

sample data from April 3, 2000 to July 10, 2003 which covers trade#25.16 After the estimation

of the AR(1) model, we estimated the DCC model. The estimates of the parameters of the AR(1)

model for WTI, HO, and NG futures prices are reported in Table 9. Since all AR(1) parameters

in the table are statistically significant, there exist AR(1) effects both in the prices of 1- and 2-

month maturity futures prices for the three futures contracts. Next, we estimated the parameters of

13For pairs trading, since the correlations between price levels generate the profit, we examine the correlations
between prices assuming that the prices are mean reverting. However, the appendix to this paper also examines the
correlations by using price returns and shows that the same results as reported in this section are obtained from the
price returns.

14It may be possible that the sample distribution of the innovationsηt is not normally distributed; however for
simplicity we assume that it is normally distributed and independent.

15DefineQt ≡
(

q11 q12

q21 q22

)
. Then,Q∗

t =
( √

q11 0
0

√
q22

)
.

16We select 1- and 2-month maturity pairs in the sense that the spread may explicitly reflect the impact of event
risk since the pairs may strongly move together due to the Samuelson effect such that the standard deviation of futures
price returns decreases as the maturity increases (see Samuelson (1965)). The effect is especially pronounced in energy
markets.
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the DCC model. The parameter estimation results and the conditional correlations for WTI, HO,

and NG are given in Table 10 and Figure 8, Table 11 and Figure 9, and Table 12 and Figure 10,

respectively.

[INSERT TABLE 9 ABOUT HERE]

[INSERT TABLE 10 ABOUT HERE]

[INSERT FIGURE 8 ABOUT HERE]

[INSERT TABLE 11 ABOUT HERE]

[INSERT FIGURE 9 ABOUT HERE]

[INSERT TABLE 12 ABOUT HERE]

[INSERT FIGURE 10 ABOUT HERE]

According to the standard errors ofθ1s andθ2s for WTI, HO, and NG as in Tables 10, 11, and

12, respectively, the conditional correlations of HO and NG are time-varying because theθ1, θ2, or

both are statistically significant. Judging from Figures 8, 9, and 10, the correlation of WTI futures

is high and stable, that of HO futures is volatile, and that of NG futures is high and stable except for

the first quarter 2003. By using these results, we discuss the relationship between the correlations

and event risk, where the Iraq war breaks out around the first three months of 2003. Figure 8

for WTI suggests that event risk does not seem to influence the correlations of the WTI futures

prices. Figure 9 for HO shows that event risk may more or less influence the correlations, while

we cannot distinguish the influence of event risk from the volatile correlations observed during

the entire trading period. However, Figure 10 for NG suggests that event risk strongly affects the

correlations, resulting in a small correlation (0.45) in February 2003. Judging from the analyses

using the DCC model, the trades of NG futures are the most vulnerable to event risk as measured

by price spikes, corresponding to the results in Table 6.17

Event risk captured as price spikes as in Figures 7 and 10 have a strong impact on the profit

from NG pairs trading. Thus the price spikes, one of the most well-known characteristics of energy

17We also estimated the DCC model for the three energy markets and obtained the conditional correlation using not
the price model in equation (12) but log price return model in equation (A1) of the appendix to this paper. The results
are almost identical as the characteristics of the correlations obtained in this section.
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prices, may also lead to the strong deterioration of the total profit from pairs trading which is

highlighted in the natural gas futures trades, depending on the magnitude and frequency of the

spikes.

4.4. Cross Commodities Pairs Trading

Finally, we investigate the profitability of cross commodities pairs trading that can also make use

of different commodity pairs such as 1-month NG and 6-month WTI futures in comparison to

the pairs trading of single commodity futures examined in Section 4.2. Here, we refer to the

improvement of profitability by cross commodities as the “portfolio effect,” while we refer to the

advantage in the profitability by single commodity as the “term structure convergence effect.” If

the total profit from cross commodities trading exceeds that from the sum of the three commodity

pairs trading in Table 6, the portfolio effect can improve the profits in pairs trading more than

the term structure convergence effect. We employ all combinations of WTI, HO, and NG futures

prices in Section 4.2 and choose the highly correlated 45 pairs in order to attain equal footing of

the profits from all the commodity trades in Section 4.2.18

The plots in Figure 11 show that cross commodity trading generated losses in the consecutive

periods from trades#22to #29and from trades#54to #61, while it almost produces profits from

trades#1 to #88except for several trades that are almost equal zero such as trade#2. This is dif-

ferent from single commodity pairs trading of NG in Figure 5 because the NG trades also generate

profits from the trades from#22to #29and from#54to #61.

