Using a neural network approach for backtesting methodesdgr
estimating and forecasting asset risk

Christian Scherrer

Department of Statistics, Econometrics and Mathematigadrice, School of Economics and
Business Engineering, University of Karlsruhe and KIT

Kollegium am Schloss, Bau Il, 20.12, R210, Postfach 69806028, Karlsruhe, Germany
E-mail: scherrer@statistik.uni-karlsruhe.de, Phone-#29-608-2042

Svetlozar T. Rachev

Chair-Professor, Chair of Statistics, Econometrics andhlmatical Finance, School of Eco-
nomics and Business Engineering, University of Karlsrui l&I T, and Department of Statistics
and Applied Probability, University of California, Santa®ara, and Chief-Scientist, FinAnalyt-
ica INC

Kollegium am Schloss, Bau Il, 20.12, R210, Postfach 6980628, Karlsruhe, Germany
E-mail: rachev@statistik.uni-karlsruhe.de, Phone: ¥29-608-7535

Young Shin Kim

Department of Statistics, Econometrics and Mathematigarfee, School of Economics and
Business Engineering, University of Karlsruhe and KIT

Kollegium am Schloss, Bau Il, 20.12, R210, Postfach 69806028, Karlsruhe, Germany
E-mail: aaron.kim@statistik.uni-karlsruhe.de, Phord®-0721-608-6727

Michael Feindt

Professor, Chair of Experimentelle Teilchenphysik, Ursity of Karlsruhe and KIT and Chief-
Scientist, Phi-T GmbH

E-mail: Michael.Feindt@physik.uni-karlsruhe.de, Phor#9-721-608-7378

Frank Fabozzi

Frank J. Fabozzi, Professor in the Practice of Finance, Selh®ol of Management
New Haven, CT USA

E-mail: frank.fabozzi@yale.edu, Phone +1-203-432-2421

Scherrer’s research was supported by Phi-T GmbH. Rach&sfglig acknowledges research support by grants from Divi-
sion of Mathematical, Life and Physical Sciences, Collegestters and Science, University of California, Santa Basbh

the Deutschen Forschungsgemeinschaft and the Deutscheeflischer Austausch Dienst.



Abstract

In this paper we present a neural network approach for pgredia con-
ditional probability density function (pdf) for the dailydw Jones Indus-
trial Average (DJIA) return. The conditional pdf is given ayuser-defined
amount of random numbers. We fit a classical tempered stastebd-
tion (CTS) to the output which allows us to define a stochagtmcess
and makes it possible to find a risk-neutral process. By tigating a
large backtest (1987-2009) we compare the forecasts of iffeyaht neu-
ral network models with the performance of the normal-ARMGARCH,
t-ARMA-GARCH, and CTS-ARMA-GARCH models.

Keywords: neural network, normal-ARMA-GARCH;ARMA-GARCH, CTS-
ARMA-GARCH, backtest, forecast, time series
JEL Classifications:



1 Introduction

A key task of risk managers and asset managers is to estimafer@cast the
risk of an asset. One of the most common approaches for doimgthe math-
ematical modeling of a time series with the help of a genssdliautoregressive
conditional heteroscedasticity (GARCH)-type model. Afthoosing the type of
model one has to employ statistical tests to assess if therical data can be de-
scribed accurately by the selected model. The next stepgserform a backtest
(i.e., a simulation) using all information available urddy: to forecast the next
daily return. Since the real return for an asset is knowrs, jitassible to compare
the prediction and the actual value and then decide if theemigdsufficiently
reliable so as to be useful in predicting future returnssTést is necessary to ex-
clude trivial models which have enough parameters to le@ongplete historical
data sample but which are capable of real forecasting.

Many studies have shown that the assumption of a normalldistyn for the
residuals of a GARCH-model is inappropirate because assatns are gener-
ally skewed and have a nonzero kurtosis (see, among othersn ind Rachev
(2005a) and Menn and Rachev (2005b)). An alternative to ss§&an is the class
of tempered stable distributions (CTS) and will be the dstion used in this
paper. The definition of this type of distribution is givenRsinski (2007). The
CTS has been used for the residuals of a GARCH model inétial. (2008a) and
Kim et al. (2008b).

In this paper, we propose five models and compare their padoce using a large
backtest in which the daily returns of the Dow Jones Indak#wverage (DJIA) are
predicted from 1987 until 2009. We employ as our benchmarntrenal-ARMA.-
GARCH and a-ARMA-GARCH model to define a process for the daily returns.
Additionally, we use a CTS-ARMA-GARCH model which has thevadtage of
describing the skewness and fat tails that has been obsfnvadsets in numer-
ous studies. The remaining two models are two neural netmaoidkels which take
into account volatility clustering, another stylized fabiserved about asset prices.

