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Abstract 

 
In this paper, we introduce performance risk/return Ratios as new criteria for the 
construction of the winner and loser portfolios in momentum strategies. Our 
results show that momentum strategies based on novel risk/return Ratio criteria 
applied to previous 6-month or 12-month periods, generate positive returns over 
6-month and 12-month holding periods and are more profitable than strategies 
based on usual cumulative or total return benchmarks. We compare strategies 
driven by different performance Ratios and cumulative return benchmark using 
independent performance measures based on a coherent risk measure (expected 
shortfall risk) and cumulative return over the holding period. Specifically, the R-
Ratio emerges in our study as the best candidate for momentum portfolio 
construction. Finally, we model momentum profits in a GARCH-stable setting 
and validate our assumptions on the winner and loser return patterns.   
 
Key Words: momentum strategies, risk/return Ratio criterion, GARCH-stable 
modeling 
 

                                                 
* Researcher, Institute of Econometrics, Statistics and Mathematical Finance, School of Economics and 
Business Engineering, University of Karlsruhe, Kollegium am Schloss, Bau II, 20.12, R210, Postfach 
6980, D-76128, Karlsruhe, Germany    E-mail: almira.biglova@statistik.uni-karlsruhe.de 

 
** Institute of Econometrics, Statistics and Mathematical Finance, School of Economics and Business 
Engineering, University of Karlsruhe, Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980,  
D-76128, Karlsruhe, Germany     E-mail: teo.jasic@gmx.de 

 
*** Chair-Professor, Chair of Econometrics, Statistics and Mathematical Finance, School of Economics 
and Business Engineering, University of Karlsruhe, Postfach 6980, 76128 Karlsruhe, Germany  and 
Department of Statistics and Applied Probability, University of California, Santa Barbara, CA 93106-
3110, USA    E-mail: rachev@statistik.uni-karlsruhe.de 
Svetlozar Rachev gratefully acknowledges research support by grants from Division of Mathematical, Life 
and Physical Sciences, College of Letters and Science, University of California, Santa Barbara, the 
Deutschen Forschungsgemeinschaft, and the Deutscher Akademischer Austausch Dienst.  

 
**** Frederick Frank Adjunct Professor of Finance, Yale School of Management, 135 Prospect Street,  
Box 208200, New Haven, Connecticut  06520-8200    E-mail: fabozzi321@aol.com 

 

 1



1. Introduction 

The momentum effect has attracted considerable attention because the application of 
momentum strategy is simple and its consistent profitability poses a strong challenge to 
the theory of asset pricing. A number of researchers have concluded that single-factor and 
multi-factor models such as three factor model of Fama and French (1996), fail to explain 
the abnormal momentum returns. A momentum effect captures the short-term (6 to 12 
months) return continuation effect that stocks with high returns over the past three to 12 
months tend to outperform in the future (see Jegadeesh and Titman, 1993). The simplicity 
of momentum strategy is based on the mechanistic decision criterion of compounded total 
monthly return or cumulative monthly return in selecting winners and losers over some 
defined ranking period.  

Empirical findings on momentum strategies show that stock return continuation 
on horizons between 6 and 12 months is evident for the United States, Europe, and 
emerging markets (Jegadeesh and Titman 1993, Rouwenhorst 1998, Rouwenhorst 1999, 
Griffin et al. 2003) with historically earned profits of about 1% per month over the 
following 12 months. Although some have argued that these results provide strong 
evidence of “market inefficiency”, others have argued that the returns from these 
strategies are either compensation for risk, or alternatively, the product of data mining. 
Recent evidence on momentum strategies and their associated profitability shows that 
stock return continuation on horizons between 6 and 12 months has continued in the 
1990s (Jegadeesh and Titman, 2001), providing strong evidence that the results are not 
spurious or the result of “data snooping”. However, the interpretations of the empirical 
findings in studies that investigate the additional possible causes and sources of 
momentum effect are divergent and generate further debate.  

While the finding of persistence of stock return continuation effect across various 
markets and in different time periods has neutralized the data-mining argument that has 
been suggested in the literature, the macroeconomic-based explanations are still 
unsettled. Although Chordia and Shivakumar (2002) claim that a multifactor 
macroeconomic model of returns explains the momentum profits found in tests using 
U.S. data, the most recent evidence in studies by Griffin et al. (2003) and Cooper et al. 
(2004) present evidence that macroeconomic models cannot explain U.S. and 
international momentum profits.  

In  addition, Griffin et al. (2003) examine conditions among returns to momentum 
strategies in various countries and show that momentum profits are large and have only  a 
weak comovement among countries, whether within regions or across continents. This 
fact indicates that if momentum is driven by risk, the risk is largely country specific. 
Moreover, Cooper et al. (2004) find that the macroeconomic model cannot forecast the 
time series of momentum profits out-of-sample, while the lagged returns of the market 
can. Therefore, the lagged return of the market is the type of conditioning information 
that can be relevant for predicting the profitability of momentum strategies.  

In previous and contemporary studies of momentum strategies, possible effects of 
non-normality of individual stock returns and their risk characteristics have received little 
attention. To the best of our knowledge, all studies on momentum strategies utilize 
monthly data as a basis for ranking and evaluation of the investment period profits and 
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simple cumulative return as the criterion for ranking stocks into winner and loser sub-
portfolios.   

