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Abstract

In this paper we present a neural network approach for predicting a con-
ditional probability density function (pdf) for the daily Dow Jones Indus-
trial Average (DJIA) return. The conditional pdf is given bya user-defined
amount of random numbers. We fit a classical tempered stable distribu-
tion (CTS) to the output which allows us to define a stochasticprocess
and makes it possible to find a risk-neutral process. By investigating a
large backtest (1987-2009) we compare the forecasts of two different neu-
ral network models with the performance of the normal-ARMA-GARCH,
t-ARMA-GARCH, and CTS-ARMA-GARCH models.

Keywords: neural network, normal-ARMA-GARCH,t-ARMA-GARCH, CTS-
ARMA-GARCH, backtest, forecast, time series
JEL Classifications:
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1 Introduction

A key task of risk managers and asset managers is to estimate and forecast the
risk of an asset. One of the most common approaches for doing so is the math-
ematical modeling of a time series with the help of a generalized autoregressive
conditional heteroscedasticity (GARCH)-type model. After choosing the type of
model one has to employ statistical tests to assess if the historical data can be de-
scribed accurately by the selected model. The next step is toperform a backtest
(i.e., a simulation) using all information available untilday i to forecast the next
daily return. Since the real return for an asset is known, it is possible to compare
the prediction and the actual value and then decide if the model is sufficiently
reliable so as to be useful in predicting future returns. This test is necessary to ex-
clude trivial models which have enough parameters to learn acomplete historical
data sample but which are capable of real forecasting.

Many studies have shown that the assumption of a normal distribution for the
residuals of a GARCH-model is inappropirate because asset returns are gener-
ally skewed and have a nonzero kurtosis (see, among others, Menn and Rachev
(2005a) and Menn and Rachev (2005b)). An alternative to a Gaussian is the class
of tempered stable distributions (CTS) and will be the distribution used in this
paper. The definition of this type of distribution is given inRosinski (2007). The
CTS has been used for the residuals of a GARCH model in Kimet al.(2008a) and
Kim et al. (2008b).

In this paper, we propose five models and compare their performance using a large
backtest in which the daily returns of the Dow Jones Industrial Average (DJIA) are
predicted from 1987 until 2009. We employ as our benchmark a normal-ARMA-
GARCH and at-ARMA-GARCH model to define a process for the daily returns.
Additionally, we use a CTS-ARMA-GARCH model which has the advantage of
describing the skewness and fat tails that has been observedfor assets in numer-
ous studies. The remaining two models are two neural networkmodels which take
into account volatility clustering, another stylized factobserved about asset prices.

Originally, neural networks were only used for classification problems. In this
case, the network gets a data sample in which for an eventi the input vector−→xi

and the targetti are specified. The target can be a signal (ti = 1) or a background
(ti = −1). The network is then trained with these samples; that is, the network
can learn and get experience from examples and can afterwards be used to predict
the probability of an event being a signal under the condition that the input vector
is given as−→xi .
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Neural networks are especially useful when there is a large number of historical
events in which an input vector and a target variable are provided. They can ap-
proximate a universal function by an arbitrary grade of acuracy (see among others
Irie and Miyake (1988)) and therefore it is possible to learnnonlinear correlations
between input variables and target. Although neural networks were originally
used for classification problems, the problem with a time series of daily returns
is that we cannot define a return as a signal or a background because the returns
are continuous and cannot be described by a binary decision.In Weigend and Sri-
vastava (1995) and Feindt (2004), this problem was solved using several output
nodes. While in Weigend and Srivastava (1995) they used the output nodes to
model the probability density function (pdf), in Feindt (2004) they fit the cumula-
tive distribution function (cdf). With this improvement, it is possible to predict a
conditional probability density function for the return ofan asset given some in-
formation at dayi. The output of the neural network is given by random numbers
which are generated from the pdf. These random numbers are fitted by a CTS
distribution which is used to define a stochastic process. Ifone has defined the
process, a risk-neutral process can be found so that the model can be used within
the framework of arbitrage pricing theory Kimet al. (2008a).

The aim of this paper is to show how a neural network model can be used as an
alternative to GARCH models. In Section 2 we explain the details of the neural
network model and in Section 3 we explain the CTS distribution. How to construct
a reasonable backtest is provided in Section 4. In Section 5 we discuss the results
of our neural network model and compare them to the three ARMA-GARCH
models. Section 6 concludes the paper. A brief introductionto the NeuroBayes1

software that is used to generate our results is provided in the appendix.