Originally, neural networks were only used for classificatproblems. In this
case, the network gets a data sample in which for an evira input vectorz;
and the target; are specified. The target can be a signaH 1) or a background
(t; = —1). The network is then trained with these samples; that & network
can learn and get experience from examples and can afteswandsed to predict
the probability of an event being a signal under the condlitih@t the input vector
is given asz; .



Neural networks are especially useful when there is a laogeber of historical
events in which an input vector and a target variable areigeav They can ap-
proximate a universal function by an arbitrary grade of acui(see among others
Irie and Miyake (1988)) and therefore it is possible to leaonlinear correlations
between input variables and target. Although neural nétsvarere originally
used for classification problems, the problem with a timéeseof daily returns
is that we cannot define a return as a signal or a backgrouraibec¢he returns
are continuous and cannot be described by a binary decisideigend and Sri-
vastava (1995) and Feindt (2004), this problem was solvedjuseveral output
nodes. While in Weigend and Srivastava (1995) they used dlygub nodes to
model the probability density function (pdf), in Feindt () they fit the cumula-
tive distribution function (cdf). With this improvement,is possible to predict a
conditional probability density function for the return afi asset given some in-
formation at day. The output of the neural network is given by random numbers
which are generated from the pdf. These random numbers teé fiy a CTS
distribution which is used to define a stochastic procesgnéf has defined the
process, a risk-neutral process can be found so that thel mendée used within
the framework of arbitrage pricing theory Kiet al. (2008a).

The aim of this paper is to show how a neural network model @aunded as an
alternative to GARCH models. In Section 2 we explain the itketd the neural
network model and in Section 3 we explain the CTS distributléow to construct
a reasonable backtest is provided in Section 4. In Sectioe 8iscuss the results
of our neural network model and compare them to the three ARBAMRCH
models. Section 6 concludes the paper. A brief introdudticthe NeuroBayés
software that is used to generate our results is providdueimppendix.

2 The neural network model

The goal in designing a risk management methodology usirgieahnetwork
is to be able to predict the probability density function floe daily DJIA return
f(rs|@;). To do so requires several steps which we discuss here.
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2.1 Definition of the target

First, a target variable for the network must be defined. Easier for the
network to learn a distribution which does not have extrenméieys. Therefore,
the idea is not to use directly the return as a target varidbdtead, a transformed
return must be computed. That means if we would like to ptddie return, we
would get the density of the transformed return from the aleoetwork. Then a
back transformation from this target variable must be caegbin order to obtain
the return again.

The transformation just normalizes the daily returns. Tiidone by dividing
the daily returns by volatility. So we have

_ (close+1) V253
log

T =
close

(1)

O

whereo; is an estimate for the yearly volatility derived from thelgdiistory of
the DJIA, including the close of day Failure to normalize the returns means that
the neural network would also have to learn the volatilitystéring, which is not
easy.

It is important to note that; only includes information up to daywhich means
that no information of the future is included. If we had irsdd information of
the future in the volatility, we would have had to predict thistribution of the
return and the distribution of the volatility. That meansibest to define a target
which has similar properties for each and every day but whmés not include
more than one variable which embodies future information.

The target is then defined by

R

S
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(2)

2.2 Definition of the input vector

In the second step the input vector from which the networkleam the con-
ditional probability density function must be defined. Wketanto account for
the daily returns of the DJIA the open, high, low, and closel #iom these data
we construct input variables for every trading day. For exi@nat day; complete
information of the past up to daycan be used. That means the latest information
we use is given by the close, open, high, and low of ddyrom the time series up



to day: we construct 51 input variables for the neural network. €heput vari-
ables include many well-known technical indicators whiah be found in Colby
(2002) and Achelis (2000). In addition, we also use varsble constructed (e.g.,
coefficients of wavelets or combined variables of techriidicators)? The input
variables for the neural network models computed by usiffgrént time series
algorithms of Phi-® are:

e 14 variables from wavelet analysis

e 12 variables constructed from combinationshofh;, low;, close;, open;,
high;_1, low;_1, close;_1, open;_4

e 6 variables constructed frondose;, ..., close;_;,

¢ 6 different volatilities (using moving averages, expomnioving aver-
ages, Wilder’s volatility)

¢ 4 relative strength indices defined on different time indésv

¢ 4 different combinations of moving averages defined on dffetime in-
tervals

e 2 variables which include different stochastic oscillator
¢ 1 variable using Bollinger bands

e 1 variable constructed from the Moving Average Convergidigergence
indicator

e 1 variable using Williams %R indicator

2.3 How to forecast daily returns

After defining the input vector and the target, we can trainnmiwork and try
to predict future returns. We would like to have a predicfian

= log (close+1 ) 3)

close

That means close, is future information and closés known. But we also know
high, low, and open of day. That means we can use all data in our sample up

2The variables are used in a commercial model at Fhiahd cannot be described in detail
due to their proprietary nature.



to day: to train the network and adjust its weights. Then we compugeriput
vectorz;. We insert this input vector into the network and get a fosedar ¢;
which is defined in (2).

