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Abstract

In this paper we address the issue of modeling spot prices of different
European power markets. With the German, Nordic and Polish power
markets we consider three markets at a very different stage of liberaliza-
tion. After summarizing the stylized facts about spot electricity prices, we
provide a comparison of the considered markets in terms of price behav-
ior. We find that there are striking differences: while for the Nordic and
German power exchange prices show heavy tails, spikes, high volatility
and heteroscedasticity, returns of spot prices in the Polish market can be
modeled adequately by the Gaussian distribution. We introduce the stable
Paretian distribution to capture heavy tails, high kurtosis and asymme-
tries in electricity spot prices. We further providle ARMA/GARCH time
series models with Gaussian and stable innovations for modeling the be-
havior of the different markets.

AMS Classification: 62P20; 62-07; 91B70; 62M10

Keywords: Stable distribution; Electricity prices; GARCH model;
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1 Introduction

The last decade has witnessed radical changes in the structure of the
power markets in Europe. While the process of regulation and liberaliza-
tion in some countries are still subject to current debate and legislation,
market integration in the European Union requires to harmonize elec-
tricity markets. The first to start liberalizing their electricity markets in
Europe, were England and Wales in 1990 [1]. Thereby, power exchanges
play an increasingly important role, since electricity has transformed from
a primarily technical business, to one in which the product is treated in
much the same way as any other commodity [6]. However, for the mod-
eling of electricity prices and the valuation of electricity derivatives we
cannot simply rely on models developed for financial or other commod-
ity markets. Electricity is non-storable (at least not economically), which
causes demand and supply to be balanced on a knife-edge. Relatively
small changes in load or generation can cause large changes in price and



all in a matter of hours, if not minutes. In this respect there is no other
market like it. The special characteristics of electricity spot market prices
are the motivation for this paper. More precisely, we describe and com-
pare electricity spot markets’ data of Nord Pool, the European Energy
Exchange and Gielda Energii SA. Adequate models of price dynamics
capturing the main characteristics of electricity prices are a key issue,
since spot prices are one of the main factors not only for risk management
but also for strategic planning and decision support systems of the market
players. The paper is set up as follows. Section 2 summarizes the stylized
facts about spot electricity prices. In section 3 we compare the data by
using descriptive statistics. We find that the data exhibits high kurto-
sis and heavy tails and remove deterministic effects and outliers. Section
4 reviews the most important facts on the stable distribution and illus-
trates the superior fit of the distribution to spot prices in comparison to
the normal distribution. In section 5 we provide ARMA and GARCH
models with focus on the different performance of Gaussian and stable
Paretian processes for the innovations. We find evidence that the latter
also performs better in time series modeling of energy price data. Section
6 concludes and makes some suggestions for future work.

2 Particularities of electricity spot prices

In contrast to other financial markets the spot electricity market is
actually a day-ahead market. A classical spot market would not be pos-
sible, since the system operator needs advanced notice to verify that the
schedule is feasible and lies within transmission constraints. The spot is
normally an hourly contract with physical delivery and is not traded on
a continuous basis, but rather in the form of a conducted once per day
auction. It is the underlying of most electricity derivatives.

Several countries have deregulated their power markets in the last
decade. Among the considered countries the process started in the Nordic
region in 1995. The last Nordic country to fully open its power market
was Denmark in 2003. As a reply to EU Directive 96/92/EC Germany
liberalised its market in 1998. Still, this shift in regulation and the idea
of separating monopolistic and competitive activities is not completely
implemented. Access to the network is still an obstacle to free trade,
market concentration is high and state interventions persist for environ-
mental reasons or as special economic help for former Eastern Germany.
The latter results from the German reunification. This economic transi-
tion to capitalism is even more pronounced in Poland. The existence of
long-term power purchase agreements that account for 54% of electricity
purchases is the most prominent example. The liberalisation of the Polish
power market is still in progress. It started in 2003 for consumers with a
yearly purchase of over 10 GWh and will be finished in 2006 only. The
differences in market matureness and liberalisation are also reflected in
the establishment of the power exchanges. Nord Pool was established as
soon as 1993 while GE SA and EEX followed in 2000 and 2002.



2.1 Seasonality

Due to the realtime balancing needs of electricity and the resulting
strong dependency on cyclical demand electricity prices are very cyclical
itself. This seasonal component in electricity prices is more pronounced
than in any other commodity and several different seasonal patterns can
be found in electricity prices during the course of a day, week and year.
They mostly arise due to changing climate conditions, like temperature
and the number of daylight hours. In some countries also the supply side
shows seasonal variations in output. Hydro units, for example, are heavily
dependent on precipitation and snow melting, which varies from season to
season. Thus, the seasonal fluctuations in demand and supply translate
into the seasonal behavior of spot electricity prices.

Figure 1: EEX - Hourly spot prices

Euro/ MWh

This intraday pattern for the EEX can be seen in Figure 1 where the
intraday evolution of hourly spot prices for a sample of three days from
September 23 to September 25, 2002 at the EEX is plotted. Prices always
start rising between 6 a.m. and 8 a.m. and peak during midday. Starting
at about 6 p.m. to 8 p.m. prices start falling again. Similar effects can
be observed also for a weekly as well as an annual seasonal pattern.