2 The neural network model

The goal in designing a risk management methodology using a neural network
is to be able to predict the probability density function forthe daily DJIA return
f(ri|−→xi ). To do so requires several steps which we discuss here.

1Developed by Phi-TR© Physics Information Technologies GmbH
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2.1 Definition of the target

First, a target variable for the network must be defined. It iseasier for the
network to learn a distribution which does not have extreme outliers. Therefore,
the idea is not to use directly the return as a target variable. Instead, a transformed
return must be computed. That means if we would like to predict the return, we
would get the density of the transformed return from the neural network. Then a
back transformation from this target variable must be computed in order to obtain
the return again.

The transformation just normalizes the daily returns. Thisis done by dividing
the daily returns by volatility. So we have

r̃i = log

(

closei+1

closei

)
√

253

σi

(1)

whereσi is an estimate for the yearly volatility derived from the daily history of
the DJIA, including the close of dayi. Failure to normalize the returns means that
the neural network would also have to learn the volatility clustering, which is not
easy.

It is important to note thatσi only includes information up to dayi which means
that no information of the future is included. If we had included information of
the future in the volatility, we would have had to predict thedistribution of the
return and the distribution of the volatility. That means itis best to define a target
which has similar properties for each and every day but whichdoes not include
more than one variable which embodies future information.

The target is then defined by
ti = r̃i (2)

2.2 Definition of the input vector

In the second step the input vector from which the network canlearn the con-
ditional probability density function must be defined. We take into account for
the daily returns of the DJIA the open, high, low, and close, and from these data
we construct input variables for every trading day. For example at dayi complete
information of the past up to dayi can be used. That means the latest information
we use is given by the close, open, high, and low of dayi. From the time series up

4



to dayi we construct 51 input variables for the neural network. These input vari-
ables include many well-known technical indicators which can be found in Colby
(2002) and Achelis (2000). In addition, we also use variables we constructed (e.g.,
coefficients of wavelets or combined variables of technicalindicators).2 The input
variables for the neural network models computed by using different time series
algorithms of Phi-TR© are:

• 14 variables from wavelet analysis

• 12 variables constructed from combinations ofhighi, lowi, closei, openi,
highi−1, lowi−1, closei−1, openi−1

• 6 variables constructed fromclosei, ...,closei−k

• 6 different volatilities (using moving averages, exponential moving aver-
ages, Wilder’s volatility)

• 4 relative strength indices defined on different time intervals

• 4 different combinations of moving averages defined on different time in-
tervals

• 2 variables which include different stochastic oscillators

• 1 variable using Bollinger bands

• 1 variable constructed from the Moving Average Convergence/Divergence
indicator

• 1 variable using Williams %R indicator

2.3 How to forecast daily returns

After defining the input vector and the target, we can train our network and try
to predict future returns. We would like to have a predictionfor

ri = log

(

closei+1

closei

)

(3)

That means closei+1 is future information and closei is known. But we also know
high, low, and open of dayi. That means we can use all data in our sample up

2The variables are used in a commercial model at Phi-TR© and cannot be described in detail
due to their proprietary nature.
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to dayi to train the network and adjust its weights. Then we compute the input
vector−→xi . We insert this input vector into the network and get a forecast for ti
which is defined in (2).

The NeuroBayes software is able to predict random numbers ofti, so we have
to do the back transformation of (1) to get the density forri.

3 The classical tempered stable distribution

From the NeuroBayes software we get a prediction of the probability density
function of the daily DJIA return. But without defining a stochastic process, we
are not able to define a risk-neutral process. For this purpose we fit a classical
tempered stable distribution to the random numbers generated by NeuroBayes.
In this way, we can define a stochastic process. In Kimet al. (2009) the classi-
cal tempered stable distribution is reviewed including a proof that there exists an
equivalent martingale measure. Consequently, we are operating in the framework
of the arbitrage pricing theory (APT).

In this section we summarize what we need to understand in order to use the
classical tempered stable distribution. First, let’s provide the definition of a CTS:

An infinitely divisible random variable X is said to follow the classical
tempered stable distribution if its characteristic function is given by

ΦX(u; α, C1, C2, λ+, λ−, m) =

exp(ium + C1Γ(−α)((λ+ − iu)α − λα
+)

+ C2Γ(−α)((λ− + iu)α − λα
−))

whereC1, C2, λ+, λ− > 0, α ∈ (0, 2) and m ∈ R. A Lévy process
induced from the CTS distribution is called a classical tempered stable
process with parameters(C1, C2, λ+, λ−, m).