The NeuroBayes software is able to predict random numbets eb we have
to do the back transformation of (1) to get the densityrfor

3 The classical tempered stable distribution

From the NeuroBayes software we get a prediction of the foiihadensity
function of the daily DJIA return. But without defining a shastic process, we
are not able to define a risk-neutral process. For this perpasfit a classical
tempered stable distribution to the random numbers gesteiay NeuroBayes.
In this way, we can define a stochastic process. In Ktrmal. (2009) the classi-
cal tempered stable distribution is reviewed including @opthat there exists an
equivalent martingale measure. Consequently, we are topgra the framework
of the arbitrage pricing theory (APT).

In this section we summarize what we need to understand ierdoduse the
classical tempered stable distribution. First, let’s jewvthe definition of a CTS:

An infinitely divisible random variable X is said to followethlassical
tempered stable distribution if its characteristic furoetiis given by

(PX(U;O[,Cl,CQ,)\_i_’)\_’m) —
+ Col'(—a) (A= 4+ ) — \2))

whereCy, Co, A, A > 0, o € (0,2) andm € R. A Lévy process
induced from the CTS distribution is called a classical tered stable
process with paramete(€’;, Cy, Ay, A_, m).

C = Ci=C=T2-a)A?+127%))™" 4)
m = —F(l - Oé)(Cl)\i_l - Cg)\g_l) (5)

is fulfilled thenX ~ CTS(a, Cy, Cz, A, A_, m) has zero mean and unit variance
and we callX thestandard CTS distributiodenoted by stdCT&, A, A_) where



we use the tilde to symbolize the parameters of the standB&ldstibution.

If we use the definition of the characteristic function in (¢ can define the
cumulants:, (X) := &< log(E[e™X)):

i du™

0 (X) = {m ST = ) (AT — oA, forn =1 .

T(n— a)(CIAS™ + (—=1)"CoA>™), forn =23, ..

We use NeuroBayes to obtain random numbers of the returns@nthlize them
by the transformation

- T

T, =

a;

wherei denotes the day in the time serigsjs the mean of the random numbers,
ando; is the root mean square. We fit the stdCTS probability derfaitgtion
to the transformed random variables so we have to estimate the parameters
(&, Ay, A\_). The fit is done using maximum likelihood maximization whére
pdf is computed by Fast Fourier Transformation (FFT).

After estimating the three parameters, we get the parametére non-normalized
CTS distribution using

a =
C—q~C~'
)\+:)\—+
[y
o= A~
o
m = pu (7)

whereC is defined in (4) using the parametéfis At 5\_). These transformations
can easily be proven by using the definition of the cumulan{s).

4 ARMA-GARCH models

In this section we describe the ARMA-GARCH models which we urs
the backtest to compare with the neural network models. 1ARMA(p, q)-



GARCH(r, s) model the log-returns are assumed to have thafimlg dynamic:

P q
Y = Z a;iYi—i + Z bi€r—; + €0
i=1 i=1

wherey, = log(r;) and the residuals are independent and identically distributed

and defined by
€ = ap+ Z oy e+ Z Bie;
=1 =1

In thet-ARMA-GARCH model, the residuals follow a Studerdistribution while
in the normal-ARMA-GARCH model they are assumed to be nolsnaistributed.
In the case of the CTS-ARMA-GARCH model, we use the classerapered sta-
ble distribution which was discussed in Section 3.

When working with the CTS-ARMA-GARCH models, the first stepto fit the
normal-ARMA-GARCH model to the time series to obtain thegrmaeters:;, b;,
o, o, andg;. In the second step, we fit the standard classical tempesétibdi
tion to estimate the parametets),, and\_. Maximum likelihood estimation is
used to obtain the fits.

5 How to define a reasonable backtest

In backtesting our model, we encounter the problem of fateg a probabil-
ity density function for one event while having only one attxealization of that
event. The forecasted density is dependent on the inpubvedtich we insert
in the neural network which again depends on dajhat means that the density
itself is also dependent on day

One generally accepted possibility to check the forecagestsities is to count
exceedences of the return with respect to a specific quahtitais case the most
common choices for the quantile ar& or 5%. The idea is then that in an in-
finitely large sample, the exceedences of the actual retitmrespect to the %
quantile of the forecasted distribution should convergéhtoactual probability
(i.e.,t01%). But if we only looked at this quantile, we would fail to beig most
of the statistics. So it would be much more reasonable to &okany quantiles.