2.2 Volatility

Another stylized fact about electricity spot prices is the unusually
high volatility of prices. The volatility seen in electricity prices is un-
precedented in financial and other commodity markets. It is not unusual
to observe annualized volatilities of more than 1000% on hourly spot. The
high volatility can be traced back to the storage and transmission prob-
lems and the need for markets to be balanced in real time. Inventories
cannot be used to smooth price fluctuations. Temporary demand and
supply imbalances in the market are difficult to correct in the short-term.
Therefore price movements in electricity markets are more extreme than
in other commodity markets.



2.3 Mean reversion

Besides seasonality, electricity spot prices are in general regarded to
be mean reverting [8]. Mean reversion is a critical difference between the
electricity and most financial markets. While interest rate markets ex-
hibit mean reversion in a weak form, the actual rate of reversion appears
to be related to economic cycles and is therefore slow. In electricity mar-
kets, however, the rate of reversion is very strong. The mean reverting
nature of electricity spot prices can be explained by the markets funda-
mentals. When there is an increase in demand generation assets with
higher marginal costs will enter the market on the supply side, pushing
prices higher. When demand returns to normal levels, these generations
assets with relatively high marginal costs will be turned off and prices will
fall. It is this rational operating policies for generation assets that support
the assumption of mean reversion of electricity spot prices. Thus, in the
short-run, mean-reversion results from the cyclical mean reverting nature
of demand as the determinants of demand, the weather and climate are
cyclical, correcting demand and supply imbalances.

2.4 Jumps and Spikes

In addition to mean reversion and strong seasonality on the annual,
weekly and daily level, spot electricity prices exhibit infrequent, but large
jumps. The spot price can increase tenfold during a single hour. These
spikes are the result of occasional outages or capacity limits of generation
or transmission assets or a sudden, unexpected and substantial change in
demand. Then demand reaches the limit of available capacity and the
electricity prices exhibit positive price spikes. When the relevant asset is
returned to service or demand recedes, prices rapidly revert to their pre-
vious levels. In periods where demand is reduced, electricity prices fall.
Due to the operating cost or constraints of generators, who cannot adjust
to the new demand level, also negative price spikes can occur. Spikes are
normally quite short-lived, and as soon as the weather phenomenon or
outage is over, prices go usually back to a normal level.

In the following section we will investigate three different markets in
terms of spot price behavior.

3 Descriptive statistics of the Data

Nord Pool? is one of the best functioning power exchanges we could
identify. A high market share compared to other non-mandatory ex-
changes, a high number of participants and a high variety of traded prod-
ucts can be observed. Moreover, it interconnects four different countries.

The European Energy Exchange (EEX) in Leipzig is less developed but
growing. Germany is the biggest producer of electricity in the European
Union and liberalised its market completely in 1998.

2Nord Pool operates in the Nordic region that consists of Denmark, Norway, Finland and
Sweden.



The least mature power exchange is Gielda Energii SA (GE SA). Mar-
ket activity is still low and market opening is below fifty percent. However,
electricity consumption in Poland is expected to grow by 2% a year during
the next ten years [5]. As Poland joined the European Union on May 1,
2004 an early investigation of the market also seems of high interest.

3.1 The data

A first comparison of the three data sets already indicates that there
are big differences between the three markets. Spot prices at EEX and
Nord Pool with their excess kurtosis are heavy tailed and skewed to the
right. The limited number of observations clearly reduces the significance
of results for GE SA but prices are obviously less ’extreme’ with low
kurtosis and a pretty symmetric shape.

Basic descriptive statistics of the observed data can be found in Table 1.

Table 1: Spot Markets Data

EEX NordPool GE SA
Unit Euro/ MWh NOK/ MWh PLN/ MWh
Mean 22.3338 132.7327 116.9176
Maximum 240.2600 633.3642 145.6596
Minimum 3.4700 21.2708 82.8708
Std. Dev. 11.5923 44.5758 15.81
Skewness 9.8952 1.271352 -0.2196
Kurtosis 167.3329 11.9688 2.0349
Observations 926 2101 152
Sample range | 19/06/2000 - | 30/12/1996 - | 01/07/2002
31/12/2002 30,/09,/2002 30,/11,/2002

To illustrate the data used for further modeling the histograms are
plotted in Figure 2.

The histograms bring out that at some days prices at Nord Pool and
EEX were extremely high. In a next step these outliers will be removed.

3.2 Preprocessing
3.2.1 Outlier detection

Some of the used methods and measurements to describe and further
analyze the data are very sensitive against outlying values, e.g. the au-
tocorrelation coefficient. One might also consider such outlying values as
market anomalies that cannot be captured in our analysis. When identify-
ing seasonal and weekly patterns outliers would also disturb these results.

To identify an outlying value we create one time series for each weekday
to take into account cyclic effects within one week. Every observation that
deviates more than three times the standard deviation from the mean is
considered to be an outlier. These observations are then replaced by the




Figure 2: Histograms of the raw data
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mean of the respective series. After one round we stop. This way we try
to balance the disturbing influence that outliers have on the analysis and
the disturbing influence induced by replacing extreme values.