If

C = C1 = C2 = (Γ(2 − α)(λα−2

+ + λα−2

− ))−1 (4)

m = −Γ(1 − α)(C1λ
α−1

+ − C2λ
α−1

− ) (5)

is fulfilled thenX ∼ CTS(α, C1, C2, λ+, λ−, m) has zero mean and unit variance
and we callX thestandard CTS distributiondenoted by stdCTS(α̃, λ̃+, λ̃−) where
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we use the tilde to symbolize the parameters of the standard CTS distibution.

If we use the definition of the characteristic function in (4)we can define the
cumulantscn(X) := 1

in
dn

dun log(E[eiuX ]):

cn(X) =

{

m + Γ(1 − α)(C1λ
α−1

+ − C2λ
α−1

− ), for n = 1

Γ(n − α)(C1λ
α−n
+ + (−1)nC2λ

α−n
− ), for n = 2, 3, ...

(6)

We use NeuroBayes to obtain random numbers of the returns andnormalize them
by the transformation

r̃i =
ri − µi

σi

wherei denotes the day in the time series,µi is the mean of the random numbers,
andσi is the root mean square. We fit the stdCTS probability densityfunction
to the transformed random variablesri, so we have to estimate the parameters
(α̃, λ̃+, λ̃−). The fit is done using maximum likelihood maximization wherethe
pdf is computed by Fast Fourier Transformation (FFT).

After estimating the three parameters, we get the parameters of the non-normalized
CTS distribution using

α = α̃

C = σα̃C̃

λ+ =
λ̃+

σ

λ− =
λ̃−

σ
m = µ (7)

whereC̃ is defined in (4) using the parameters(α̃, λ̃+, λ̃−). These transformations
can easily be proven by using the definition of the cumulants in (6).

4 ARMA-GARCH models

In this section we describe the ARMA-GARCH models which we use in
the backtest to compare with the neural network models. In anARMA(p, q)-
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GARCH(r, s) model the log-returns are assumed to have the following dynamic:

yt =

p
∑

i=1

aiyt−i +

q
∑

i=1

biǫt−i + ǫtσt

whereyt = log(rt) and the residualsǫt are independent and identically distributed
and defined by

ǫ2

t = α0 +

r
∑

i=1

αiσ
2

t−iǫ
2

t−i +

s
∑

i=1

βiǫ
2

t−i

In thet-ARMA-GARCH model, the residuals follow a Studentt-distribution while
in the normal-ARMA-GARCH model they are assumed to be normally distributed.
In the case of the CTS-ARMA-GARCH model, we use the classicaltempered sta-
ble distribution which was discussed in Section 3.

When working with the CTS-ARMA-GARCH models, the first step is to fit the
normal-ARMA-GARCH model to the time series to obtain the parametersai, bi,
α0, αi, andβi. In the second step, we fit the standard classical tempered distribu-
tion to estimate the parametersα̃, λ̃+, andλ̃−. Maximum likelihood estimation is
used to obtain the fits.

5 How to define a reasonable backtest

In backtesting our model, we encounter the problem of forecasting a probabil-
ity density function for one event while having only one actual realization of that
event. The forecasted density is dependent on the input vector which we insert
in the neural network which again depends on dayi. That means that the density
itself is also dependent on dayi.

One generally accepted possibility to check the forecasteddensities is to count
exceedences of the return with respect to a specific quantile. In this case the most
common choices for the quantile are1% or 5%. The idea is then that in an in-
finitely large sample, the exceedences of the actual return with respect to the1%
quantile of the forecasted distribution should converge tothe actual probability
(i.e., to1%). But if we only looked at this quantile, we would fail to be using most
of the statistics. So it would be much more reasonable to lookat many quantiles.

When counting the exceedences what we basically do is forecast the density of
an event and measure its actual return of it. Then the cdf of the actual return
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which is defined in the interval[0, 1] can be computed. The pdf is dependent on
the event but the cdf for the actual returnszi should always be a uniform distribu-
tion independent of the chosen event; that is,

zi =

∫ r
(i)
actual

−∞

dr f(r|−→xi ) zi ∈ [0, 1] (8)

Therefore, it is reasonable to check if the cdf of the actual event results in a uni-
form distribution (if all quantiles of our forecasted distribution are correct). For a
further discussion, see Campbell (2006) and the referencestherein.

So far we explained how we can test if our density is correct, but we still have
not quantified how we really measure whether the cdf of the actual returns is uni-
form and how we can compare different models. For this purpose, we turn to
the Kolmogorov-Smirnov and the Anderson-Darling tests. The basic idea in both
tests is the same. One involves computing the theoretical cdf of the actual returns
and the empirical cdf and then takes the maximal distance between them. This
distance is a random variable on which one can decide if the model is accepted
or rejected. The Anderson-Darling test works in the same waybut one assigns a
higher weight to the correctness of the tails.