When counting the exceedences what we basically do is ferd¢ica density of
an event and measure its actual return of it. Then the cdfefatiual return



which is defined in the interval, 1] can be computed. The pdf is dependent on
the event but the cdf for the actual retueshould always be a uniform distribu-
tion independent of the chosen event; that is,

@)
Tactual
% :/ dr f(r|z;) =z €10,1] (8)
Therefore, it is reasonable to check if the cdf of the actuaheresults in a uni-
form distribution (if all quantiles of our forecasted dibtrtion are correct). For a
further discussion, see Campbell (2006) and the refergheesin.

So far we explained how we can test if our density is correat,we still have
not quantified how we really measure whether the cdf of theshceturns is uni-
form and how we can compare different models. For this pwpe® turn to
the Kolmogorov-Smirnov and the Anderson-Darling testse Bhsic idea in both
tests is the same. One involves computing the theoreti¢afdtie actual returns
and the empirical cdf and then takes the maximal distancedsgt them. This
distance is a random variable on which one can decide if theéetis accepted
or rejected. The Anderson-Darling test works in the same ludyone assigns a
higher weight to the correctness of the tails.

The same idea is improved upon in a methodology suggestedskiyiBtrics (see
Zumbach (2006)). The methodology involves first introdgdime variable

3(z) = cdfep (2) — 2 z € [0,1] 9)

which is the difference between the empirical and the thealecdfs. If the model
is correct,d(z) should converge t0 for all values of: for an infinitely large sam-
ple. So one possibility to compare different models is td ple) with the better
model being the one with the smaller absolute values for éhasl

The second suggestion by RiskMetrics is to construct a sfrala the computed
deltas which is a measure for the correctness of the entfreFa this purpose
the variabled, is introduced where is a parameter with which different weight
can be given to the tails

1
dy= [ dz15() (10)
0
andd, is given by
1
() = 6(2)(p+1)2" | 2 = 5 (11)

If p = 0, this is just the integral over all absolute valuesiof). The larger the
computedy, the greater the importance of describing the tails acelyat

9



6 Results of the backtest and comparison with dif-
ferent GARCH models

In this section, we present the results of the backtestt, Fiessdownloaded all
available data (1930-2009) for the time series for the Domeddndustrial Index
(DJIA) from www.finance.yahoo.com. For the forecast we ehtbe years from
1987 until 2009. Our selection of 1987 was because it induglack Monday
(October 19, 1987), the largest one day decline in the DJIgtack market his-
tory since 1929.

We use all data up to the last day in 1986 and train our neutalank to ad-
just the parameters. We predict the pdf for the first returbt987 and compute
the cdf of the actual return as described in the previoussecthe next step is to
predict the second return. In principle, we now have one raveat in the histor-
ical data (the first return in 1987). That means we could tilaénnetwork again
with the same data sample as in the first training plus thiste@nce the compu-
tational effort would be quite large if we did a new trainirgg £ach trading day,
we decided to compromise by doing a new training after onetmbas passed.
That means to predict January 1987, we use a training whatbdes data from
1930 until December 1986. After this month, we train the reknagain with data
from 1930 until the end of January 1987 and so on.

The backtest is done for the following five models:

1. normal-ARMA-GARCHARMA(1,1)-GARCH(1,1) model with standard nor-
mal distributed innovations

2. t-ARMA-GARCH ARMA(1,1)-GARCH(1,1) model witht-distributed in-
novations

3. EWMA-CTS-nnNeural network with exponentially weighted moving av-
erage volatility in the definition of the target and a fit of a%distribution
to the output of the network

4. GARCH-CTS-nn Neural network with historical volatility from normal-
ARMA-GARCH in the definition of the target and a fit of a CT SAdlilsution
to the output of the network

5. CTS-ARMA-GARCHARMA(1,1)-GARCHY(1,1) model with classical tem-
pered stable distributed innovations

10



In the GARCH-models, the computational costs are low ane@¢tienation of the
parameters is done for every trading day.

In Section 5 we explained that the distribution of the cdf led actual returns
should be a uniform distribution if the model were accemabTlherefore, we
compare these plots for our different models. In Figure 1 ame see the results
for the normal-ARMA-GARCH model and tteARMA-GARCH model. As ex-

pected, the cdf of the tails of the actual returns is muchiee#van that predicted
by the normal distribution. In particular, the large losaes not described very
well. In the central area there are more events than desichipéhe normal dis-
tribution.