NordPool During the sample range nine outliers are identified.
They all occur in winter, basically in January and February and break the
upper constraint. The highest spot market price was reached on February
5, 2001. It was 633.36 NOK/ MWh while the average price in February is
152.56 NOK/ MWh. Outliers do not occur on a special weekday. Three
blocks with two or more outliers within one week are observed. This gives
evidence to heteroscedasticity.

European Energy Exchange At the EEX outliers are also often
observed sequently. Two blocks are striking. One in mid-January 2001
and another in January 2002. The high load during the winter seasons
are one technical explanation. However, high daily average prices were
also paid in June, July and August 2002. This might be linked to the fact
that in Germany short term regulating power is not widely available as in
the hydro dominated Nordic system.

Gielda Energii SA Unalike, none of the daily spot prices as
traded at GE SA is an outlier. To illustrate this, Figure 3 shows the
daily spot prices at GE SA as well as the overall mean + three times the
sample standard deviation for all weekdays. However, the visual inspec-
tion of the graph gives evidence that there may be a structural break in
the data considering the last two months. The short observation time
makes such interpretations difficult.

Figure 3: Spot market prices, GE SA
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3.2.2 Seasonal fluctuations

Electricity prices highly depend on cyclic effects such as seasons, week-
days and hours. Obviously, temperature, daylight, or rainfall vary and



thereby show a cyclic behavior. We remove weekly and yearly effects
assuming constant patterns of the form

Tt = Mt - St * E¢

where x; is the observation in time, m; the current mean, s; the seasonal
effect and ¢, a random error. This allows us to ignore those fluctuations
when estimating the time series later on. The short sample range for the
Polish power exchange allows to identify weekly effects only.

Two examples should illustrate the need to take into account those
effects. Figure 4 shows the monthly average prices for Nord Pool as well
as the daily average prices for GE SA.

Figure 4: Average prices
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Shortcomings of this seasonal adjustments are that the fluctuations
within one period should not be too big and that the number of observa-
tions for each period (especially for each month) should not differ. It is
furthermore assumed that the errors e, are eliminated by calculating the
arithmetic mean.

Weekly pattern The weekly patterns are calculated for all three
spot markets. The weekly patterns of all three markets show strong week-
end effects. Prices are lower on Saturdays and Sundays what might be
little surprising. Tuesday is the day with the highest prices at EEX and
Nord Pool.

Yearly pattern The yearly pattern for Nord Pool is most reliable
by virtue of the wider sample range. The Nord Pool data comprises almost
six years whereas for EEX prices of two and a half years are considered.

Yearly patterns highly depend on the geographic location of the supply
area. In California, for example, air-conditioning has a significant effect
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Table 2 Syeckday
| Mon ‘ Tue | Wed | Thu | Fri | Sat ‘ Sun
Nord Pool | 0.965 | 0.958 | 0.963 | 0.967 | 0.991 | 1.063 | 1.094
EEX 0.895 | 0.845 | 0.856 | 0.850 | 0.921 | 1.166 | 1.467
GE SA 1.002 | 0.957 | 0.938 | 0.973 | 0.985 | 1.053 | 1.091

Table 3: S’momh
Jan Feb Mar Apr May Jun
Nord Pool | 0.7866 | 0.8903 | 0.9666 | 0.9902 | 1.1136 | 1.0813
EEX 0.8243 | 1.0220 | 1.0610 | 0.9531 | 1.1299 | 1.0345
Jul Aug Sep Oct Nov Dec
Nord Pool | 1.3566 | 1.1145 | 0.9996 | 1.0004 | 0.8866 | 0.8136
EEX 1.1616 | 1.0962 | 0.9223 | 1.0334 | 0.9162 | 0.8455

on electricity demand and as a result in prices. In such a region prices are
high in summer and low in winter.

In the Nordic region heating and light lead to high monthly prices in
January and December while prices decline during summer. Geography
matters not only for the demand side. Using natural resources such as
water also the electricity generation is affected.

At the EEX the resulting pattern is different. In April and September
the annual effect is positive. A longer range might smooth the shape of
this pattern as the we can see no obvious reason for these two little peaks.

3.2.3 Preprocessed data

The preprocessing consisted of outlier replacement and seasonal ad-
justment. The resulting time series are the starting point for further
modeling and estimations. They are plotted in Figures 5, 6 and 7 to-
gether with their first differences. The first differences are also referred to
as returns in the course of this study.?

Volatility at the EEX seems to increase over time. This might be the
result of an increasing market activity.

The returns of the Nord Pool data as well as the one of the EEX data
exhibit heteroscedasticity. That means that there are times of higher
volatility.

The visual inspection of the returns underlines the different behaviour
of the GE SA data in comparison to EEX and Nord Pool.

The properties of the preprocessed data is summarised in Table 4.

3Some authors, however, use a different notation and define the returns r; as the first
differences of the natural logarithm of the prices (In Py — In P;_1) multiplied with 100, where
P is the price at time ¢.