The same idea is improved upon in a methodology suggested by RiskMetrics (see
Zumbach (2006)). The methodology involves first introducing the variable

δ(z) = cdfemp.(z) − z z ∈ [0, 1] (9)

which is the difference between the empirical and the theoretical cdfs. If the model
is correct,δ(z) should converge to0 for all values ofz for an infinitely large sam-
ple. So one possibility to compare different models is to plot δ(z) with the better
model being the one with the smaller absolute values for the deltas.

The second suggestion by RiskMetrics is to construct a scalar from the computed
deltas which is a measure for the correctness of the entire cdf. For this purpose
the variabledp is introduced wherep is a parameter with which different weight
can be given to the tails

dp =

∫

1

0

dz | δp(z) | (10)

andδp is given by

δp(z) = δ(z)(p + 1)2p | z − 1

2
|p (11)

If p = 0, this is just the integral over all absolute values ofδ(z). The larger the
computedp, the greater the importance of describing the tails accurately.
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6 Results of the backtest and comparison with dif-
ferent GARCH models

In this section, we present the results of the backtest. First, we downloaded all
available data (1930-2009) for the time series for the Dow Jones Industrial Index
(DJIA) from www.finance.yahoo.com. For the forecast we chose the years from
1987 until 2009. Our selection of 1987 was because it included Black Monday
(October 19, 1987), the largest one day decline in the DJIA instock market his-
tory since 1929.

We use all data up to the last day in 1986 and train our neural network to ad-
just the parameters. We predict the pdf for the first return in1987 and compute
the cdf of the actual return as described in the previous section. The next step is to
predict the second return. In principle, we now have one moreevent in the histor-
ical data (the first return in 1987). That means we could trainthe network again
with the same data sample as in the first training plus this event. Since the compu-
tational effort would be quite large if we did a new training for each trading day,
we decided to compromise by doing a new training after one month has passed.
That means to predict January 1987, we use a training which includes data from
1930 until December 1986. After this month, we train the network again with data
from 1930 until the end of January 1987 and so on.

The backtest is done for the following five models:

1. normal-ARMA-GARCH: ARMA(1,1)-GARCH(1,1) model with standard nor-
mal distributed innovations

2. t-ARMA-GARCH: ARMA(1,1)-GARCH(1,1) model witht-distributed in-
novations

3. EWMA-CTS-nn: Neural network with exponentially weighted moving av-
erage volatility in the definition of the target and a fit of a CTS-distribution
to the output of the network

4. GARCH-CTS-nn: Neural network with historical volatility from normal-
ARMA-GARCH in the definition of the target and a fit of a CTS-distribution
to the output of the network

5. CTS-ARMA-GARCH: ARMA(1,1)-GARCH(1,1) model with classical tem-
pered stable distributed innovations
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In the GARCH-models, the computational costs are low and theestimation of the
parameters is done for every trading day.

In Section 5 we explained that the distribution of the cdf of the actual returns
should be a uniform distribution if the model were acceptable. Therefore, we
compare these plots for our different models. In Figure 1 we can see the results
for the normal-ARMA-GARCH model and thet-ARMA-GARCH model. As ex-
pected, the cdf of the tails of the actual returns is much heavier than that predicted
by the normal distribution. In particular, the large lossesare not described very
well. In the central area there are more events than described by the normal dis-
tribution.

In case of thet-ARMA-GARCH model, the tails (especially the right tails) seem
to be too fat while the central area is underestimated as observed for the normal-
ARMA-GARCH model. The missing property of both models is skewness. But
assets exhibit the typical property of being skewed to the left.

The results of the neural network models are presented in Figure 2. We can see
immediately that the distributions are quite uniform and that the central area and
the fat tails are described well. The asymmetry which can be seen in the plots of
the two GARCH models studied does not appear in the neural network models.

In case of the CTS-ARMA-GARCH model (see Figure 3), the cumulative dis-
tribution of the actual return is also quite uniform and the tails and the asymmetry
are described well.

The quantile-quantile-plots of the cdf distribution of theactual return are pre-
sented in the Figures 4, 5, and 6. Again we can see that the asymmetry is a very
important missing property of the normal-ARMA-GARCH and the t-ARMA-
GARCH model.

Next we compare theδp’s, defined in (11) to quantify the forecasting abilities
of the different models. Forp = 0, no special weight is given to the tails and
we end up with Figure 7. These are just the differences between the theoreti-
cal and empirical cdfs. Again we see that the normal-ARMA-GARCH and the
t-ARMA-GARCH models are comparable while both neural network models and
the CTS-ARMA-GARCH model are much better because the absolute differences
between the theoretical and the empirical cdf are much smaller.