[INSERT FIGURE 11 ABOUT HERE]

We then computed the total average profit of cross commodity pairs trading to be 3.04, while

the sum of single commodity trading profit from WTI, HO, and NG to be 4.50 as in Table 6. Our

findings suggest that the portfolio effect due to the cross commodity using three energy futures may

not improve the total profit of the pairs trading strategy, but the term structure convergence effect of

single commodity pairs trading can produce the profit from pairs trading in energy markets. This

result supports that the source of profits from energy futures pairs trading lies in the term structure

convergence of a single commodity.

In order to obtain a deeper understanding of the yield curve play, we examined the volatility

of three energy futures price returns illustrated in Figure 12. The figure shows that volatility

18Each commodity pairs trading introduces the selection of 15 pairs. Since cross commodity trading uses all three
energy futures, it selects 45 pairs (three times as many as the selection for single commodity trades).
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decreases in the maturity month, resulting in the Samuelson effect. According to Hong (2000), his

model predicts that the Samuelson effect holds in markets where information asymmetry among

investors is small. Thus, there may exist small information asymmetry among investors in the

three energy futures markets. In the presence of small information asymmetry, investors recognize

that the temporal supply shock observed in short maturity futures is just transient and dies out

quickly. Thus, long maturity futures are not affected by this temporal shock, meaning that the

price spread is only determined by the short-term futures price because the long-term futures price

almost remains constant. When the shock settles, the price spread may converge. This result also

supports our finding that the source of profits from energy futures pairs trading lies in the term

structure convergence of the energy futures market we study.

[INSERT FIGURE 12 ABOUT HERE]

In addition, Litzenberger and Rabinowitz (1995) showed that strong backwardation is posi-

tively correlated with the riskiness of futures prices. If this riskiness is captured by volatility,

backwardation may also be considered a source of profits from pairs trading in energy futures

markets.

5. Conclusions

In this paper we examine the usefulness of a hedge fund trading strategy known as “pairs trading”

as applied to energy futures markets, focusing on the characteristics of energy futures. The profit

of a simplified pairs trading strategy was modeled by using a mean-reverting process of energy

futures price spreads. The comparative statics of the expected return using the model indicated

that both strong mean reversion and high volatility of price spreads give rise to high expected

returns from pairs trading. Our empirical analyses using WTI crude oil, heating oil, and natural

gas futures traded on the NYMEX show that pairs trading in energy futures markets can produce a

relatively stable profit.

The sources of the total profit were investigated from the characteristics of energy futures

prices: strong seasonality, strong mean reversion, high volatility, and large price spikes. The total

profits from heating oil and natural gas trading were found to be positively affected by seasonality,

contrary to the WTI crude oil, resulting in the greater total profits of heating oil and natural gas

with seasonality than that of WTI crude oil without seasonality. Seasonality may seem to charac-

terize the total profit. Then, we examined the influence of mean reversion and volatility of price

spreads on the total profit. The results suggest that the strong mean reversion and high volatility

17



may cause high total profits from pairs trading, especially in natural gas trades. Moreover, event

risk, as measured by price spikes for pairs trading, were examined using Engle’s dynamic condi-

tional correlation model. The low correlations of natural gas futures prices with different maturities

were prominently observed during the first quarter of 2003 when the Iraq war broke out, contrary

to the other two energy futures. The results suggest that natural gas futures trades are the most

vulnerable of the three energy futures to event risk as measured by price spikes. Thus, price spikes

may also lead to the strong deterioration of the total profit from pairs trading.