11
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Figure 5: EEX - Pre-processed data
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Figure 6: Nord Pool - Pre-processed data
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4 Fit of the Stable and Normal Distribu-
tions

Before applying time series modeling we compare the goodness of fit
on the spot market data of the normal and the stable distribution. The
stable Paretian or a-stable distribution is therefore introduced first.

4.1 Stable Paretian Distribution

The definition and basic properties of the stable Partian distribution
or a-stable distribution are given in this appendix. A definition of the
stable distribution can be found for example in [7].

12



Figure 7: Gielda Energii SA - Pre-processed data
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Table 4: Preprocessed data
EEX NordPool GE SA
Unit Euro/ MWh NOK/ MWh PLN/ MWh
Mean 20.5388 129.2929 116.5638
Maximum 54.1636 282.7303 151.6295
Minimum 2.4794 25.1947 80.6492
Std. Dev. 4.8698 38.1894 14.7094
Skewness 1.0789 0.9116 -0.1778
Kurtosis 8.3773 4.3111 2.2907
Observations 926 2101 152
Sample range | 19/06,/2000 30/12/1996 - | 01/07/2002
31/12/2002 30/09,/2002 30/11,/2002

4.1.1 Definition

Let X be a random wariable with stable distribution.

The following

theorem fully characterizes a random variable with stable distribution. Let
X be a random variable. The following conditions are equivalent:

1. Let a,b € Rt and X1, Xo be independent copies of the random
variable X . There exist ¢ > 0 and d € R such that

aX1+bXs L eX +d

where 2 denotes equality in distribution.

2. Letn be a positive integer, n > 2, and X1, Xo, ..

(1)

., Xp, be independent

copies of X. There exist ¢, € R* and d, € R such that

X1+X2++Xnicnx+dn (2)

13




3. X has a domain of attraction, i.e. there is a sequence of i.i.d. ran-
dom wvariables Y; with i € N, a real positive sequence d; with i € N
and a real sequence a; with i € N such that

1 & d
Y
where % denotes convergence in distribution.

4. The characteristic function of X admits the following form:

_ exp(—o®[t|*[1 — ifsign(t) tan 5] + iut), if a # 1,
E(e™) = ®3)
exp(—olt|[1+iB2sign(t) In|t]] + iut), ifa=1,

The most common ways to define a stable Paretian distribution are
definitions one and four.

4.1.2 Basic Properties

The parameters of a stable Paretian distribution describe the stability,
skewness, scale and drift. Referring to Definition 4 these characteristics
are represented by «, 3, o and p.

These parameters satisfy the following constraints:

e « is the index of stability (0 < a < 2)

For values of a lower than 2 the distribution is becoming more lep-
tocurtic in comparison to the Normal distribution. That means that
the peak of the density becomes higher and the tails heavier.

When a > 1, the location parameter p is the mean of the distribu-
tion.

e (3 is the skewness parameter (—1 < 3 < 1)

A stable distribution with 8 = u = 0 is called symmetric a-stable
(SaS). If 8 > 0, the distribution is skewed to the right. If 8 < 0,
the distribution is skewed to the left.

e o is the scale parameter (o > 0)

The scale parameter ¢ allows to write any stable random variable X
as X = 0Xo where X has a unit scale parameter and o and 3 are
the same for X and Xj.

o 1 is the drift (u € R).

To indicate the dependence of a stable random variable X from its
parameters, we write:

X ~ SOL(/37 o, ,LL)

14



The stable Paretian distribution is reduced to the Normal distribu-
tion if @ = 2 and 8 = 0. Obviously the stable distribution offers more
parameters to fit it to the actual data than e.g. the normal distribution.

The word stable is used because the shape is preserved (apart from
scale and shift) under addition such as in Equation 1. The stable char-
acteristic is also given under additional schemes (Maximum, minimum,
etc.).

4.2 Estimated parameters and performance mea-
sures

Having introduced the stable Paretian distribution we compare its
goodness of fit on the spot market data to the normal distribution. The
parameters of the a-stable distribution are calculated using a numerical
maximum likelihood method that was implemented by Stoyan Stoyanov
from BRAVO Group. For further reading on maximum likelihood estima-
tion we refer to [7]*.

We then compare the Kolmogorov distance (KD) and the Anderson-
Darling (ANS) statistic of both estimations. The latter measurement is
more sensitive against the goodness of fit in the tails while the Kolmogorov
distance compares the maximum deviation of the empirical sample distri-
bution from the estimated distribution function.

Original data First, we refer to the original daily spot market
prices that still incorporate the high third and fourth moments. Table 5
shows the estimates for both distributions on all three data sets.