Given abundant empirical evidence that stock returns exhibit non-normality, 
leptokurtic, and heteroscedastic properties, such effects are clearly important and in 
interaction with criteria for portfolio construction may have an impact on momentum 
strategies and its profits. The implication that returns of financial assets exhibit a heavy- 
tailed distribution may have a significant impact on risk management and investment 
application such as momentum strategies. Extreme returns may occur with a much larger 
probability where the return distribution is heavy tailed than where it is normal. In 
addition, quantile-based measures of risk, such as value at risk (VaR), may also be 
significantly different if calculated for heavy-tailed distributions. This may have a 
significant impact on the evaluation of risk/return profiles of individual assets, their 
subsequent aggregation, and the impact on the investment decision in a risk/return 
framework.  

It would be therefore of interest to integrate information from the non-normal data 
distributional properties with their impact on risk/return profile of stock returns and 
utilize this information to form new stock selection criteria. The aim of this paper is to 
outline an approach that extends existing momentum methodology by defining the 
selection criteria for portfolio construction within the risk/return framework. This 
approach is based on risk/return Ratios which include not only a return but also a risk 
component of individual stock returns, thereby capturing the risk/return profile of assets. 
In addition, to provide consistency with the most recent theoretical advances on risk 
measures, we focus on coherent measures of risk1 when applying and evaluating the 
risk/return Ratio performance. Our approach of using novel risk/return Ratios is more 
convenient for daily data. It is more general than usual total or cumulative return 
selection criterion since it incorporates risk information into the estimation of the 
expected (excess) return of a particular stock. Moreover, we define a risk coherent 
independent performance measure for direct comparison of performance Ratios within 
risk/return framework.   
 To test the impact of Ratio-based selection criteria, we examine the returns of the 
winner and loser stocks in the 6 and 12 months following the formation period of 6 and 
12 months. We analyze non-overlapping returns in these periods, or in other words, we 
rank stocks (determine winner and loser portfolios) every six and 12 months using 
performance Ratios as criterion. In our experiments, we examine a wide range of Ratios 
as criteria for momentum portfolio construction and compare their performance in terms 
of momentum profits and independent performance measure. In addition, we explicitly 
model time-series of momentum profits in a GARCH (1,1)-stable setting framework.  
 Our empirical findings for the small sample of German stocks investigated in this 
study indicate that momentum strategies with risk/return Ratios based on coherent 
measures of risk using daily data are indeed profitable, and these profits may exceed the 
profits from using common cumulative return benchmark. Specifically, the Rachev Ratio 
(R-Ratio) and STARR Ratio that we describe later in this paper are the clear winners 
when compared to traditional Sharpe Ratio and cumulative return benchmark. Our study 
extends the previous studies in that we include novel performance Ratio measures as the 
portfolio formation criterion which suits better the non-normality properties of stock 
                                                 
1  The definition of a coherent risk measure is provided later in this paper. 
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returns and are based on daily data.  Our analysis suggests that aligning the key decision 
criterion of momentum strategy with the risk/return framework provides clear benefits in 
terms of magnitude and significance of profits in the holding period compared to 
cumulative return benchmark. Moreover, by modeling the daily momentum profits in 
GARCH-stable setting, we enable formulation of an appropriate forecasting model that 
can drive momentum profits by applying a specific risk/return Ratio. Insights from this 
modeling can also be used to provide a link to the analysis of the decomposition of 
momentum returns provided in other studies, a topic of future research. 

The remainder of the paper is organized as follows. Section 2 provides a brief 
description of our data and methodology. Section 3 provides an analysis of the holding 
period returns and profitability of the momentum strategies we investigated. An analysis 
of modeling the momentum profits in GARCH-stable setting is presented in Section 4. 
Section 5 concludes the paper. 
 

2. Formation of “Winner” and “Loser” Portfolios using Ratio Criteria 

2.1 Data and Methodology 

Our sample comprises 9 stocks traded on the German Stock Exchange and included in the 
DAX index (Adidas-Salomon AG, Basf AG, Bayerishe Motoren Werke AG, Continental 
AG, Bayer AG, Hoechst AG, Fresenius Medical Care AG, MAN AG, and Henkel 
KGAA). We analyze the daily returns of these stocks for the period between 27.01.1999 
and 30.06.2003. For the riskless asset, we use the London interbank offered rate (Libor) 
in the same observation period. Although our sample of stocks is small, the results can be 
applied and interpreted for a larger sample of stocks.  

Any momentum strategy involves decision on the (1) length of the ranking or 
formation period, (2) length of the holding or investment period, and (3)  the ranking 
criterion. The ranking criterion determines winners and losers at the end of the ranking 
period, and the zero-investment strategy of simultaneously selling losers and buying 
winners produces momentum profits in the holding period. Such zero-investment strategy 
is applicable in practice given the regulations on proceeds from short-sales for investors 
(Bris et al., 2004). We perform ranking of stocks with returns of at least 12 months by 
applying the risk/return Ratio criterion to their prior 6-month of 12-month daily returns.   
Ranking assigns the stocks to one of the three subportfolios (1 equals lowest past 
performance or “Loser”, 3 equals the highest past performance or “Winner”). In our 
study, these portfolios are equally weighted at formation and held for 6 or 12 subsequent 
months of the holding period; during the holding period, these portfolios are not 
rebalanced. 

