Home | english  | Impressum | Sitemap | KIT

Data Mining and Applications

Data Mining and Applications
Typ: Vorlesung
Ort:

20.14, 103.1

Zeit:

Blockveranstaltung! Termine:

Fr, 27.05., 8:30 - 18:30, Geb.11.40, R.214
Sa, 28.05., 8:30 - 18:30, Geb. 20.14, R.103.1

Fr, 24.06., 8:30 - 18:30, Geb. 11.40, R.214
Sa, 25.06., 8:30 - 18:30, Geb. 20.12, R. 002

Dozent:

Nakhaeizadeh

LVNr.: 2520375
Prüfung:

Mündliche Prüfungen  am 11. und 12.07.2016, Geb. 20.12, Raum 111.

Die Prüfungstermine werden Ihnen per E-Mail bekanntgegeben!
(Ggfs. an Ihre student.kit.edu-E-Mail-Anschrift, bitte das Postfach prüfen!)

Inhalt

Compact Course on Data Mining and its Applications

Notice: The course is in German but the slides are in English

Introduction and General Aspects

  •  Why Data Mining?
  •  What is Data Mining?
  •  Difference between Data Mining and Knowledge Discovery in Databases
  •  Interdisciplinary aspects of Data Mining
  •  Examples of Data Mining Tools
  •  Short history of Data Mining, Data Mining rapid development
  •  Some European funded projects on Data Mining
  •  Scientific Networking and partnership in Data Mining and Machine Learning
  •  Conducting of Data Mining projects, optimal structure of a Data Mining team
  •  Success factors of Data Mining projects
  •  Conferences and Journals on Data Mining

Data Mining Process (CRISP-DM)

  •  Business Understanding
  •  Data Understanding
  •  Data Preparation
  •  Modeling
  •  Evaluation
  •  Deployment

Data Mining and Business Intelligent (BI)

  •  Definition of BI
  •  Architecture of BI Systems
  •  Role of Intelligence in BI
  •  Online Analytical Processing (OLAP)
  •  Data Warehousing
  •  Case Study

Data Mining Algorithms

  •  Decision Trees
  •  Artificial Neural Networks
  •  Association Rules
  •  Instance Based Learning (Lazy Learning)
  •  Bayesian Methods (Naïve Bayes)
  •  Regression Trees
  •  Regression Analysis
  •  Model Trees
  •  Cluster Analysis
  •  Logistic Regression

Applications and Case Studies

  •  Customer Relationship Management
  •  Automotive Industry
  •  Healthcare
  •  Business and Banking