Table 5: Estimates of unconditional distributions - Original data

PARAMETERS
@ " o 16
Nord Normal 2 150.4494 88.8184 0
Pool Stable | 1.5344 151.8318 31.0115  1.000
Normal 2 22.3067 11.5841 0
EEX Stable | 1.7630 22.1589  4.4283  1.000
ap 5o Normal 2 116.9176 15.8121 0

Stable | 2.0000 116.9166 11.1462 -0.2694

The skewness of the EEX and Nord Pool data is very high. The pa-
rameter 3 which ranges from -1 to 1 reaches its maximum value in both
cases. Again, the GE SA data differs. Very little and even negative skew-
ness is indicated by the parameter 8 which is relatively close to zero. A
behavior that might not be expected beforehand regarding the marginal
production costs of electricity depending on the energy source which usu-
ally results in price spikes during peak times.

4p. 91 fF
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Figure 8: EEX - Empirical and theoretical density functions
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Table 6 presents the Kolmogorov distance and the Anderson-Darling
statistic for the normal and the a-stable case.

Table 6: Goodness of fit of unconditional distributions - Original data
Kb ANS
Normal Stable | Normal Stable
Nord Pool | 0.1772  0.2532 | 4872.4  0.7264
EEX 0.1618 0.1041 | 0.3466  0.2419
GE SA 0.0662  0.068 | 0.1901 0.1896

The results show that the a-stable distribution describes the origi-
nal price data better according to these two measurements. Only in the
-untypical- case of GE SA with its low market acticity the normal distri-
bution does not perform worse.

Returns Preprocessed data Second, the two distributions are
fitted on the returns of the pre-processed data. The pre-processed data do
no longer contain extremely high values and periodic weekly and yearly
fluctuations are removed. Again, the estimated parameters, the Kol-
mogorov distances and the Anderson-Darling statistics are calculated.
The parameters can be found in Table 7. The resulting goodness of fit is
given in Table 8.

The parameter « is the smallest in the case of Nord Pool. This reflects
a high kurtosis. The skewness, indicated by parameter 3, is not very
distinct in all three cases. The reduced skewness mainly results from the
fact that now the returns are examined. The parameter § when fitting the
stable distribution on the preprocessed data is 1.000, 0.6417 and -0.2573
for Nord Pool, EEX and GE SA, respectively.

Comparing the goodness of fit, the a-stable distribution leads to better
results than the Normal distribution in all cases.

16



Figure 9: Empirical and theoretical density functions - NP
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Table 7: Estimates of unconditional distributions - Preprocessed data

PARAMETERS
@ I o I6]
Nord Normal | 2 0.0006 114745 0
Pool Stable | 1.3664 -0.5626 4.1468 -0.1110
Normal | 2 0.0023  4.5582 0
EEX Stable | 1.5966 0.0203  2.2675  0.0407
Normal 2 -0.3039 13.4711 0
GE SA  quable | 17110 -0.3827 82110  0.0571

4.3 Summary

This first quantitative description of the data reveals a high kurtosis
for the EEX and Nord Pool data. Additionally, the data is skewed to the
right and typical seasonal fluctuations can be observed. The GE SA data
is very limited and consequently results are not very significant. Especially
the low market activity® explains this contrasting behaviour.

Finally, the stable Paretian distribution was introduced and fitted on
the original data as well as on the first differences of the preprocessed data.
The comparison of this fit with the Normal case gives empirical evidence
that the data is more adequately described by the a-stable distribution.

In the next section some models are presented that allow to model the
conditional mean and in a next step the conditional variance of a process.

5The traded volume of about 1 TWh in 2002 corresponds to less than 1% of the electricity
consumption in Poland. Moreover, considerable market activity can be observed on the Polish
balancing market what reduces the interest in the spot market.
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Figure 10: Empirical and theoretical density functions
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Table 8: Goodness of fit of unconditional distributions - Preprocessed data
Kb ANS
Normal Stable | Normal  Stable
Nord Pool | 0.1439 0.0676 | 2362800.0 0.1344
EEX 0.0811 0.0186 26.574 0.0538
GE SA 0.0739  0.0499 0.1715 0.1069

5 Time Series Modeling

We now turn to time series modeling of the spot market data. Autore-
gressive Moving Average (ARMA) and Generalized Autoregressive Con-
ditional Heteroskedasticity (GARCH) models are fitted on the returns.
We look again at whether the residuals are more likely to be normally or
a-stable distributed.

5.1 ARMA modeling

Before we start modeling an Augmented Dickey-Fuller (ADF) test as
introduced by [3] is performed to test whether the data is stationary®.

According to the ADF test” the hypothesis of a unit root in the returns
is rejected at the 1% level for the raw and the adjusted returns (see Table
9).

Table 9: ADF test results
Nord Pool EEX GE SA

Daily prices -30.42 *¥** | 22 85 *¥* | _1(0.30 ***
Preprocessed data | -28.04 *** | -20.86 *** | -8.94 ***

MacKinnon critical values:  *** 1% level, ** 5% level, * 10%level

ARMA models allow to model a conditional mean. The mean of the
next period t + 1 depends on the information that is available up to the
current period ¢. For the AR and MA terms a lag structure of up to four
was considered. For a fixed AR order the best MA order was determined
according to the Akaike criterion.

We finally choose these three models:

e Nord Pool: ARMA(4,3) with AR(3) omitted
o EEX: ARMA(3,3) with MA(2) omitted
e GE SA: ARMA(3,4)

The estimation was done using EViews 3.1. The results are provided in
Table 10. The standard deviation of each parameter is given in parenthesis
below each value. Parameters fixed to zero are indicated by O.