In case of the-ARMA-GARCH model, the tails (especially the right tailgesn
to be too fat while the central area is underestimated asws$éor the normal-
ARMA-GARCH model. The missing property of both models iswskess. But
assets exhibit the typical property of being skewed to tfie le

The results of the neural network models are presented ur&ig. We can see
immediately that the distributions are quite uniform anat tihe central area and
the fat tails are described well. The asymmetry which carelea & the plots of

the two GARCH models studied does not appear in the neunabmnkeimodels.

In case of the CTS-ARMA-GARCH model (see Figure 3), the cuativé dis-
tribution of the actual return is also quite uniform and thiéstand the asymmetry
are described well.

The quantile-quantile-plots of the cdf distribution of thetual return are pre-
sented in the Figures 4, 5, and 6. Again we can see that thenaslyynis a very
important missing property of the normal-ARMA-GARCH anc: thARMA-
GARCH model.

Next we compare thé,’s, defined in (11) to quantify the forecasting abilities
of the different models. Fop = 0, no special weight is given to the tails and
we end up with Figure 7. These are just the differences betwlee theoreti-
cal and empirical cdfs. Again we see that the normal-ARMAR&ZH and the
t-ARMA-GARCH models are comparable while both neural netwondels and
the CTS-ARMA-GARCH model are much better because the atesdifierences
between the theoretical and the empirical cdf are much small

To investigate the tail properties of the models, we folloiskRIletrics and plot
0, defined in (11) forp = 32 (see Figures 8 and 9). Again we see that the
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left tail of the normal-ARMA-GARCH model is not heavy enougihnile thet-
ARMA-GARCH model has a left tail that is too heavy. For thd kil the CTS-
ARMA-GARCH model is the best one while the right tail is deked best by the
GARCH-CTS-nn model.

In order to have a scalar which characterizes the completdehwe followed
again RiskMetrics and computeld andds; as defined in (10). The results are
reported in Table 1. Note thak andds, are both random numbers which in-
clude a statistical uncertainty. Again, we see that bothalewetwork models and
the CTS-ARMA-GARCH model clearly outperform the normal-lNR-GARCH
and thet-ARMA-GARCH models. The central area is similar in both reduret-
work models and the CTS-ARMA-GARCH model, while the tails described
best in the GARCH-CTS-nn model and the CTS-ARMA-GARCH modEhe
GARCH-CTS-nn model is even slightly better than the EWMASZiin model.

In order to see how well the models perform in different timeivals, we com-
putedd, andds, for every year. The results are summarized in Table 2 anceTabl
3. The normal-ARMA-GARCH model is the worst performing mbfie the es-
timation of the tails while the-ARMA-GARCH does not perform well in the
central area. From this analysis we see that in general anddshse advanced
neural network models as well as advanced ARMA-GARCH modaish as
CTS-ARMA-GARCH) to forecast the risk of an asset.

The markets in the years 2007 and 2008 were dominated by tecfal crisis
popularly referred to as the subprime mortgage crisis. dfbee, we plot the
1% value-at-risk (VaR) measure of all models in Figures 10 to Bdpecially in
September and October 2008, the tail losses increased titaltya The black
dots symbolize the VaR violations. Again we see that thes tailthe normal-
ARMA-GARCH model are too thin while they are extremely fathet-ARMA-
GARCH model.

We summarize these violations in Table 4. The numbers ohtimis that are
bolded are consistent with t6% confidence interval of the Kupiec test (Kupiec
(1995)). In this test we would reject the normal-ARMA-GAR@tbdel for both
years and both neural network models for the year 2007, wielevould accept
thet-ARMA-GARCH and the CTS-ARMA-GARCH mode?

3A natural question to ask is why the neural network modelsawet able to outperform the
CTS-ARMA-GARCH model. To answer this question, one has eenstand how the NeuroBayes
software is able to create a pdf without assuming an analyftiaction. In principle, NeuroBayes
reconstructs the cdf from a neural network with 20 outputesodBut using 20 nodes means that
it is necessary to approximate the cdf between the nodem@fidther uncertainty to the model.

12



7 Conclusions

Forecasting time series is one of the most important taskieamce. One of
the most common approaches for forecasting is the appicafi GARCH mod-
els in which one has to explicitly assume a probability dgniinction for the
residuals explicitly. This is not necessary when employiagral network models
since the network can learn the probability density funtti@sed on historical
data. In order to make sure that modeling is with the APT fraork, we fitted a
classical tempered stable distribution to the output ohthigral network.

In a large backtest with a time span of more than 20 years,emults show that
our neural network model is able to forecast the time serfethe DJIA with
amazing precision and that it can outperformARMA-GARCH and a normal-
ARMA-GARCH model. Our findings suggest that the neural nekwayoduces a
similar prediction in the central area and in the tails, dr@results are compara-
ble to the results of a CTS-ARMA-GARCH model.