Since we perform ranking using daily data, we initially focus on the analysis of 
non-overlapping holding period returns in this study, implying no rebalancing within the 
holding period. Previous studies on momentum strategies usually report the monthly 
average return of K strategies, each starting one month apart which is equivalent to a 
composite portfolio in which each month 1/K of the holding is revised. We will 
subsequently also apply our ranking method to overlapping holding period returns with 1, 
3, 6, and 9 months rebalancing. We follow the most widely used practice of reporting the 
results that focus on a 6-month ranking period over which raw total returns determine 
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winner or loser status. We use a 6-month and 12-month holding period with equal 
weights, and the investment rule is followed on each 6-month or 12-month ranking 
period. For overlapping holding period returns, the investment rule is followed (every 
month) such that equally weighted momentum strategies of six varying vintages are 
simultaneously in effect at all times. We examine the top (winner) and bottom (loser) 
33% of stock return (3 shares) due to small sample size. Therefore, for each month t, the 
portfolio held during the investment period, months t to t+5 is determined by 
performance over the ranking period, months t-6 to t-1 .  Daily stock returns were 
calculated as 
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 ----------------------------------------------------------------------- 

 Month  -5 to Month 0   Month 1 to Month 6 

 Month –11 to Month 0  Month 1 to Month 12 

 

Figure 1. Time line showing  formation and holding periods as 
combinations of momentum strategies 

 

At the end of each subsequent formation period, we rank the stocks in our sample 
based on calculating Ratios using stocks’ past six-month returns (month -5 to month 0).  
Subsequently, we group the stocks into two equally weighted portfolios based on these 
ranks. We consider the top 3 shares with the highest Ratio form the winner portfolios and 
the bottom three shares with the lowest Ratio form the loser portfolios. Each portfolio is 
held over the holding period of 6 or 12 months following the ranking month. The various 
formation and holding periods we consider are presented in the Figure 1. We performed 
experiments of rebalancing portfolios for the periods of 1, 3, 6, 9, and 12 months over the 
holding period to observe the impact on momentum profits in the holding period. 

The main steps of our algorithm are the following: 

Step 1. Form a matrix of excess returns (N assets, T observations) 
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Step 2. Divide the data into subperiods equal to the length of the formation period, where 
N is the number of daily observations. We form the zero-investment portfolios of winners 
and losers at the end each formation period (e.g., for 6 months after each 161 
observation) by calculating the Ratio for each share based on observations in these 
periods (1-160,…, 960-1,120) and ranking. Shares with the highest Ratio will constitute 
winner portfolio, and shares with the lowest Ratio will form the loser portfolio. Hence, 
given our sample of 9 stocks, we buy the top 3 shares and sell the bottom 3 shares based 
on the data for each ranking period. 
 
2.2 Risk/Return Ratios 

The usual approach to selecting winners and losers employed in previous studies 
investigating momentum strategies has been to evaluate the individual stock’s past 
monthly returns over the ranking period (e.g., six-month monthly return for the six-month 
ranking period). The realized cumulative return as a selection criterion is a simple 
measure which does not reflect the risk-reward framework. Moreover, empirical evidence 
shows that individual stock returns exhibit non-normality, so that it would be more 
reliable to use a measure that could account for these return properties.  

One of the most commonly applied measures for risk-reward framework is the 
Sharpe Ratio (Sharpe, 1966). This Ratio is the mean return of the trading strategy divided 
by its standard deviation and can be interpreted as a return/risk Ratio. However, this 
Ratio is unstable for low values of the denominator and does not consider the clustering 
of profits and losses.  Moreover, as demonstrated by Leland (1999), the Sharpe Ratio is 
not totally reliable when applied to assets where the return distribution is non-normal.     

Usual measures of risk are standard deviation and value at risk (VaR). The VaR 
of a random variable X (random profit and loss of an investment by a fixed time horizon) 
at level α is the absolute value of the worst loss not to be exceeded with a probability of 
at least α. The following is  a formal definition of VaR. 
 

 Quantile, VaR: Let ( ]1,0∈α  be fixed and X be a real random variable on a 
probability space ( . Define )ΡℑΩ ,, ∞=φinf . We than call 

 
[ ] }:inf{)( αα ≥≤ℜ∈= xXPxXq    (1)    

 
the α-quantile of X. The VaR at confidence level α of X is VaRα (X) = qα (-X). 

 
In practice, values of α close to 1 are of interest. VaR(X) can be interpreted as the 

minimal amount of capital to be put back by an investor in order to preserve his solvency 
with a probability of at least α. However, standard deviation lacks the ability to describe 
the rare events and VaR is criticized because of its inability to aggregate the risk in a 
legal manner. In addition, VaR is not in general subadditive and is law invariant in a very 
strong sense. Arztner et al. (1999) propose a set of properties any reasonable risk measure 
should satisfy. A risk measure which satisfies these properties is called coherent.  
Risk measure can be formally described with the following definition: 
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Risk measure: Let ( )ΡℑΩ ,,  be a probability space and V be a non-empty set 
of –measurable real-valued random variables. Then any mapping   ℑ

}{: ∞∪ℜ→Vρ  is called a risk measure. 
A risk measure ρ is called coherent if it is monotonous, positively homogeneous, 

translation invariant, and subadditive. Standard deviation and VaR are not coherent 
measures of risk. On the other hand, the expected shortfall, also called tail conditional 
expectation or expected tail loss (ETL) is a coherent risk measure (Rockafellar and 
Uryasev, 2002). Another name for expected shortfall is conditional value at risk (denoted 
CVar). ETL (CVar) is a more conservative measure than VaR and looks at the average of 
all losses that exceed VaR. Formally, the expected shortfall for risk X and high 
confidence level α is defined as follows (Bradley and Taqqu, 2003): 
 