6Stationary is again used in the sense of weakly stationary.
7“ADF test with lag 4, no trend and no intercept assumed.
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Table 10: ARMA estimation results

Nord Pool EEX GE SA
AR(1) 0.3264 0.8221 0.4604
(0.0421) (0.0520)  (0.0672)
AR(2) -0.5594 0.1872 -0.2583
(0.0432) (0.0469) (0.0723)
AR(3) 0 -0.0793  -0.6500
- (0.0430)  (0.0657)
AR(4) -0.1374 - -
(0.0238) — -
MA(1) -0.6144 -1.3538  -1.1443
(0.0420) (0.0415)  (0.0126)
MA(2) 0.5609 0 0.4940
(0.0343) - (0.0210)
MA(3) -0.1343 0.3566 0.5580
(0.0232) (0.0387)  (0.0097)
MA(4) - - -0.4578
- - (0.0334)

The ARMA estimation assumes the residuals to be normally distributed.
To test whether this assumption holds in the case of our data we fit the
Normal and the stable distribution on the residuals. The estimated pa-
rameters are shown in Table 11.

Table 11: Estimated parameters of the ARMA residuals

PARAMETERS
Q@ I o 16
Nord Normal | 2 0.0403 10.6195 0
Pool Stable | 1.5369 -0.0830 4.8379  0.0009
Normal | 2 0.001  3.9259 0
EEX Stable | 1.6158 -0.055  2.0156  0.0722
Normal 2 -0.7282  10.4568 0
GE SA qiable | 17575 -1.0312  6.4485  -0.6301

If the residuals were normally distributed p should be close to zero.
To see whether the Normal or the a-stable distribution perform better
their goodness of fit is compared. As before we calculate the Kolmogrov
distance and the Anderson-darling statistic (see Table 12).

Again, the normal assumption does not verify. The goodness of fit is
much better for the stable case. A visual inspection of the empirical and
theoretical distribution functions as in Figure 11 underlines these results.

As the autocorrelations (ACs) of the squared residuals are significant
for the Nord Pool and EEX data® we model conditional variances using a

8They exceed the approximate two standard error bounds computed as :t%. If the AC
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Table 12: Goodness of fit of ARMA residuals
Kb ANS

Normal Stable | Normal Stable

Nord Pool | 0.0952 0.0124 | 8920000 0.0531
EEX 0.0812  0.0249 | 56.0956 0.0769
GE SA 0.0736  0.0977 | 0.5319  0.2047

Figure 11: EEX - ARMA residuals

EEX - ARIMA residuals

o. T

GARCH model.

5.2 GARCH modeling

In the next step, the estimated ARMA models are extended. The
Nord Pool and EEX time series are reestimated including a GARCH(1,1)
term. GARCH models were first introduced by Engle [4] and generalized
by Bollerslev in [2].

Consequently, the estimated models are:

e Nord Pool: GARCH(1,1) extended by ARMA (4,3) with AR(3) omit-
ted

e EEX : GARCH(1,1) extended by ARMA(3,3) with MA(2) omitted

The estimation results can be found in Table 13°.

As an example we explicitly describe the resulting process for the EEX
case:

Xt =o0aXe1+ X o+ a3Xi_3+ Piei—1 + PBaci—3 + &

where ¢ follows a GARCH(1,1) process.

That means in our case that e; = oy -v; , with 02 = w+81e2_1+ 1071
where v, is i.i.d. N(0,1).

The GARCH terms are all signigicant. The assumption in the case of
our GARCH model is that the innovations v; are normally distributed. To

is within these bounds, it is not significantly different from zero at (approximately) the 5%
significance level.
9Standard deviation in parentheses.
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Table 13: GARCH estimation results

Nord Pool EEX
AR(1) 0.9449 0.8357
(0.0263) (0.0427)
AR(2) -0.0647 0.2010
(0.0375) (0.0532)
AR(3) 0 -0.1016
- (0.0417)
AR(4) 0.0680 -
(0.0227) —
MA(1) -1.0938 -1.3450
(0.0000) (0.0299)
MA(2) 0.0912 0
(0.0366) -
MA(3) 0.0115 0.3492
(0.0362) (0.0262)
w 21.1794 0.0736
(1.1827) (0.0444)
ARCH(1) 0.3660 0.0811
(0.0265) (0.0109)
GARCH(1) 0.4677 0.9261
(0.02196) (0.0091)

test whether this assumption holds the innovations have to be extracted
out of the residuals.

To do so, we need to set a starting value for 0% for which we choose
the variance of the residuals.

Equivalently to the ARMA residuals, we want to check whether the
assumption that the innovations are normally distributed is realistic. Ac-
cordingly, we fit the Normal distribution on the innovations as well as the
a-stable distribution. The results can be found in Table 14.