To investigate the tail properties of the models, we follow RiskMetrics and plot
δp defined in (11) forp = 32 (see Figures 8 and 9). Again we see that the
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left tail of the normal-ARMA-GARCH model is not heavy enoughwhile the t-
ARMA-GARCH model has a left tail that is too heavy. For the left tail the CTS-
ARMA-GARCH model is the best one while the right tail is described best by the
GARCH-CTS-nn model.

In order to have a scalar which characterizes the complete model we followed
again RiskMetrics and computedd0 andd32 as defined in (10). The results are
reported in Table 1. Note thatd0 andd32 are both random numbers which in-
clude a statistical uncertainty. Again, we see that both neural network models and
the CTS-ARMA-GARCH model clearly outperform the normal-ARMA-GARCH
and thet-ARMA-GARCH models. The central area is similar in both neural net-
work models and the CTS-ARMA-GARCH model, while the tails are described
best in the GARCH-CTS-nn model and the CTS-ARMA-GARCH model. The
GARCH-CTS-nn model is even slightly better than the EWMA-CTS-nn model.

In order to see how well the models perform in different time intervals, we com-
putedd0 andd32 for every year. The results are summarized in Table 2 and Table
3. The normal-ARMA-GARCH model is the worst performing model for the es-
timation of the tails while thet-ARMA-GARCH does not perform well in the
central area. From this analysis we see that in general one should use advanced
neural network models as well as advanced ARMA-GARCH models(such as
CTS-ARMA-GARCH) to forecast the risk of an asset.

The markets in the years 2007 and 2008 were dominated by the financial crisis
popularly referred to as the subprime mortgage crisis. Therefore, we plot the
1% value-at-risk (VaR) measure of all models in Figures 10 to 14. Especially in
September and October 2008, the tail losses increased dramatically. The black
dots symbolize the VaR violations. Again we see that the tails in the normal-
ARMA-GARCH model are too thin while they are extremely fat inthet-ARMA-
GARCH model.

We summarize these violations in Table 4. The numbers of violations that are
bolded are consistent with the95% confidence interval of the Kupiec test (Kupiec
(1995)). In this test we would reject the normal-ARMA-GARCHmodel for both
years and both neural network models for the year 2007, whilewe would accept
thet-ARMA-GARCH and the CTS-ARMA-GARCH model.3

3A natural question to ask is why the neural network models were not able to outperform the
CTS-ARMA-GARCH model. To answer this question, one has to understand how the NeuroBayes
software is able to create a pdf without assuming an analytical function. In principle, NeuroBayes
reconstructs the cdf from a neural network with 20 output nodes. But using 20 nodes means that
it is necessary to approximate the cdf between the nodes, adding further uncertainty to the model.
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7 Conclusions

Forecasting time series is one of the most important tasks infinance. One of
the most common approaches for forecasting is the application of GARCH mod-
els in which one has to explicitly assume a probability density function for the
residuals explicitly. This is not necessary when employingneural network models
since the network can learn the probability density function based on historical
data. In order to make sure that modeling is with the APT framework, we fitted a
classical tempered stable distribution to the output of theneural network.

In a large backtest with a time span of more than 20 years, our results show that
our neural network model is able to forecast the time series of the DJIA with
amazing precision and that it can outperform at-ARMA-GARCH and a normal-
ARMA-GARCH model. Our findings suggest that the neural network produces a
similar prediction in the central area and in the tails, and the results are compara-
ble to the results of a CTS-ARMA-GARCH model.

The forecasting abilities of a model is dependent on the timehorizon which is
used for the backtest. There is no universal model which performs well over ev-
ery time period. When forecasting the risk of an asset one should use different
advanced neural network models as well as advanced ARMA-GARCH models
(such as CTS-ARMA-GARCH).
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A The NeuroBayes software

The NeuroBayes4 software is based on the idea of neural networks. We sum-
marize the most important ideas of the package:

• The input variables are fitted by robust splines to regularize statistical irrel-
evant ourliers. Here the user has to assign a so called preprocessing flag to
every input variable. The flag specifies the variable being discrete or con-
tinuous and the type of fit which is used. The fitted variables are used in the
neural network.

• NeuroBayes uses the variable which has the highest correlation to the target
and rotates the remaining variables in a way which ensures that this part of
the information is removed from the rest of the variables. Then it proceeds
stepwise with the rest of the variables. Without this algorithm the same
information would be used again and again which would have nostatistical
relevance and would lead to overtraining.

