Homework 1

Problem 6.6. Assume 107, 207, 162, 61, 47, 16, -99, 269, 24, 101, 63, 173, -278, 159, 184 are 15 observations of dollar return of a specific portfolio. The dollar return of the portfolio follows normal distribution with density

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right)
$$

Calculate the sample $A V a R_{0.02}$.

Problem 6.7. Let $-12,35,12,-132,373,-110,15,55,-13,-11,-42,-28,283,313,76$ be observations of return of a specific portfolio. Assume the return of the portfolio follows the Gram-Charlier distribution with density

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-a)^{2}}{2 \sigma^{2}}\right)\left[1+\frac{\xi}{6} H_{3}\left(\frac{x-a}{\sigma}\right)+\frac{\kappa-3}{24} H_{4}\left(\frac{x-a}{\sigma}\right)\right],
$$

where H_{n} is the n-th order Hermite polynomial. Calculate the sample $A V a R_{0.02}$.

Problem 6.9. Assume portfolio value at $t=0$ is 1000 , interest rate is 0.04 per year, the stock price follows geometric Brownian motion

$$
\frac{\mathrm{d} S_{t}}{S_{t}}=0.09 \mathrm{~d} t+0.3 \mathrm{~d} W_{t}
$$

Investing the money into the bank account and this stock in one year find the optimal strategy to minimize Capital-at-Risk at confidential level $\alpha=0.05$. What strategy would give us the most expected return, if we want to restrict Capital-at-Risk under 300 ?