The forecasting abilities of a model is dependent on the tworézon which is
used for the backtest. There is no universal model whichopas well over ev-
ery time period. When forecasting the risk of an asset oneldhgse different
advanced neural network models as well as advanced ARMA-GARodels
(such as CTS-ARMA-GARCH).

13



A The NeuroBayes software

The NeuroBayéssoftware is based on the idea of neural networks. We sum-
marize the most important ideas of the package:

e The input variables are fitted by robust splines to regutestatistical irrel-
evant ourliers. Here the user has to assign a so called meswing flag to
every input variable. The flag specifies the variable beilsgréte or con-
tinuous and the type of fit which is used. The fitted variabtesused in the
neural network.

¢ NeuroBayes uses the variable which has the highest coorelatthe target
and rotates the remaining variables in a way which ensuedghis part of
the information is removed from the rest of the variableseh proceeds
stepwise with the rest of the variables. Without this algpon the same
information would be used again and again which would havstatistical
relevance and would lead to overtraining.

e The pdf is constructed from a neural network with 20 outputeswhich
are used for a classification problem. This introduces aeligation error
but it has the advantage of using a nonparametrical pdf.

For further information, especially about the density ¢arion, see Feindt (2004).

4Developed by Phi-® Physics Information Technologies GmbH
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Figure 1: Cumulative distribution function of the actudum using the normal-

t-ARMA-GARCH
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ARMA-GARCH model and th&-ARMA-GARCH model.

This figure reports the cumulative distribution function thie actual returns of the
Dow Jones Industrial Average (1987-2009) using the fotedagrobability density
function of a normal-ARMA-GARCH model (left) and 8ARMA-GARCH model

(right).
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Figure 2: Cumulative distribution function of the actualum using the models
EWMA-CTS-nn and GARCH-CTS-nn.

This figure reports the cumulative distribution function thie actual returns of the
Dow Jones Industrial Average (1987-2009) using the fotedagrobability density
function of a neural network model with an exponentially giged moving average
definition for the volatility (left) and a neural network meldusing a volatility computed
by a normal-ARMA-GARCH model (right). The outputs of the ndunetwork models
are fitted by a classical tempered stable distribution.
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Figure 3: Cumulative distribution function of the actualum using the CTS-
ARMA-GARCH model.

This figure reports the cumulative distribution function thie actual returns of the

Dow Jones Industrial Average (1987-2009) using the fotedagrobability density
function of a CTS-ARMA-GARCH model.
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Figure 4: Quantile-Quantile-plot of the cumulative distiion function of the
actual return using the normal-ARMA-GARCH and théARMA-GARCH

model.

This figure reports the Quantile-Quantile-plot of the cuativke distribution func-
tion of the actual returns of the Dow Jones Industrial Avergf987-2009) using the
forecasted probability density function of a normal-ARM®ARCH model (left) and a
t-ARMA-GARCH model (right).
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Figure 5: Quantile-Quantile-plot of the cumulative distiion function of the
actual return using the EWMA-CTS-nn and the GARCH-CTS-nreho

This figure reports the Quantile-Quantile-plot of the cuativk distribution func-

tion of the actual returns of the Dow Jones Industrial Aver§f987-2009) using the
forecasted probability density function of a neural netwmrodel with an exponentially
weighted moving average definition for the volatility ()eéind a neural network model
using a volatility computed by a normal-ARMA-GARCH modeigfit). The outputs of

the neural network models are fitted by a classical tempéaddiesdistribution.
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Figure 6: Quantile-Quantile-plot of the cumulative distrion function of the
actual return using the CTS-ARMA-GARCH model.

This figure reports the Quantile-Quantile-plot of the cuativk distribution func-

tion of the actual returns of the Dow Jones Industrial Aver§f987-2009) using the
forecasted probability density function of a CTS-ARMA-GE&R model.
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Figure 7: Difference between empirical cdf and theoretazil for all models
(giving no special weight to the tails).

This figure reports the difference between the theoreticael #he empirical cumu-
lative distribution functions of the actual returns of thevidbJones Industrial Average
(1987-2009) using a normal-ARMA-GARCH, BARMA-GARCH, a CTS-ARMA-
GARCH, and two neural network models. The EWMA-CTS-nn modsés an
exponentially weighted moving average for the volatilithile the GARCH-CTS-nn
model estimates the volatility using a normal-ARMA-GARCHbdel. The outputs of the
neural network models are fitted with a classical temperadestdistribution.
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Figure 8: Difference between empirical cdf and theoretazil for all models

(giving more weight to the tails).