Finally, we investigated the profitability of cross commodities pairs trading. We found that the

portfolio effect using cross commodities may not improve the profitability of pairs trading but the

term structure convergence effect of single commodity pairs trading produces the total profit from

pairs trading in energy markets.
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Appendix. DCC Model for Price Returns

We model the log return of the pricesyt by using Engle’s dynamic conditional correlation (DCC) model as

follows:19

yt = εt , (A1)

εt = Dtηt , (A2)

Dt = diag[h
1
2
1,th

1
2
2,t ], (A3)

whereyt = (y1,t ,y2,t)′, εt = (ε1,t ,ε2,t)′, andηt = (η1,t ,η2,t)′.

For i = 1, 2, we have

hi,t = ωi +αiε2
i,t−1 +βihi,t−1, (A4)

E[εtε′t | Ft−1] = DtRtDt , (A5)

Rt = Q∗−1
t QtQ

∗−1
t , (A6)

Qt = (1−θ1−θ2)Q+θ1ηt−1η′t−1 +θ2Qt−1, (A7)

whereQ∗
t is the diagonal component of the square root of the diagonal elements ofQt . Equation (A4)

represents a GARCH(1,1) effect for each price return. The conditional correlation is calculated as equation

(A6) where equation (A7) represents the time-varying conditional covariance. If either of the estimates of

θ1 or θ2 as in equation (A7) is statistically significant, the correlation structure of the pairs becomes time

varying.

We estimated the parameters of the DCC model for the price returns and then calculated the conditional

correlation by employing 1- and 2-month maturity futures prices of WTI, HO, and NG, respectively. The

estimates of the parameters and the conditional correlation for WTI, HO, and NG are given in Table 13 and

Figure 13, Table 14 and Figure 14, and Table 15 and Figure 15, respectively. Judging from Figures 13, 14,

and 15, the correlation of WTI futures is high and stable, that of HO futures is volatile, and that of NG

futures is high and stable except for the first quarter of 2003.

[INSERT TABLE 13 ABOUT HERE]

[INSERT FIGURE 13 ABOUT HERE]

[INSERT TABLE 14 ABOUT HERE]

19We estimated the AR(1) model foryt , but both the AR(1) coefficient and the constant terms were not statistically
significant. Thus, we model returns by equation (A1).
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[INSERT FIGURE 14 ABOUT HERE]

[INSERT TABLE 15 ABOUT HERE]

[INSERT FIGURE 15 ABOUT HERE]

We next shed light on event risk where the Iraq war broke out during the first three months of 2003.

Figure 13 for WTI suggests that event risk does not seem to influence the correlation of WTI futures prices.

Although Figure 14 for HO suggests that event risk may more or less influence the correlation, we cannot

distinguish this influence from the volatile correlation during the entire observation period. However, Figure

15 for NG suggests that event risk strongly affects that of the NG trades. Thus, the analyses employing the

DCC model suggest that NG futures trades are the most vulnerable of the three energy futures to event risk,

agreeing with the results reported in Section 4.3.
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Figure 1. NYMEX Natural Gas Futures Curves

April 3, 2000 - March 31, 2008. NG futures product includes six delivery months – from one to
six months.
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Figure 2. Comparative Statics ofκ

By increasing the mean-reversionκ from 0.024 to 0.027 holding volatility constant at 0.0130, we
calculated the corresponding expected returns for the simple profit model.
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Figure 3. Comparative Statics ofσ