 Let X be the random variable whose distribution function Fx describes the 
negative profit and loss distribution (P&L) of the risky financial position at the specified 
horizon time τ (thus losses are positive). Then the expected shortfall for X is 

))(|()( XVaRXXEXS αα >=    (2) 
  

For each risk measure, there exists a performance measure to identify superior, 
ordinary, and inferior performance. Specifically, the Ratio between the “expected excess 
return” and the relative risk measure is a performance measure ρ(.) that investors wish to 
maximize. This performance measure is associated with a certain “market portfolio” 
which is based on a diverse risk perception and sometimes on a different reward 
perception. While it is difficult to find a “perfect performance measure” given a 
complexity of admissible choices, it is reasonable to assume that some performance 
measures take into account the common investor’s opinions better than others. Biglova et 
al. (2003) compare various risk-reward performance Ratios including newly designed 
STARR and R-Ratio based on the criterion of maximizing the final wealth over a certain 
time period. The results of this study implicitly support the hypothesis that the new 
Ratios capture the distributional behaviour of the data (typically the component of risk 
due to heavy tails) better than the classical mean-variance model embodied by the Sharpe 
Ratio.     

In order to include the risk-return framework and account for non-normality of 
asset returns, we also apply the STARR Ratio and R-Ratio as the criterion in forming our 
momentum portfolios. We analyze and compare the most popular Ratios such as Sharpe 
Ratio, STARR Ratio (95%), STARR Ratio (99%) and the new R-Ratio for various 
parameter values. A summary of the three performance Ratios is provided below::  
 
1. Sharpe Ratio The Sharpe Ratio (see Sharpe, 1994) is the Ratio between the 

expected excess return and its standard deviation:  
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where  is the risk free asset and STD is the standard deviation of returns of the 
stock r. For this Ratio it is assumed that the second moment of the excess return 
exists. 

fr

 
2.   Ratio (STARR Ratio). The  Ratio (see Martin, Rachev, and 

Siboulet, 2003) is the Ratio between the expected excess return and its conditional 
value at risk: 

)%1( α−CVaR )%1( α−CVaR

)(
)(

)(
)%1( f

f

rrCVaR
rrE

r
−

−
=

−α

ρ  (4) 

where is the (1-)()%1( rCVaR α− α )% CVaR of r.  is the opposite of 1% 
quantile that is 

%99VaR
01.0)( %99 =−≤ VaRrP . 

 
3.  Rachev Ratio (R-Ratio).  The R-Ratio is the Ratio between the ETL of the 

opposite of the excess return at a given confidence level and the ETL of the 
excess return at another confidence level.  
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γ

γρ  (5) 

 

where 1γ and  2γ are in [0,1]. Here, if r is a return on a portfolio or asset, then  
L = -r presents the relative loss: ),/()( %% αα VaRLLErETL >=  is the expected 
tail loss and  is defined by %αVaR αα => )( %VaRLP , and α  is in (0,1) typically 

01.0=α .  
We analyze the R-Ratio for different parameters 1γ  and 2γ . For example, R-Ratio 
( 1γ = 2γ =0.01), R-Ratio ( 1γ = 2γ =0.05), and R-Ratio ( 1γ = 0.5, 2γ =0.01). 

 

After calculating different performance Ratios for all stocks over a defined ranking 
period, we explore the performance of momentum strategies in the holding periods. We 
evaluate and compare performance Ratios using the aggregate wealth value at the end of 
the holding period and independent performance measure based on the coherent risk 
measure of the expected shortfall. Due to the nature of the risk/return Ratios and 
computational requirements, we will utilize daily data for their calculation. Following the 
analysis of momentum profits, we select and suggest optimal Ratio(s), which allow(s) 
investors to obtain momentum profits. The optimal risk/return Ratio will serve as a new 
criterion for constructing the momentum portfolios. 2
 

                                                 
2  It would be of interest to observe the performance of these ratios on different ranking and holding periods 
or their combinations. The analysis on non-overlapping holding period returns  to overlapping holding 
period returns is the subject of  future research. 
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3. Returns of Momentum Portfolios Formed on Risk/Return Ratio Criteria  

In Panel A of Table 1 are shown the average monthly returns of the winner and loser 
portfolios as well as of the zero-cost, winner-loser spread portfolio for all combinations 
of 6- and 12-month ranking/holding horizons and for all risk/return Ratios. Monthly 
returns are aggregated from daily returns, given the assumption of 250 trading days in a 
year. The highest average winner-loser return spread (1.50% per month) for a 6-month 
ranking period arises for the 6-month/6-month strategy (6-month ranking period, 6-month 
holding period) for the R-Ratio (0.3, 0.4) and the lowest average winner-loser return 
spread for a 6-month ranking period arises for R-Ratio (0.01,0.01) (0.52% per month). 