• The pdf is constructed from a neural network with 20 output nodes which
are used for a classification problem. This introduces a discretization error
but it has the advantage of using a nonparametrical pdf.

For further information, especially about the density construction, see Feindt (2004).

4Developed by Phi-TR© Physics Information Technologies GmbH
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Figure 1: Cumulative distribution function of the actual return using the normal-
ARMA-GARCH model and thet-ARMA-GARCH model.

This figure reports the cumulative distribution function ofthe actual returns of the
Dow Jones Industrial Average (1987-2009) using the forecasted probability density
function of a normal-ARMA-GARCH model (left) and at-ARMA-GARCH model
(right).
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Figure 2: Cumulative distribution function of the actual return using the models
EWMA-CTS-nn and GARCH-CTS-nn.

This figure reports the cumulative distribution function ofthe actual returns of the
Dow Jones Industrial Average (1987-2009) using the forecasted probability density
function of a neural network model with an exponentially weighted moving average
definition for the volatility (left) and a neural network model using a volatility computed
by a normal-ARMA-GARCH model (right). The outputs of the neural network models
are fitted by a classical tempered stable distribution.
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Figure 3: Cumulative distribution function of the actual return using the CTS-
ARMA-GARCH model.

This figure reports the cumulative distribution function ofthe actual returns of the
Dow Jones Industrial Average (1987-2009) using the forecasted probability density
function of a CTS-ARMA-GARCH model.
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Figure 4: Quantile-Quantile-plot of the cumulative distribution function of the
actual return using the normal-ARMA-GARCH and thet-ARMA-GARCH
model.

This figure reports the Quantile-Quantile-plot of the cumulative distribution func-
tion of the actual returns of the Dow Jones Industrial Average (1987-2009) using the
forecasted probability density function of a normal-ARMA-GARCH model (left) and a
t-ARMA-GARCH model (right).
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Figure 5: Quantile-Quantile-plot of the cumulative distribution function of the
actual return using the EWMA-CTS-nn and the GARCH-CTS-nn model.

This figure reports the Quantile-Quantile-plot of the cumulative distribution func-
tion of the actual returns of the Dow Jones Industrial Average (1987-2009) using the
forecasted probability density function of a neural network model with an exponentially
weighted moving average definition for the volatility (left) and a neural network model
using a volatility computed by a normal-ARMA-GARCH model (right). The outputs of
the neural network models are fitted by a classical tempered stable distribution.
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Figure 6: Quantile-Quantile-plot of the cumulative distribution function of the
actual return using the CTS-ARMA-GARCH model.

This figure reports the Quantile-Quantile-plot of the cumulative distribution func-
tion of the actual returns of the Dow Jones Industrial Average (1987-2009) using the
forecasted probability density function of a CTS-ARMA-GARCH model.
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Figure 7: Difference between empirical cdf and theoreticalcdf for all models
(giving no special weight to the tails).

This figure reports the difference between the theoretical and the empirical cumu-
lative distribution functions of the actual returns of the Dow Jones Industrial Average
(1987-2009) using a normal-ARMA-GARCH, at-ARMA-GARCH, a CTS-ARMA-
GARCH, and two neural network models. The EWMA-CTS-nn modeluses an
exponentially weighted moving average for the volatility while the GARCH-CTS-nn
model estimates the volatility using a normal-ARMA-GARCH model. The outputs of the
neural network models are fitted with a classical tempered stable distribution.
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Figure 8: Difference between empirical cdf and theoreticalcdf for all models
(giving more weight to the tails).

This figure reports the difference between the theoretical and the empirical cumu-
lative distribution functions of the actual returns of the Dow Jones Industrial Average
(1987-2009) using a normal-ARMA-GARCH, at-ARMA-GARCH, a CTS-ARMA-
GARCH, and two neural network models. A higher weight is given to the left tails.
The EWMA-CTS-nn model uses an exponentially weighted moving average for the
volatility while the GARCH-CTS-nn model estimates the volatility using a normal-
ARMA-GARCH model. The outputs of the neural network models are fitted with a
classical tempered stable distribution.

24



z
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

d
el

ta
_3

2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
t-ARMA-GARCH
normal-ARMA-GARCH
EWMA-CTS-nn
GARCH-CTS-nn
CTS-ARMA-GARCH

Figure 9: Difference between empirical cdf and theoreticalcdf for all models
(giving more weight to the tails).