By increasing the volatilityσ from 0.0112 to 0.0130 holding mean-reversion constant at 0.027,
the corresponding expected returns for the simple profit model are shown.
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Figure 4. Pairs Trading
The prices are first normalized with the first day’s price as in the figure. A pairs trading strategy
involves selecting the most correlated pair of prices during the period. This period is referred to
as the formation period. Then, the trade is implemented by using the selected pairs during the
consecutive period, referred to as the trading period. When the price spread of the selected pairs
reaches a user specified multiple of the standard deviation calculated in the formation period, a
zero-cost portfolio is constructed. If the pairs converge during the trading period, then the positions
are closed. Otherwise, the positions are forced to close.
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Figure 5. Pairs Trading of WTI Crude Oil, Heating Oil, and Natural Gas Futures
We set 88 formation and trading periods whose starting points are determined by rolling over 20
trading days. The first starting point is September 25, 2000 and the last (88th) point is September
14, 2007.
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Figure 6. Returns Distributions of Pairs Trading for Three Energy Futures
(1) For returns distributions from WTI futures trades, the mean is 0.61, the maximum is 3.47, the
minimum is -1.09, the standard deviation is 1.01, the skewness is 0.63, and the kurtosis is 2.68.
(2) For returns distributions from HO futures trades, the mean is 0.74, the maximum is 3.98, the
minimum is -3.24, the standard deviation is 1.24, the skewness is 0.52, and the kurtosis is 3.94.
(3) For returns distributions from NG futures trades, the mean is 3.15, the maximum is 10.61, the
minimum is -4.35, the standard deviation is 2.92, the skewness is 0.36, and the kurtosis is 2.90.
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Figure 7. Pairs Trading with Event Risk
April 3, 2000 - July 10, 2003. The total returns of NG 1- and 4-month futures are shown by lines
without markers and with circle markers, respectively. The total return for the trading strategy is
shown by a line with square markers. If the trade is open, the line with square markers is described
as the upper stair and otherwise, it is as the lower stair.
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Figure 8. Dynamic Conditional Correlations of 1- and 2-Month WTI Futures Prices
April 3, 2000 - July 10, 2003. The Iraq war broke out at the end of February 2003.
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Figure 9. Dynamic Conditional Correlations of 1- and 2-Month HO Futures Prices
April 3, 2000 - July 10, 2003. The Iraq war broke out at the end of February 2003.
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Figure 10. Dynamic Conditional Correlations of 1- and 2-Month NG Futures Prices
April 3, 2000 - July 10, 2003. The Iraq war broke out at the end of February 2003.
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Figure 11. Returns of Pairs Trading for Cross Commodities
There are 88 formation and trading periods whose starting points are determined by rolling over
20 trading days. The first starting point is September 25, 2000 and the last (88th) is September 14,
2007.
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Figure 12. Samuelson Effect in Energy Futures Markets
April 3, 2000 - March 31, 2008. The volatility of price returns for WTI, HO, and NG futures –
from one to six months, respectively, are shown.
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Figure 13. Dynamic Conditional Correlations of 1- and 2-Month WTI Futures Price Returns
April 3, 2000 - July 10, 2003. The Iraq war broke out at the end of February 2003.
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Figure 14. Dynamic Conditional Correlations of 1- and 2-Month HO Futures Price Returns
April 3, 2000 - July 10, 2003. The Iraq war broke out at the end of February 2003.
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Figure 15. Dynamic Conditional Correlations of 1- and 2-Month NG Futures Price Returns
April 3, 2000 - July 10, 2003. The Iraq war broke out at the end of February 2003.
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Variable C12 ρ12 C13 ρ13 C14 ρ14 C15 ρ15 C16 ρ16

Coefficient -0.152 0.957 -0.259 0.977 -0.303 0.985 -0.344 0.987 -0.363 0.989
Std. Error 0.047 0.015 0.132 0.011 0.259 0.008 0.320 0.007 0.385 0.006
Variable C23 ρ23 C24 ρ24 C25 ρ25 C26 ρ26 C34 ρ34

Coefficient -0.107 0.976 -0.151 0.985 -0.190 0.987 -0.210 0.989 -0.043 0.980
Std. Error 0.077 0.012 0.213 0.009 0.278 0.007 0.362 0.006 0.126 0.018
Variable C35 ρ35 C36 ρ36 C45 ρ45 C46 ρ46 C56 ρ56

Coefficient -0.082 0.984 -0.101 0.987 -0.039 0.976 -0.057 0.986 -0.017 0.973
Std. Error 0.197 0.011 0.296 0.007 0.077 0.012 0.195 0.007 0.089 0.018

Table 1. AR(1) Models for Natural Gas Futures Price Spread
Ci j andρi j denote the constant term and the first lag coefficient of AR(1) model for price spreads (Pi −P j )
for i and j month natural gas futures (i 6= j).