 For the ranking period of 6-months, the average spread for the 6-month holding 
period compared to the 12-month holding period is higher in all cases except for the 
Sharpe Ratio, R-Ratio(0.05,0.05), and cumulative return. For the 6-month ranking period, 
the returns range from 0.52% to 1.50% per month earned by the portfolio based on (1) R-
Ratio (0.01,0.01) and held for 6 months and (2) R-Ratio (0.3, 0.4) and held for 6-months. 
The largest return on 6-month/6-month strategy is obtained using R-Ratio (0.3, 0.4) 
followed by the STARR (99%), STARR (95%), R-Ratio (0.05,0.05), Sharpe Ratio, and 
R-Ratio (0.01,0.01).  

For 6-month/12-month strategy, the largest winner-loser spread returns (1.21 % 
per month) are again obtained for the R-Ratio (0.3, 0.4), but the cumulative return is the 
second best performer (0.82% per month). The lowest average winner-loser return spread 
(0.18% per month) for 6-month/12-month strategy is obtained for STARR(95%) Ratio. It 
is interesting to note that for the 6-month/6-month strategies, the cumulative return 
criterion performs better than the Sharpe Ratio, R-Ratio (0.01,0.01), and R-Ratio 
(0.05,0.05) . For 6-month/12-month strategy, the STARR Ratio (95%) is the only Ratio 
that produces negative winner-loser spread return. 

Panel B of Table 1 reports the average monthly returns of the winner and loser 
portfolios as well as the winner-loser spread portfolio for strategies using a 12-month 
ranking period. The highest average winner-loser return spread (1.36% per month) for the 
6-month holding period arises for STARR (95%) Ratio and the lowest average (-0.13%) 
arises for 12-month holding period and cumulative return benchmark. The highest 
average winner-loser return spread (1.37% per month) for the 12-month holding period 
arises for the STARR (99%) Ratio. Given our data set, it seems that STARR Ratios 
perform better on a longer, 12-month ranking period. Compared to the results on the 6-
month ranking strategy, R-Ratio (0.3, 0.4) underperforms STARR(95%) Ratio and R-
Ratio (0.05,0.05).      
 Overall, the largest winner-loser spread is obtained on the 6-month/6-month 
strategy using R-Ratio (0.3, 0.4) and the lowest for 12-month/12-month strategy using 
cumulative return. For different combinations of ranking and holding periods, the winner-
loser spread results using the same Ratios may differ and even change sign. STARR and 
R-Ratio (0.3, 0.4) obtain better results than the cumulative return and Sharpe Ratio for all 
combinations of momentum strategies.     
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Table 1.Momentum portfolio returns 

Panel A: Ranking Period 6 Months 
Holding Period Risk/Return 

Ratio Portfolio 6 months 12 months 
Loser  -0.0069 -0.01089 

Winner 0.0000645 -0.00268 

Cumulative 
return 

(Benchmark) 

Winner-Loser           0.0070          0.00821 
Loser -0.00785 -0.011108 

Winner -0.00113 -0.00346 

Sharpe Ratio 

Winner-Loser 0.00671 -0.00891 
Loser -0.00822 -0.00998  

Winner -0.00303 -0.00547 

R-Ratio 

(0.01,0.01) 

Winner-Loser  0.00518 0.00450 
Loser -0.0114 -0.01180 

Winner -0.00409 -0.00439 

R-Ratio 

(0.05,0.05) 

Winner-Loser 0.00731 0.00741 
Loser -0.01196 -0.01110 

Winner 0.00305 0.001025 

R-Ratio (0.3,0.4) 

Winner-Loser 0.01501 0.01213 
Loser -0.00635 -0.00217 

Winner 0.00339 -0.00396 

STARR (95%) 

Winner-Loser 0.00974 -0.00178 
Loser -0.01303 -0.00737 

Winner -0.00263 -0.00355 

STARR (99%) 

Winner-Loser 0.01039 0.00382 
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Panel B: Ranking Period 12 Months 
Holding Period Risk/Return 

Ratio Portfolio 6 months 12 months 
Loser -0.00933 -0.00253 

Winner -0.00319 -0.003908 

Cumulative 
return 

(Benchmark) 
Winner-Loser 0.00613 -0.00137 

Loser -0.00933 -0.00253 
Winner -0.0021 -0.00390 

Sharpe Ratio 

Winner-Loser 0.00723 -0.00137 
Loser -0.00537 -0.00503 

Winner -0.00236 -0.00401 

R-Ratio 

(0.01,0.01) 

Winner-Loser 0.00300 0.00102 
Loser -0.01046 -0.00841 

Winner -0.00092 0.00193 

R-Ratio 

(0.05,0.05) 

Winner-Loser 0.00953 0.01035 
Loser -0.00746 -0.00755 

Winner 0.00251 -0.00415 

R-Ratio (0.3,0.4) 

Winner-Loser         0.00997  0.00339 
Loser -0.00909 -0.00788 

Winner 0.00454 0.00152 

STARR (95%) 

Winner-Loser 0.01363 
 

0.00941 
 

Loser -0.01167         -0.01321 
Winner -0.00012 0.000483 

STARR (99%) 

Winner-Loser 0.01155 0.01370 

This table reports the daily and monthly returns for momentum portfolios based on past J-month 
returns, specific risk/return Ratio criterion, and held for subsequent K months. Loser (P1) is the 
equally weighted portfolio of 30% of the stocks with the lowest past J-month returns, and winner 
(P3) is for those with the highest past J-month returns. The sample includes a total of 9 stocks 
traded on the German Stock Exchange during the period of January 1999 and June 2003.   
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Figure 2 presents the graph of total realized returns of winner and loser portfolios 
over the entire holding period for the R-Ratio (0.3, 0.4) which gives the best performance 
for investors as will be shown in the following analysis. As can be seen in Figure 2, the 
total realized returns of the winner portfolio are always higher than the total realized 
returns of the loser portfolio. This means that for this particular performance Ratio, the 
momentum strategy works in that profits are positive over the entire observation period, 
and specifically in this case, the magnitude of the profits are increasing over the time 
horizon.  
 