This figure reports the difference between the theoretical and the empirical cumu-
lative distribution functions of the actual returns of the Dow Jones Industrial Average
(1987-2009) using a normal-ARMA-GARCH, at-ARMA-GARCH, a CTS-ARMA-
GARCH, and two neural network models. A higher weight is given to the right tails.
The EWMA-CTS-nn model uses an exponentially weighted moving average for the
volatility while the GARCH-CTS-nn model estimates the volatility using a normal-
ARMA-GARCH model. The outputs of the neural network models are fitted with a
classical tempered stable distribution.

25



date
2007 2007.5 2008 2008.5 2009

r

-0.1

-0.05

0

0.05

0.1

normal-ARMA-GARCH

Figure 10: Value at risk for the normal-ARMA-GARCH model.

This figure reports the estimation of value at risk for the return of the Dow Jones
Industrial Average (2007-2009) using a normal-ARMA-GARCHmodel. The black dots
symbolize the VaR violations.
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Figure 11: Value at risk for thet-ARMA-GARCH model.

This figure reports the estimation of value at risk for the return of the Dow Jones
Industrial Average (2007-2009) using at-ARMA-GARCH-model. The black dots
symbolize the VaR violations.
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Figure 12: Value at risk for the EWMA-CTS-nn model.

This figure reports the estimation of value at risk for the return of the Dow Jones
Industrial Average (2007-2009) employing a neural networkmodel using an exponen-
tially weighted moving average defition for the volatility.The outputs of the neural
network are fitted by a classical tempered stable distribution. The black dots symbolize
the VaR violations.
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Figure 13: Value at risk for the GARCH-CTS-nn model.

This figure reports the estimation of value at risk for the return of the Dow Jones
Industrial Average (2007-2009) using a neural network model with a volatility estimation
of a normal-ARMA-GARCH model. The outputs of the neural network are fitted by a
classical tempered stable distribution. The black dots symbolize the VaR violations.
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Figure 14: Value at risk for the CTS-ARMA-GARCH model.

This figure reports the estimation of value at risk for the return of the Dow Jones
Industrial Average (2007-2009) using a CTS-ARMA-GARCH-model. The black dots
symbolize the VaR violations.
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normal-
ARMA-
GARCH

t-ARMA-
GARCH

EWMA-
CTS-nn

GARCH-
CTS-nn

CTS-
ARMA-
GARCH

d0 0.0191 0.0300 0.0128 0.0125 0.0101
d32 0.0042 0.0071 0.0068 0.0036 0.0022

Table 1: Comparison of the performance of all models.

This table reports the performance of forecasting the return of the Dow Jones In-
dustrial Average (2007-2009) using a normal-ARMA-GARCH, at-ARMA-GARCH, a
CTS-ARMA-GARCH, and two neural network models. The EWMA-CTS-nn model uses
an exponentially weighted moving average for the volatility while the GARCH-CTS-nn
model estimates the volatility with a normal-ARMA-GARCH model. The outputs of the
neural network models are fitted with a classical tempered stable distribution. Ind0 the
forecasting abilities in the central area is tested whiled32 measures the forecasts of the
tails. The numbers of the best model are bolded.
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time span normal-
ARMA-
GARCH

t-ARMA-
GARCH

EWMA-
CTS-nn

GARCH-
CTS-nn

CTS-
ARMA-
GARCH

1986-1987 0.028216 0.034336 0.041713 0.040498 0.035234
1987-1988 0.022644 0.030760 0.040212 0.040457 0.028297
1988-1989 0.038154 0.048520 0.027009 0.018101 0.020179
1989-1990 0.038065 0.058315 0.061605 0.046072 0.026360
1990-1991 0.032053 0.036725 0.017759 0.014751 0.021959
1991-1992 0.045607 0.058237 0.017688 0.019752 0.016277
1992-1993 0.054623 0.066664 0.016332 0.025612 0.028545
1993-1994 0.059484 0.066465 0.026723 0.043880 0.032445
1994-1995 0.016809 0.032303 0.009143 0.015154 0.016853
1995-1996 0.043439 0.048629 0.052760 0.051693 0.026296
1996-1997 0.022529 0.026427 0.035784 0.043713 0.013983
1997-1998 0.018159 0.013125 0.025526 0.041042 0.022264
1998-1999 0.008944 0.014877 0.012507 0.027169 0.018269
1999-2000 0.016726 0.020272 0.018360 0.016350 0.026765
2000-2001 0.024323 0.026312 0.027842 0.018941 0.028146
2001-2002 0.022391 0.026269 0.017002 0.012332 0.026585
2002-2003 0.041965 0.040762 0.043573 0.035881 0.051660
2003-2004 0.025904 0.034855 0.030652 0.025739 0.013507
2004-2005 0.033400 0.042242 0.017000 0.016907 0.032626
2005-2006 0.018641 0.023739 0.014251 0.012594 0.029929
2006-2007 0.032855 0.038259 0.029995 0.022319 0.025798
2007-2008 0.033232 0.034138 0.031309 0.033099 0.024182
2008-2009 0.034417 0.034999 0.026763 0.025185 0.042336

Table 2: Comparison ofd0 for all models depending on the specific time interval.