WTI1 WTI2 WTI3 WTI4 WTI5 WTI6

Mean 45.96 46.03 45.99 45.87 45.71 45.55
Median 37.21 36.47 35.91 35.44 34.99 34.53
Maximum 110.33 109.17 107.94 106.90 106.06 105.44
Minimum 17.45 17.84 18.06 18.27 18.44 18.60
Std. Dev. 20.66 20.92 21.14 21.32 21.49 21.65
Skewness 0.81 0.76 0.72 0.69 0.67 0.66
Kurtosis 2.79 2.59 2.44 2.33 2.24 2.17

Table 2. Basic Statistics of WTI Crude Oil Futures Prices
April 3, 2000 - March 31, 2008. The maturity month is denoted by a subindex from one to six
months.
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HO1 HO2 HO3 HO4 HO5 HO6

Mean 127.86 128.27 128.35 128.15 127.82 127.44
Median 101.90 99.83 98.53 96.25 94.02 91.97
Maximum 314.83 306.45 301.55 301.05 301.10 301.50
Minimum 49.99 51.31 51.71 51.96 51.52 50.87
Std. Dev. 59.54 60.28 60.98 61.52 61.93 62.30
Skewness 0.73 0.68 0.65 0.64 0.63 0.62
Kurtosis 2.58 2.37 2.21 2.11 2.04 2.00

Table 3. Basic Statistics of Heating Oil Futures Prices
April 3, 2000 - March 31, 2008. The maturity month is denoted by a subindex from one to six
months.

NG1 NG2 NG3 NG4 NG5 NG6

Mean 6.01 6.16 6.27 6.31 6.35 6.36
Median 5.94 6.11 6.19 6.09 6.11 6.18
Maximum 15.38 15.43 15.29 14.91 14.67 14.22
Minimum 1.83 1.98 2.08 2.18 2.26 2.33
Std. Dev. 2.27 2.32 2.36 2.34 2.33 2.30
Skewness 0.90 0.90 0.90 0.73 0.60 0.39
Kurtosis 4.75 4.72 4.57 3.83 3.28 2.43

Table 4. Basic Statistics of Natural Gas Futures Prices
April 3, 2000 - March 31, 2008. The maturity month is denoted by a subindex from one to six
months.
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# Beginning End WTI HO NG Winter Trade
1 09/25/00 03/19/01 1.98 1.64 2.61 Yes
2 10/23/00 04/17/01 2.19 2.70 3.07 Yes
3 11/20/00 05/15/01 2.88 3.67 5.58 Yes
4 12/20/00 06/13/01 1.45 3.98 8.06 Yes
5 01/22/01 07/12/01 1.85 0.49 0.34 No
6 02/20/01 08/09/01 0.53 0.19 0.18 No
7 03/20/01 09/07/01 0.55 0.19 0.16 No
8 04/18/01 10/11/01 0.54 0.14 0.08 No
9 05/16/01 11/08/01 0.15 0.29 0.11 No

10 06/14/01 12/10/01 0.08 0.24 0.49 No
11 07/13/01 01/10/02 0.16 0.82 2.64 No
12 08/10/01 02/08/02 -0.36 1.03 3.32 Yes
13 09/10/01 03/11/02 -0.09 1.26 4.23 Yes
14 10/12/01 04/09/02 1.00 1.01 1.10 Yes
15 11/09/01 05/07/02 1.39 0.41 1.16 Yes
16 12/11/01 06/05/02 3.47 0.03 0.06 Yes
17 01/11/02 07/03/02 2.90 0.03 -0.25 No
18 02/11/02 08/02/02 2.30 -0.12 -0.17 No
19 03/12/02 08/30/02 2.61 -0.19 1.02 No
20 04/10/02 09/30/02 1.96 0.25 2.67 No
21 05/08/02 10/28/02 1.73 0.56 3.14 No
22 06/06/02 11/25/02 1.79 0.54 4.30 No
23 07/08/02 12/26/02 -0.01 -1.56 6.15 No
24 08/05/02 01/27/03 0.62 -1.02 6.35 No
25 09/03/02 02/25/03 -0.59 -3.24 -4.35 Yes
26 10/01/02 03/25/03 1.10 1.74 3.14 Yes
27 10/29/02 04/23/03 1.44 3.00 3.51 Yes
28 11/26/02 05/21/03 1.47 3.04 3.34 Yes
29 12/27/02 06/19/03 2.27 3.71 3.07 Yes
30 01/28/03 07/18/03 1.67 2.83 4.03 No
31 02/26/03 08/15/03 2.00 3.45 5.88 No
32 03/26/03 09/15/03 0.25 0.01 0.67 No
33 04/24/03 10/13/03 0.00 -0.11 -0.22 No
34 05/22/03 11/10/03 0.00 -0.06 0.50 No
35 06/20/03 12/10/03 0.00 -0.08 -1.78 No
36 07/21/03 01/13/04 0.00 -0.14 2.16 No
37 08/18/03 02/11/04 0.00 0.71 3.67 Yes
38 09/16/03 03/11/04 0.04 2.08 4.52 Yes
39 10/14/03 04/08/04 0.70 2.16 4.62 Yes
40 11/11/03 05/07/04 0.70 2.37 3.33 Yes
41 12/11/03 06/07/04 1.04 2.57 5.40 Yes
42 01/14/04 07/07/04 1.01 2.69 0.41 No
43 02/13/04 08/04/04 1.32 0.02 0.02 No
44 03/12/04 09/01/04 1.10 -0.10 0.26 No
45 04/12/04 09/30/04 1.04 0.06 3.26 No