 

   
Figure 2. Actual total realized returns of winner and loser portfolios for R-Ratio(0.3, 0.4) 

and 6-month/6-month momentum strategy 
         
 

In the remainder of this paper we will concentrate on portfolios formed on the 
basis of six-month daily returns that are formed at the end of the ranking period. We 
explore which of the performance Ratios can drive profitable momentum strategies 
thereby allowing us to eliminate those performance Ratios that consistently produce 
inaccurate results.  The performance Ratios are evaluated based on a comparison of the 
cumulative total realized returns of the winner and loser portfolios and their difference 
over the entire observation period, 1999-2003. We seek the largest positive difference 
over this holding period. 

We further evaluate the performance of the Ratios by calculating the final value 
of the compounded return based on the difference of the cumulative returns between the 
winner and loser portfolios. To illustrate, look at Figure 3 where we present the graphs of 
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the difference of cumulative returns of winner and loser portfolios for the four risk/return 
Ratios criteria and cumulative returns for the 6-month/6-month strategy over all holding 
periods. The R-Ratio(0.3, 0.4) clearly provides the best total return over the entire 
observation period. It is interesting to note that STARR(99%) Ratio matches closely the 
R-Ratio performance up to two 6-month holding periods before the end of the full period 
and then deteriorates in performance. In the last 6-month holding period, all three 
risk/return Ratios are similar in performance and obtain a much lower value than the R- 
Ratio (0.3, 0.4). The final value of compounded return for R-Ratio (0.3, 0.4) is equal to 
0.8071. The cumulative return criterion provides the worst performance since it is 
obvious from Figure 3 that its cumulative total realized return of the difference between 
the winner and loser portfolios is lower than the cumulative realized return of the winner-
loser spread of each other Ratio during the entire period. 

 
       

  
 
Figure 3: Cumulative total realized returns of the difference between the winner and loser 

portfolios for different risk/return criteria on a 6-month ranking period 
 
 

We also analyze the graph of differences of returns of the winner and loser 
portfolios, which are actually the momentum profits. The graph of the sequence of 
momentum profits over the entire observation period obtained using the R-Ratio(0.3, 0.4) 
is presented in Figure 4. 
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Figure 4. Momentum profits for the R-Ratio(0.3, 0.4) on a 6-month ranking period 
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4. GARCH-Stable Modeling of Momentum Profits  

It is a well  known fact supported by abundant empirical evidence that financial asset 
returns often posses distributions that are heavy tailed and peaked (leptokurtic). 
Mandelbrot (1963) and Fama and French (1963; 1965) were the first to formally 
acknowledge this fact and reject the standard hypothesis of normally distributed returns 
in favor of more general stable distribution. Since this initial work, the stable distribution 
has been applied to modeling both the unconditional and conditional return distributions, 
as well as theoretical framework of portfolio theory and market equilibrium models (see. 
Rachev and Mittnik, 2000). 

The stable distribution Sα,β (σ, µ) is defined as the limiting distribution of the sum 
of independent and identical distribution (i.i.d.) variables. The stable distributions are 
described by four parameters: α - tail index, β - skewness, µ - location, and σ - scale. The 
α-stable, or, in short, Sα,β, distribution, has in general, no closed-form expression for its 
probability density function, but can, instead, be expressed by its characteristic function. 
A stable distribution for a random risk factor X is formally defined by its characteristic 
function: 
 

( ) ,( ) ( )itX itxF t E e e f x dµ σ= = ∫ x , 
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,
1( ) xf x fµ σ

µ
σ σ

−⎛ ⎞= ⎜ ⎟⎝ ⎠
 

 
is any probability density function in a location-scale family for X:  
 

1 sgn( ) tan ,     1
2

log ( )
21 sgn( ) log ,            1

t i t i t
F t

t i t t i t

αα πασ β µ α

σ β µ α
π

⎧ ⎫⎛ ⎞⎛ ⎞− − + ≠⎪ ⎪⎜ ⎟⎜ ⎟
⎪ ⎝ ⎠⎝ ⎠= ⎨ ⎬

⎛ ⎞⎪ ⎪− − + =⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎪

2

 
 
 

A stable distribution is therefore determined by the four key parameters: 
 

1. α  (index of stability) determines density’s kurtosis with 0 α< ≤  (e.g. tail 
weight) 

2. β  determines density’s skewness with –1≤β≤1 
3. σ  is a  scale parameter (in the Gaussian case, α =2 and 2σ2 is the variance) 
4. µ  is a location parameter ( µ  is the mean if 1 <α ≤2) 

 
Stable distributions for risk factors allow for skewed distributions when 0β ≠  and fat 

tails relative to the Gaussian distribution when α < 2. For positive (negative) β, the 
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distribution is skewed to the right (left), and is symmetric for β = 0. We estimate the 
parameters of a stable distribution and approximate the stable density functions by 
applying a maximum likelihood estimation using Fast Fourier Transform (FFT).3 The 
application of computationally demanding numerical approximation method in estimation 
of stable distribution is necessary, while closed-form expressions for its probability 
density function in general do not exist.   