This figure reports the difference between the theoreticael #he empirical cumu-
lative distribution functions of the actual returns of thevidbJones Industrial Average
(1987-2009) using a normal-ARMA-GARCH, BARMA-GARCH, a CTS-ARMA-
GARCH, and two neural network models. A higher weight is gite the left tails.
The EWMA-CTS-nn model uses an exponentially weighted ngpanerage for the
volatility while the GARCH-CTS-nn model estimates the vty using a normal-
ARMA-GARCH model. The outputs of the neural network models fitted with a

classical tempered stable distribution.
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Figure 9: Difference between empirical cdf and theoretazil for all models
(giving more weight to the tails).

This figure reports the difference between the theoreticael #he empirical cumu-
lative distribution functions of the actual returns of thevidbJones Industrial Average
(1987-2009) using a normal-ARMA-GARCH, BARMA-GARCH, a CTS-ARMA-
GARCH, and two neural network models. A higher weight is gite the right tails.
The EWMA-CTS-nn model uses an exponentially weighted ngpanerage for the
volatility while the GARCH-CTS-nn model estimates the vty using a normal-
ARMA-GARCH model. The outputs of the neural network models fitted with a
classical tempered stable distribution.
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Figure 10: Value at risk for the normal-ARMA-GARCH model.
This figure reports the estimation of value at risk for theumetof the Dow Jones

Industrial Average (2007-2009) using a normal-ARMA-GARGtddel. The black dots
symbolize the VaR violations.
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Figure 11: Value at risk for theARMA-GARCH model.
This figure reports the estimation of value at risk for theumetof the Dow Jones

Industrial Average (2007-2009) using ttARMA-GARCH-model. The black dots
symbolize the VaR violations.
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Figure 12: Value at risk for the EWMA-CTS-nn model.

This figure reports the estimation of value at risk for theumetof the Dow Jones
Industrial Average (2007-2009) employing a neural netwmiddel using an exponen-
tially weighted moving average defition for the volatilityThe outputs of the neural
network are fitted by a classical tempered stable distobutiThe black dots symbolize
the VaR violations.
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Figure 13: Value at risk for the GARCH-CTS-nn model.

This figure reports the estimation of value at risk for theumetof the Dow Jones
Industrial Average (2007-2009) using a neural network rhedth a volatility estimation

of a normal-ARMA-GARCH model. The outputs of the neural netkvare fitted by a
classical tempered stable distribution. The black dots®fize the VaR violations.
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Figure 14: Value at risk for the CTS-ARMA-GARCH model.
This figure reports the estimation of value at risk for theumetof the Dow Jones

Industrial Average (2007-2009) using a CTS-ARMA-GARCH4drb The black dots
symbolize the VaR violations.
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normal- t-ARMA- | EWMA- GARCH- | CTS-

ARMA- GARCH CTS-nn CTS-nn ARMA-

GARCH GARCH
dy 0.0191 0.0300 0.0128 0.0125 0.0101
dso 0.0042 0.0071 0.0068 0.0036 0.0022

Table 1: Comparison of the performance of all models.

This table reports the performance of forecasting the metfr the Dow Jones In-
dustrial Average (2007-2009) using a normal-ARMA-GARCH;ARMA-GARCH, a
CTS-ARMA-GARCH, and two neural network models. The EWMA-&Hn model uses
an exponentially weighted moving average for the volatilithile the GARCH-CTS-nn
model estimates the volatility with a normal-ARMA-GARCH dwl. The outputs of the
neural network models are fitted with a classical temperabletdistribution. Indy the
forecasting abilities in the central area is tested whiije measures the forecasts of the
tails. The numbers of the best model are bolded.
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time span

normal-
ARMA-
GARCH

t-ARMA-
GARCH

EWMA-
CTS-nn

GARCH-
CTS-nn

CTS-
ARMA-
GARCH

1986-1987

0.028216

0.034336

0.041713

0.040498

0.035234

1987-1988

0.022644

0.030760

0.040212

0.040457

0.028297

1988-1989

0.038154

0.048520

0.027009

0.018101

0.020179

1989-1990

0.038065

0.058315

0.061605

0.046072

0.026360

1990-1991

0.032053

0.036725

0.017759

0.014751

0.021959

1991-1992

0.045607

0.058237

0.017688

0.019752

0.016277

1992-1993

0.054623

0.066664

0.016332

0.025612

0.028545

1993-1994

0.059484

0.066465

0.026723

0.043880

0.032445

1994-1995

0.016809

0.032303

0.009143

0.015154

0.016853

1995-1996

0.043439

0.048629

0.052760

0.051693

0.026296

1996-1997

0.022529

0.026427

0.035784

0.043713

0.013983

1997-1998

0.018159

0.013125

0.025526

0.041042

0.022264

1998-1999

0.008944

0.014877

0.012507

0.027169

0.018269

1999-2000

0.016726

0.020272

0.018360

0.016350

0.026765

2000-2001

0.024323

0.026312

0.027842

0.018941

0.028146

2001-2002

0.022391

0.026269

0.017002

0.012332

0.026585

2002-2003

0.041965

0.040762

0.043573

0.035881

0.051660

2003-2004

0.025904

0.034855

0.030652

0.025739

0.013507

2004-2005

0.033400

0.042242

0.017000

0.016907

0.032626

2005-2006

0.018641

0.023739

0.014251

0.012594

0.029929

2006-2007

0.032855

0.038259

0.029995

0.022319

0.025798

2007-2008

0.033232

0.034138

0.031309

0.033099

0.024182

2008-2009

0.034417

0.034999

0.026763

0.025185

0.042336

Table 2: Comparison af for all models depending on the specific time interval.