Table 5. Excess Returns from Pairs Trading and Seasonality
“Winter trade” is defined to be trades including the days from December to February. The winter trades in
this table comprise four periods: the trades from#1 to #4, from #12to #16, from #25to #29, and from#37
to #41.
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# Beginning End WTI HO NG Winter Trade
46 05/10/04 10/28/04 1.06 -0.04 4.54 No
47 06/08/04 11/29/04 0.90 -0.53 7.72 No
48 07/08/04 12/28/04 -0.07 -0.21 6.24 No
49 08/05/04 01/27/05 -0.09 0.24 7.73 No
50 09/02/04 02/25/05 -0.27 1.16 10.26 Yes
51 10/01/04 03/28/05 -0.87 2.51 5.39 Yes
52 10/29/04 04/25/05 -1.09 2.36 3.48 Yes
53 11/30/04 05/23/05 -1.08 2.75 0.19 Yes
54 12/29/04 06/21/05 -0.74 0.34 0.00 Yes
55 01/28/05 07/20/05 -1.02 -0.36 0.00 No
56 02/28/05 08/17/05 -0.65 -0.39 0.13 No
57 03/29/05 09/15/05 -0.33 -0.28 2.68 No
58 04/26/05 10/13/05 0.45 0.08 5.65 No
59 05/24/05 11/10/05 0.14 0.02 5.96 No
60 06/22/05 12/12/05 -0.23 0.24 2.57 No
61 07/21/05 01/11/06 0.08 1.08 10.41 No
62 08/18/05 02/09/06 -0.26 0.70 6.33 Yes
63 09/16/05 03/10/06 -0.49 0.92 5.44 Yes
64 10/14/05 04/07/06 -0.58 0.73 5.34 Yes
65 11/11/05 05/08/06 -0.39 0.33 4.38 Yes
66 12/13/05 06/06/06 -0.05 -0.15 4.80 Yes
67 01/12/06 07/05/06 -0.06 -0.53 -0.26 No
68 02/10/06 08/02/06 0.31 -0.26 2.86 No
69 03/13/06 08/30/06 0.22 -0.59 2.99 No
70 04/10/06 09/28/06 -0.22 -0.60 5.34 No
71 05/09/06 10/26/06 -0.26 -0.17 7.40 No
72 06/07/06 11/24/06 -0.46 0.36 8.59 No
73 07/06/06 12/22/06 -0.29 0.83 10.61 No
74 08/03/06 01/25/07 -0.19 1.11 6.20 No
75 08/31/06 02/23/07 -0.14 1.57 6.58 Yes
76 09/29/06 03/23/07 0.09 1.58 1.75 Yes
77 10/27/06 04/23/07 0.43 1.01 0.00 Yes
78 11/27/06 05/21/07 0.30 0.47 0.00 Yes
79 12/26/06 06/19/07 0.42 0.45 0.00 Yes
80 01/26/07 07/18/07 1.33 0.00 0.05 No
81 02/26/07 08/15/07 1.48 0.16 0.66 No
82 03/26/07 09/13/07 2.11 0.55 0.72 No
83 04/24/07 10/11/07 1.84 0.42 1.99 No
84 05/22/07 11/09/07 2.10 0.51 3.36 No
85 06/20/07 12/07/07 1.26 0.41 4.31 No
86 07/19/07 01/09/07 0.41 0.72 5.56 No
87 08/16/07 02/06/07 -0.05 1.05 4.29 Yes
88 09/14/07 03/06/07 0.09 1.08 2.82 Yes
Average Excess Return 0.61 0.74 3.15
Variance of the Return 1.03 1.53 8.52