Table 14: Estimated parameters of the GARCH innovations

PARAMETERS
@ I o I}
Nord Normal 2 0.0079 1.0118 0
Pool Stable | 1.6143 -0.0163 0.5236 -0.0777
Normal | 2 0.0199 09900 0
EEX Stable | 1.7024 0.0153  0.5629 0.1565

The Kolmogorov distance and the Anderson-Darling statistic are then
calculated to compare the goodness of fit. These values are presented in
Table 15.

The resulting innovations v; show evidence that they are not normally
distributed but that they follow an a-stable distribution. The goodness
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Table 15: Goodness of fit of GARCH innovations
Kb ANS

Normal Stable | Normal Stable
Nord Pool‘ 0.0758 0.0355‘ 26500  0.0726

EEX 0.0665  0.034 | 22.4231 0.0719

of fit that is provided is significantly enhanced when fitting the stable
distribution in both cases. This is also underlined by the plot of the the-
oretical and empirical distribution functions that can be found in Figure
12. For this reason, the idea of a GARCH model assuming the innovations
to follow a stable Paretian distribution should be further considered.

Figure 12: GARCH residuals

Nord Pool - Garch innovations. EEX - GARCH innovations

(a) Nord Pool (b) EEX

5.3 Stable GARCH-M

As argued above the next step would be to estimate a GARCH model
with stable innovations. However, Eviews 3.1 is not able to estimate such
a model. For this reason we switch to Matlab 6.5 at this point to continue
with a more advanced model. We use a extended program partly based
on the UCSD GARCH toolbox for Matlab. For the normal as well as for
the stable case we will estimate a GARCH-in-mean (GARCH-M) model
and compare their performances in describing the data. The estimation
procedures used in Matlab and Eviews are different. For example the
applied Matlab toolbox includes linear constraints which are not included
in Eviews. The default estimation method in Eviews for GARCH models
is the Marquardt algorithm. It is a first derivative method, derivatives are
computed numerically. In the applied Matlab routine they are computed
analytically.
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5.3.1 Definition

The GARCH-M model is an extension of the GARCH model. The
general idea is that increases in the conditional variance are associated
with increases in the conditional mean. Accordingly, the mean equation
is extended.

The mean equation of a GARCH-M process is described by
Xe=cH+yflor) +er. (4)

The function f(o:) defines in which way the equation depends on the
conditional variance. Usually the standard deviation o, the variance o?
or the logarithm of the the variance In(o?) are used.

The variance equation does not change compared to a GARCH process
and is given by

Et = OtV (5)

where vy ~ N(0,1) and o7 evolves according to

o; =w+Z5i€fﬂ+Z¢j0t{j . (6)

In the stable case the normal assumption for the innovations v; is
changed to the assumption of a-stable distributed innovations.

5.3.2 Modeling

First, we fit a normal GARCH-M model. We chose f(o:) to be f(-) =
Ao;. This reflects the mean reverting property of electricity prices.

The resulting model is described by
X = Z i Xe—i + Z Bjct—j + Aot + et

where ¢; follows a normal GARCH(1,1) process as in Equations (5) and
(6).

The resulting parameters can be found in Table 16. Standard errors
of the parameters are in parenthesis.

TABLE 16

The results are very different compared to the previous estimations.
However, the extension to a GARCH-M model should not be the reason.
The reasons should be rather found in varying constraints and different
estimation methods. The parameter A is not significant in the EEX case.
The extension to a GARCH-M model does not enhance the explanatory
value of the model in this case. In the Nord Pool case all parameters are
significant on a 1% level. However, A is still rather close to zero.

The resulting innovations are assumed to be normally distributed. We
fit a stable distribution to these innovations. Table 17 shows the estimated
values for the a-stable parameters. We find that the parameters are very
different from the normal case and therefore we will estimated a stable
GARCH-M model.

Table 19 shows the estimated parameters for the stable GARCH-M
model. Standard errors in parenthesis should be handled with care. As
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Table 16: Normal GARCH-M
EEX Nord Pool

AR(1) | -0.79734 | 0.5291
(0.0243) | (0.0509)
AR(2) | -0.29063 | -0.70173
(0.1231) | (0.0179)
AR(3) | 0.25602 | 0.67242
(0.0690) | (0.0058)
MA(1) | 0.29802 | -0.68536
(0.0534) | (0.0350)
MA(2) | -0.31266 | 0.69499
(0.1732) | (0.0222)
MA(3) | -0.59516 | -0.77414
(0.0799) | (0.0310)

) -0.00039 | -0.011662
(0.0124) | (0.0042)
w 0.2701 15.792

(0.1129) | (2.0956)
ARCH(1) | 0.12502 | 0.35792
(0.0166) | (0.0461)
GARCH(1) | 0.87498 | 0.54518
(0.0047) | (0.0361)

Table 17: Estimated parameters

@ I} o 1
EEX 1.7336 | 0.17248 | 0.57571 | 0.021533

Nord Pool | 1.6189 | -0.084819 | 0.52233 | 0.02311

due to the infinite variance of the stable distributions the variance matrix
of the standard errors cannot be interpreted exactly the same way as in
the case of normally distributed innovations.