This table reports the performance of forecasting the metfr the Dow Jones In-
dustrial Average (2007-2009) using a normal-ARMA-GARCH;ARMA-GARCH, a
CTS-ARMA-GARCH, and two neural network models. The EWMA-&Hn model uses
an exponentially weighted moving average for the volgtiithile the GARCH-CTS-nn
model estimates the volatility with a normal-ARMA-GARCH oe. The outputs of the
neural network models are fitted with a classical temperabletdistribution. Ind, the
forecasting abilities in the central area is tested. Thebmmnof the best model for a
specific time interval are bolded.

32



time span

normal-
ARMA-
GARCH

t-ARMA-
GARCH

EWMA-
CTS-nn

GARCH-
CTS-nn

CTS-
ARMA-
GARCH

1986-1987

0.007395

0.006087

0.016646

0.015032

0.008058

1987-1988

0.013496

0.003051

0.015146

0.015595

0.009155

1988-1989

0.006286

0.007846

0.021596

0.011474

0.003703

1989-1990

0.004091

0.008857

0.026887

0.017027

0.002509

1990-1991

0.008461

0.006354

0.008743

0.005080

0.007492

1991-1992

0.003730

0.010248

0.008351

0.006005

0.002315

1992-1993

0.009839

0.006559

0.003821

0.005877

0.007939

1993-1994

0.008969

0.004607

0.003085

0.007423

0.007329

1994-1995

0.006938

0.005760

0.007138

0.007500

0.005153

1995-1996

0.005370

0.008457

0.003842

0.006845

0.005599

1996-1997

0.006429

0.006213

0.010610

0.007321

0.008976

1997-1998

0.011416

0.005615

0.013973

0.013154

0.006351

1998-1999

0.008785

0.004317

0.005139

0.007104

0.004926

1999-2000

0.006034

0.002746

0.005220

0.003298

0.004898

2000-2001

0.011860

0.006267

0.002795

0.005773

0.007767

2001-2002

0.004968

0.007266

0.003313

0.003556

0.003199

2002-2003

0.007920

0.002561

0.009977

0.008295

0.007073

2003-2004

0.005898

0.007637

0.002653

0.003421

0.002725

2004-2005

0.006470

0.006107

0.002867

0.003966

0.003668

2005-2006

0.004693

0.006181

0.003081

0.003736

0.003474

2006-2007

0.003923

0.006061

0.004354

0.004146

0.003134

2007-2008

0.012549

0.009672

0.010819

0.015471

0.008874

2008-2009

0.014378

0.006122

0.013072

0.013401

0.008955

Table 3: Comparison afs, for all models depending on the specific time interval.

This table reports the performance of forecasting the metfr the Dow Jones In-
dustrial Average (2007-2009) using a normal-ARMA-GARCH;ARMA-GARCH, a
CTS-ARMA-GARCH, and two neural network models. The EWMA-&Hn model uses
an exponentially weighted moving average for the volgtiithile the GARCH-CTS-nn
model estimates the volatility with a normal-ARMA-GARCH oel. The outputs of the
neural network models are fitted with a classical temperablestdistribution. Inds, the
forecasting abilities of the tails is tested. The numberthefbest model for a specific
time interval are bolded.
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normal- t-ARMA- | EWMA- GARCH- | CTS-
ARMA- GARCH CTS-nn CTS-nn ARMA-
GARCH GARCH
2007 7 4 8 10 4
2008 9 4 5 6 4

Table 4: Comparison of the value at risk violations in therge&907 and 2008.

This table reports the value at Risk violations forecastthg return of the Dow
Jones Industrial Average (2007-2009) using a normal-ARGIARCH, a t-ARMA-
GARCH, a CTS-ARMA-GARCH, and two neural network models. BEWMA-CTS-nn
model uses an exponentially weighted moving average forwviflatility while the
GARCH-CTS-nn model estimates the volatility with a norm&MA-GARCH model.
The outputs of the neural network models are fitted with asttas tempered stable

distribution. The numbers of the models accepted by Kupiesst are bolded.

34