Table 6. Excess Returns from Pairs Trading and Seasonality (Cont’d)
“Winter trade” is defined to be trades including the days from December to February. The winter trades in
this table comprise four periods: from#50to #54, from #62to #66, from #75to #79, and from#87to #88.
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AR(1) Coefficient (̂ρ) Standard Deviation (̂σ) Average Excess Return
WTI Futures Spread 0.994 0.062 0.61
Heating Oil Futures Spread 0.990 0.083 0.74
Natural Gas Futures Spread 0.981 0.257 3.15

Table 7. Mean-Reversion and Volatility
For all combinations of the spreads for each energy futures, the parameters of AR(1) coefficientρ
and standard deviationσ are estimated. From these estimates the averageρ̄ andσ̄ are computed.
The average excess return is obtained from Table 6.

α β µ σ
WTI 2.000 1.000 0.302 0.758
HO 1.464 1.000 0.940 0.539
NG 2.000 1.000 3.101 2.613

Table 8. Parameter Estimation ofα-stable distribution
α-stable distribution is often introduced as a tool to model high skewness and kurtosis. Unfortu-
nately, it does not have distribution function and density that is in closed form. Stable distributions
are introduced by their characteristic function as follows,

logF(t) =





−σα | t |α
(

1− iβsgn(t) tan(πα
2 )

)
+ iµt, α 6= 1

−σ | t |
(

1+ iβ 2
πsgn(t) log | t |

)
+ iµt, α = 1,

whereF(t) denotes the characteristic function of the stable law:

F(t) =
Z

eitx 1
σ

f

(
x−µ

σ

)
dx.

φ1,0 φ1,1 φ2,0 φ2,1

WTI Coefficient 28.307 0.984 27.995 0.985
Std. Error 1.641 0.007 1.604 0.007

HO Coefficient 77.245 0.985 76.838 0.987
Std. Error 5.246 0.008 5.235 0.006

NG Coefficient 4.547 0.988 4.641 0.991
Std. Error 0.741 0.009 0.824 0.007

Table 9. AR(1) Model for Futures Prices
The parameter estimation results of the AR(1) models for WTI, HO, and NG futures prices are
reported whereφ1,0 and φ2,0 represent the constant terms for 1- and 2-month maturity futures
prices, respectively, andφ1,1 andφ2,1 represent the corresponding AR(1) coefficients, respectively.
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Parameters ω1 α1 β1 ω2 α2 β2 θ1 θ2

Estimates 2.309×10−2 0.080 0.879 3.783×10−2 0.100 0.808 0.093 0.000
Std Errors 1.892×10−2 0.047 0.070 1.626×10−2 0.036 0.056 0.064 4.069
Loglikelihood -5.672×102

AIC 1.150×103

SIC 1.188×103

Table 10. Parameter Estimates of DCC Model for WTI Futures Prices
ARCH and GARCH terms are denoted byαi andβi , respectively, where the subindexi represents
i-month futures. If the estimates ofαi andβi are statistically significant, there exists a GARCH
effect in i-month WTI futures price noises. The covariance matrix is represented by the past noise
and the past covariance matrix whose coefficients are represented byθ1 andθ2, respectively. If
either of the estimates ofθ1 or θ2 is statistically significant, the correlation of the pairs of WTI
futures prices becomes time varying.