Based on our risk/return Ratio criteria, we analyze the differences between returns of 
the winner and loser portfolio. The aim is to postulate the model which can be used for 
ex-ante forecasting purposes in the holding period. We would like to evaluate how 
different Ratios influence the model form behavior and its predictability power. To do so, 
we model the momentum profits for R-Ratio(0.3, 0.4). We obtain the following 
parameters of the α-stable distribution: α = 1.8642, β = 0.2788, σ = 0.0105, and µ = 
7.3380e-004.  

For values of 1<α <2 , we can calculate the expected shortfall  and %99CVAR
( )

( )t

t

XCVAR
XE

%99

  of the sequence and compare these values for different performance 

Ratios. The best performance Ratio is the one that attains the highest value of  
( )

( )t

t

XCVAR
XE

%99

 which serves as the independent performance measure. For the specific 

case of R-Ratio (0.3, 0.4), we obtain  CVAR = 0.0616, and 
( )

( )t

t

XCVAR
XE

%99

= 0.0120.  

 
We assume that the time series of momentum profits (differences of winner and loser 

returns) exhibits an autocorrelation structure in the second-order moments; that is, it is 
heteroscedastic and exhibits periods of varying volatility. We therefore model momentum 
profits  by a generalized autoregressive conditional heteroscedastic GARCH(1,1) model.  
Accordingly, a GARCH(1,1) model is estimated jointly with a conditional mean model 
for the return process and fitted to the series. The following GARCH specification is 
used:  
 

tt cy ε+=       (7) 
 

2
11

2
11

2
−− ++= ttt εασβωσ ,     (8) 

 
where yt is the momentum profit at time t, σt its conditional variance measured at time t, c 
is constant (mean), and {εt} is a white noise process. We assume here that momentum 
payoff series do not have a zero conditional mean.  

The return process is captured by the specification in the conditional mean given 
by equation (7), while the GARCH(1,1) process given by equation (8) tracks the 
conditional volatility in returns. The GARCH model extends the mean equation (7) by 
assuming that εt = ztσt, where  zt is standardized residual, zt ~ N(0,1). The residuals 
conditional on past information are assumed to be normally distributed. The 

                                                 
3 For details of the estimation procedure, see Rachev and Mitnik (2000). 
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ARCH/GARCH models of conditional volatility allow for both volatility clustering 
(periods of large volatility) and for heavy tails. It turns out that a GARCH-type model 
driven by normally distributed returns implies unconditional distributions which 
themselves possesses heavy tails. Thus, GARCH models and α-stable distribution might 
be viewed as competing hypothesis.  

The parameters of GARCH(1,1) model are estimated for each ranking period and 
based on these parameters, we simulate returns in the holding period and then estimate 
the parameters of simulated returns. The estimated parameters are presented in Table 2.    
 
Table 2: GARCH(1,1) estimation results for momentum profits obtained using R-
Ratio(0.3, 0.4) on 6-month ranking period. 
 

Parameter Value Std. Error t-stat 
c 0.00068526 0.00047499 1.4427 
ω 1.3932e-005 4.9334e-006 2.8240* 
α1 0.0917 0.0174 5.2439* 
β1 0.8595 0.0305 28.1752** 

The table reports estimated coefficients, standards errors and t-statistics. * indicates statistically 
significant at the 5% level. ** indicates statistically significant at the 1% level. 
 

So, our estimated GARCH (1,1) model is: 
 

tty ε+= 00068526.0       (9) 
 

2
1

2
1

2 09170.085953.00053932.0 −− ++−= ttt e εσσ   (10) 
 
 

To estimate the expected shortfall of the conditional distribution of the difference 
returns, we apply a three-step procedure. In the first step,  we use a GARCH(1,1) model 
for the (conditional) volatility of the difference return series and estimate the model 

parameters . Based on the parameters of the estimated GARCH(1,1) model, the 
second step involves generating the new sequence of model innovations 

11 ,, βαω

),,...,( 1111 ttttntnt yyy σσσ −−+−+− . This gives a sequence of simulated returns, which we 
test for normality. In the third step, the stable distribution is used to model the tails of the 
distribution of those innovations. The stable fit is then applied to the innovations and the 
parameters of the stable distribution are obtained. 

The last graph shown in Figure 5 represents the sequence of simulated returns. 
We  test the normality assumption in the GARCH(1,1) model given in (9) and (10). For 

that purpose, we analyze the sequence
estimated
observedy

t

t

σ
. 
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Figure 5. Innovations from a GARCH model over the 6-month ranking and holding 

periods  
 

Traditionally, the innovation distribution is assumed normal. Figure 6 represents 
the graph of distribution density of this sequence and shows that this assumption may still 
underestimate the tails of the loss portion of the distribution. Notice that the lower (loss) 
tail of the innovations is still heavier than the normal distribution.  

We observe that the innovations exhibit heavier tails than that the normal. The fit 
of stable non-Gaussian distribution is now applied to the innovations and the following 
parameters are obtained: α = 1.8774, β = -0.1927, σ = 0.6466, and µ = 0.0480.   