Using this approach the resulting model describes the data more ade-
quately. The Log-likelihood value is enhanced for the EEX and Nord Pool
data what can be seen in Table 18. Also the standard error of regression
is better in the EEX case. While it increases slightly for the Nord Pool
data.

This way we demonstrate that in the case of the investigated spot
prices the assumption of normally distributed innovations should be changed.
Furthermore, we present a model with a-stable distributed error terms
that leads to a more adequate description of our data and therefore is to
be preferred to the normal model. The research on estimation methods for
time series processes assuming the errors to be stable distributed should
certainly be continued. Also the performance of the a-stable assumption
against other distributions should be further examined.
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Table 18: Log likelihood and standard error of regression

EEX Nord Pool
Log likel. | Std. error | Log likel. | Std. error
normal M-GARCH -2499 3.9848 -7600 10.955
stable M-GARCH -2436 3.9802 -7368 11.187

Table 19: Stable GARCH-M
EEX Nord Pool

AR(1) | -0.78359 | -0.01374
(0.0377) | (0.1818)
AR(2) | -0.16465 | -0.16732
(0.1407) | (0.1862)
AR(3) | 0.29673 | 0.70763
(0.0602) | (0.0498)
MA(1) | 0.30244 | -0.041222
(0.0278) | (0.1178)
MA(2) | -0.43095 | 0.073051
(0.1679) | (0.1441)
MA(3) | -0.61794 | -0.78557
(0.0884) | (0.0384)

) -0.00777 | -0.013525
(0.0072) | (0.0154)
w 0.95771 | 20.646

(0.2275) | (3.2819)
ARCH(1) | 0.16175 | 0.43075
(0.0296) | (0.0508)
GARCH(1) | 0.80091 | 0.43127
(0.0135) | (0.0469)

5.4 Summary

The processes in this section allow to model conditional means and
variances. Again, GE SA behaves very differently. The data is not very
characteristic for electricity markets and higher market activity as well as
a larger sample size would be necessary to reasonably model this data.

Against the Nord Pool and EEX data exhibits heteroscedasticity and
the GARCH parameters are both significant. We had a special inter-
est in the assumption that error terms are normally distributed. This
empirical analysis clearly gives evidence that the a-stable distribution de-
scribes the resulting errors more adequately than the Normal distribution.
Consequently, we fitted a model assuming the innovations to be a-stable
distributed. Thereby we demonstrated that this model performs better in
comparison to the normal case.
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6 Conclusion and outlook

In this paper we addressed the issue of modeling spot prices of dif-
ferent European power markets. We found that there are quite striking
differences between the least mature power exchange Gielda Energii SA
in Poland and the German EEX or Nordic power exchange. While spot
prices of GE SA could be modeled by a Gaussian distribution, the Nordic
as well as the German data showed jumps and spikes as well as high
volatilities and heteroscedasticity. Introducing the stable Paretian dis-
tribution, we found that for the these markets it provided a superior fit
to the returns of the spot prices. The reason is that the alpha-stable
distribution is able to capture phenomena like heavy tails, high kurtosis
and asymmetries in electricity spot prices. Then we fitted a combined
ARMA/ GARCH model to describe the time series behaviors of the three
markets. Investigating the returns and error terms, we found that the
assumption of normally distributed error terms does not hold. Again, the
stable Paretian distribution gives a better fit also to the error terms, since
they exhibit skewness and heavy tails. In a last step a GARCH-M model
assuming a-stable innovations was estimated. The comparison with the
normal case clearly shows better log likelihood values what strengthens
the argument to relax the normal assumption. The results recommend the
use of heavy-tailed distributions for modeling electricity spot prices. In
future work the results should be compared to other approaches provided
by the literature like jump diffusion or regime switching models.

References

[1] Bericht and den Deutschen Bundestag iiber die energiewirtschaftlichen
und wettbewerblichen Wirkungen der Verbédndevereinbarungen. Tech-
nical report, Bundesministerium fiir Wirtschaft und Arbeit, August
2003.

[2] Tim Bollerslev. Generalized autoregressive conditional heteroskedas-
ticity. Journal of Econometrics, 31:307-327, 1986.

[3] David A. Dickey and Wayne A. Fuller. Distribution of the estimators
for autoregressive time series with a unit root. Journal of the American
Statistical Association, 74(366):427—-431, June 1979.

[4] Robert F. Engle. Autoregressive conditional heteroscedasticity with
estimates of the variance of united kingdom infaltion. Econometrica,
50(4):987-1007, July 1982.

[6] Finish Energy Industries Federation. European electricity market per-
spectives. Technical Report 11, Finergy, Helsinki, 2003.

[6] Dragana Pilipovic. Valuing and Managing Energy Derivatives.
McGraw Hill, New York, 1998.

[7] Svetlozar Rachev and Stefan Mittnik. Stable Paretian models in Fi-
nance. Series in Financial Economics and Quantitative Analysis. John
Wiley & Sons Ltd, 2000.

27



[8] Eduardo S. Schwartz. The stochastic behavior of commodity prices:
Implications for valuation and hedging. The Journal of Finance,
52(3):923-973, July 1997.

28