This table reports the performance of forecasting the return of the Dow Jones In-
dustrial Average (2007-2009) using a normal-ARMA-GARCH, at-ARMA-GARCH, a
CTS-ARMA-GARCH, and two neural network models. The EWMA-CTS-nn model uses
an exponentially weighted moving average for the volatility while the GARCH-CTS-nn
model estimates the volatility with a normal-ARMA-GARCH model. The outputs of the
neural network models are fitted with a classical tempered stable distribution. Ind0 the
forecasting abilities in the central area is tested. The numbers of the best model for a
specific time interval are bolded.
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time span normal-
ARMA-
GARCH

t-ARMA-
GARCH

EWMA-
CTS-nn

GARCH-
CTS-nn

CTS-
ARMA-
GARCH

1986-1987 0.007395 0.006087 0.016646 0.015032 0.008058
1987-1988 0.013496 0.003051 0.015146 0.015595 0.009155
1988-1989 0.006286 0.007846 0.021596 0.011474 0.003703
1989-1990 0.004091 0.008857 0.026887 0.017027 0.002509
1990-1991 0.008461 0.006354 0.008743 0.005080 0.007492
1991-1992 0.003730 0.010248 0.008351 0.006005 0.002315
1992-1993 0.009839 0.006559 0.003821 0.005877 0.007939
1993-1994 0.008969 0.004607 0.003085 0.007423 0.007329
1994-1995 0.006938 0.005760 0.007138 0.007500 0.005153
1995-1996 0.005370 0.008457 0.003842 0.006845 0.005599
1996-1997 0.006429 0.006213 0.010610 0.007321 0.008976
1997-1998 0.011416 0.005615 0.013973 0.013154 0.006351
1998-1999 0.008785 0.004317 0.005139 0.007104 0.004926
1999-2000 0.006034 0.002746 0.005220 0.003298 0.004898
2000-2001 0.011860 0.006267 0.002795 0.005773 0.007767
2001-2002 0.004968 0.007266 0.003313 0.003556 0.003199
2002-2003 0.007920 0.002561 0.009977 0.008295 0.007073
2003-2004 0.005898 0.007637 0.002653 0.003421 0.002725
2004-2005 0.006470 0.006107 0.002867 0.003966 0.003668
2005-2006 0.004693 0.006181 0.003081 0.003736 0.003474
2006-2007 0.003923 0.006061 0.004354 0.004146 0.003134
2007-2008 0.012549 0.009672 0.010819 0.015471 0.008874
2008-2009 0.014378 0.006122 0.013072 0.013401 0.008955

Table 3: Comparison ofd32 for all models depending on the specific time interval.

This table reports the performance of forecasting the return of the Dow Jones In-
dustrial Average (2007-2009) using a normal-ARMA-GARCH, at-ARMA-GARCH, a
CTS-ARMA-GARCH, and two neural network models. The EWMA-CTS-nn model uses
an exponentially weighted moving average for the volatility while the GARCH-CTS-nn
model estimates the volatility with a normal-ARMA-GARCH model. The outputs of the
neural network models are fitted with a classical tempered stable distribution. Ind32 the
forecasting abilities of the tails is tested. The numbers ofthe best model for a specific
time interval are bolded.
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normal-
ARMA-
GARCH

t-ARMA-
GARCH

EWMA-
CTS-nn

GARCH-
CTS-nn

CTS-
ARMA-
GARCH

2007 7 4 8 10 4
2008 9 4 5 6 4

Table 4: Comparison of the value at risk violations in the years 2007 and 2008.

This table reports the value at Risk violations forecastingthe return of the Dow
Jones Industrial Average (2007-2009) using a normal-ARMA-GARCH, a t-ARMA-
GARCH, a CTS-ARMA-GARCH, and two neural network models. TheEWMA-CTS-nn
model uses an exponentially weighted moving average for thevolatility while the
GARCH-CTS-nn model estimates the volatility with a normal-ARMA-GARCH model.
The outputs of the neural network models are fitted with a classical tempered stable
distribution. The numbers of the models accepted by Kupiec’s test are bolded.
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