Parameters ω1 α1 β1 ω2 α2 β2 θ1 θ2

Estimates 2.203×10−1 0.145 0.813 1.312×10−1 0.099 0.868 0.123 0.859
Std Errors 8.923×10−2 0.047 0.048 6.819×10−2 0.039 0.042 0.057 0.068
Loglikelihood -2.240×103

AIC 4.496×103

SIC 4.534×103

Table 11. Parameter Estimates of DCC Model for HO Futures Prices
ARCH and GARCH terms are denoted byαi andβi , respectively, where the subindexi represents
i-month futures. If the estimates ofαi andβi are statistically significant, there exists a GARCH
effect in i-month HO futures price noises. The covariance matrix is represented by the past noise
and the past covariance matrix whose coefficients are represented byθ1 andθ2, respectively. If
either of the estimates ofθ1 or θ2 is statistically significant, the correlation of the pairs of HO
futures prices becomes time varying.
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Parameters ω1 α1 β1 ω2 α2 β2 θ1 θ2

Estimates 2.956×10−3 0.365 0.635 1.231×10−3 0.150 0.812 0.036 0.944
Std Errors 1.400×10−3 0.213 0.132 4.356×10−4 0.036 0.035 0.070 0.016
Loglikelihood 1.448×103

AIC -2.881×103

SIC -2.843×103

Table 12. Parameter Estimates of DCC Model for NG Futures Prices
ARCH and GARCH terms are denoted byαi andβi , respectively, where the subindexi represents
i-month futures. If the estimates ofαi andβi are statistically significant, there exists a GARCH
effect in i-month NG futures price noises. The covariance matrix is represented by the past noise
and the past covariance matrix whose coefficients are represented byθ1 andθ2, respectively. If
either of the estimates ofθ1 or θ2 is statistically significant, the correlation of the pairs of NG
futures prices becomes time varying.

Parameters ω1 α1 β1 ω2 α2 β2 θ1 θ2

Estimates 5.187×10−5 0.087 0.841 0.000 0.104 0.807 0.011 0.974
Std Errors 2.672×10−5 0.042 0.060 0.000 0.040 0.054 0.064 0.205
Loglikelihood 4.818×103

AIC -9.621×103

SIC -9.583×103

Table 13. Parameter Estimates of DCC Model for WTI Futures Price Returns
ARCH and GARCH terms are denoted byαi andβi , respectively, where the subindexi represents
i-month futures. If the estimates ofαi andβi are statistically significant, there exists a GARCH
effect ini-month WTI futures price return noises. The covariance matrix is represented by the past
noise and the past covariance matrix whose coefficients are represented byθ1 andθ2, respectively.
If either of the estimates ofθ1 or θ2 is statistically significant, the correlation of the pairs of WTI
futures price returns becomes time varying.
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Parameters ω1 α1 β1 ω2 α2 β2 θ1 θ2

Estimates 5.490×10−5 0.123 0.809 0.000 0.066 0.883 0.129 0.846
Std Errors 2.386×10−5 0.053 0.063 0.000 0.043 0.076 0.060 0.083
Loglikelihood 4.764×103

AIC -9.512×103

SIC -9.475×103

Table 14. Parameter Estimates of DCC Model for HO Futures Price Returns
ARCH and GARCH terms are denoted byαi andβi , respectively, where the subindexi represents
i-month futures. If the estimates ofαi andβi are statistically significant, there exists a GARCH
effect in i-month HO futures price return noises. The covariance matrix is represented by the past
noise and the past covariance matrix whose coefficients are represented byθ1 andθ2, respectively.
If either of the estimates ofθ1 or θ2 is statistically significant, the correlation of the pairs of HO
futures price returns becomes time varying.

Parameters ω1 α1 β1 ω2 α2 β2 θ1 θ2

Estimates 2.031×10−4 0.168 0.739 0.000 0.084 0.863 0.060 0.917
Std Errors 1.453×10−4 0.123 0.150 0.000 0.032 0.040 0.049 0.033
Loglikelihood 3.840×103

AIC -7.664×103

SIC -7.627×103

Table 15. Parameter Estimates of DCC Model for NG Futures Price Returns
ARCH and GARCH terms are denoted byαi andβi , respectively, where the subindexi represents
i-month futures. If the estimates ofαi andβi are statistically significant, there exists a GARCH
effect in i-month NG futures price return noises. The covariance matrix is represented by the past
noise and the past covariance matrix whose coefficients are represented byθ1 andθ2, respectively.
If either of the estimates ofθ1 or θ2 is statistically significant, the correlation of the pairs of NG
futures price returns becomes time varying.
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