Since 1>α , the usual GARCH (1,1) model is still applicable (Rachev et al., 
2003). Therefore, our postulated model is valid so that we can generate innovations for 
GARCH and by using (9) and (10) we can generate simulations of  returns in the 
holding period. For practical purposes, we can repeat the modeling procedure for the 
ranking period and specific performance Ratio, and use it for forecasting of momentum 
profits over the holding periods. 

ty
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Figure 6. Quantile-quantile (QQ) plot of the conditionally normal GARCH(1,1) ex post 
model innovations with the normal returns. Normal returns are on the abscissa and 

innovations on the ordinate. Returns are expressed as %. Innovations are from Figure 5.  
 

The values of α-stable parameter are calculated for all analyzed Ratios and are in 
the range between 0.18010 and 0.19272. The highest values of α, 1.9272 and 1.9130, are 
obtained for STARR(95%) and STARR(99%) Ratio, respectively. Table 3 shows the 
index of stability for all Ratios along with the final value of the compounded return and 
independent performance measure. The best performance in terms of independent 
performance measure and compounded return is achieved for R-Ratio (0.3, 0.4), followed 
by R-Ratio (0.25, 04) and R-Ratio (0.2, 0.4). The Sharpe Ratio performs poorly on the 
data we analyzed.  

Our results clearly indicate that by applying new risk/return Ratio measures as the 
criterion for momentum portfolio construction, we are able to achieve better overall 
return and achieve optimal risk-return performance as measured by the independent 
performance measure. It seems that the R-Ratio and STARR Ratio are able to better 
capture the non-normality features of the data and transfer this into an optimal reward 
measured by the independent performance measure. These results also confirm the 
deficiency of the Sharpe Ratio as the effective risk/reward performance measure. In 
addition, by modeling the momentum profits as a GARCH-stable model, we are able to 
use the model for ex-ante forecasting of momentum strategy.4  
                                                 
4  The precise formulation of this model with respect to the length of the ranking and holding periods, 
specifics of applied risk/return ratio criterion, and the impact of the overlapping holding-period returns is 
the topic of our future research.        
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Table 3. Performance of risk/return Ratios on  and independent performance measure for 
the 6-month/6-month momentum strategy over the entire observation period. 
 

Risk/Return 

Ratio 

Final value of 

compound return 

α of stable 

distributions of 

momentum profits 

( )
( )t

t

XCVAR
XE

%99

 

Sharpe Ratio 0.3686 1.8637 0.0056 

R-Ratio (0.01,0.01) 0.2789 1.8641 0.0055 

R-Ratio(0.05,0.05) 0.3928 1.8618 0.0062 

R-Ratio(0.5,0.01) 0.2039 1.8568 0.0035 

R-Ratio (0.1,0.1) 0.4865 1.8853 0.0080 

R-Ratio (0.2,0.2) 0.6757 1.8794 0.0119 

R-Ratio (0.3,0.3) 0.6801 1.8696 0.0114 

R-Ratio (0.4,0.4) 0.7105 1.8640 0.012 

R-Ratio (0.5,0.4) 0.4477 1.8494 0.0070 

R-Ratio (0.4,0.5) 0.5373 1.8728 0.0087 

R-Ratio (0.4,0.3) 0.4892 1.8716 0.0080 

R-Ratio (0.2,0.4) 0.6783 1.8763 0.0116 

R-Ratio (0.25,0.4) 0.7177 1.8632 0.0123 

R-Ratio (0.3, 0.4) 0.8071 1.8519 0.0136 

R-Ratio (0.35,0.4) 0.6980 1.8642 0.0117 

R-Ratio (0.5, 0.5) 0.5585 1.8594 0.0088 

R-Ratio (0.6,0.6) 0.3106 1.8303 0.0046 

R-Ratio (0.7, 0.7) 0.3558 1.8228 0.0053 

R-Ratio (0.8,0.8) 0.2167 1.8010 0.0032 

R-Ratio (0.9,0.9) 0.3997 1.8198 0.0063 

STARR (95%) 0.5239 1.9272 0.0122 

STARR (99%) 0.5591 1.9130 0.0114 
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5. Conclusions 

In this study, we introduce risk/return Ratios using daily data as the criterion in 
constructing momentum portfolios. Proposed risk/return Ratios take into account risk 
component of the individual stock returns and their empirical non-normality 
characteristics. We evaluate and compare a wide range of risk/return Ratios and 
cumulative return benchmark using an independent performance measure based on the 
risk coherent measure of expected shortfall. Our results confirm that the R-Ratio and 
STARR Ratio capture well the features of the data and obtain the best performance in 
terms of cumulative return and value of independent performance measure while the 
Sharpe Ratio underperforms on the same measures. In addition, when applying the 
performance Ratios as the portfolio construction criterion, we demonstrate that the 
momentum profits obtained can be modeled in a GARCH-stable setting and such model 
can possibly be used for forecasting momentum profits in the holding period. This 
evidence is preliminary and requires further research.   

The implications of our results are twofold. First, we show that empirical facts 
and characteristics of the data require more complex risk/reward measures as has been to 
date in studies of momentum strategies. By applying performance Ratios on daily data 
and aligning the selection of stocks with their risk/return profile as the driver of a 
momentum strategy, we are able to obtain the same, if not larger and more persistent, 
momentum profits over the holding periods as compared to previous strategies based on 
cumulative return. Second, by utilizing a daily data in a GARCH-stable setting, we set 
the stage for postulating models which will help to gain further insights and provide a 
link to theoretical explanations of the momentum effect reported in the literature. 
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