
1 
Authors: Ortobelli, Rachev, Shalit, Fabozzi 

Article submitted to Management Science; manuscript no. MS-XXXX-2008 

 

 

Practical Portfolio Selection Problems  

Consistent With A Given Preference Ordering  
 

 

Sergio Ortobelli 
Department MSIA, University of Bergamo, 24127-Via dei Caniana 2, Bergamo, Italy, sol@unibg.it 

 

Svetlozar T. Rachev* 
Department of Econometrics, Statistics and Mathematical Finance, School of Economics and Business Engineering, University 

of Karlsruhe  and KIT, Kollegium am Schloss, Bau II, 20.12, R210, Postfach 6980, D-76128, Karlsruhe, Germany and 

Department of Statistics and Applied Probability University of California, Santa Barbara CA 93106-3110, USA and 

Chief Scientist of FinAnalytica INC.,  rachev@statistik.uni-karlsruhe.de 

 

Haim Shalit 
Department of Economics, Ben-Gurion University, Beer-Sheva, 84105,Israel, shalit@bgu.ac.il 

 

Frank J. Fabozzi 
Yale School of Management, 135 Prospect Street, New Haven, CT 06520-8200, USA,  frank.fabozzi@yale.edu  

 

In this paper, we examine three portfolio-type problems where investors rank their choices considering each of the 

following: (1) risk, (2) uncertainty, and (3) the distance from a benchmark. For each problem, we analyze possible 

orderings for the choices and we propose several admissible portfolio optimization problems. Thus, we discuss the 

properties of several ─ risk measures, uncertainty measures and tracking error measures ─ and their consistency 

with investor choices. Furthermore, we propose several linearizable allocation problems consistent with a given 

ordering and demonstrate how many portfolio selection problems proposed in literature can be solved.  

 

Key words: Probability metrics, tracking error measures, stochastic orderings, coherent measures, 

linearizable optimization problems, behavioral finance ordering. 

History: This paper was first submitted December 11, 2008,  

____________________________________________________________________________________ 

1.  Introduction 

The purpose of this paper is twofold. First, we show how to use the connection between ordering 

theory and the theory of probability functionals in portfolio selection problems. Second, we discuss the 

computational complexity of selection problems consistent with the preferences of investors. With these 

purposes in mind, we review several single-period portfolio problems proposed in the literature, 

emphasizing those which are computational simple (portfolio problems that can be reduced at least to 
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convex programming problems) for different categories of tracking error measures, uncertainty 

measures, and risk measures.  

Portfolio selection problems can be distinguished and classified based on motivations and 

intentions of investors. So, we generally refer to reward-risk problems when investors balance the 

advantage and disadvantage of a choice in a reward-risk space optimizing a probability functional that 

considers both measures. Instead, we refer to target-based approaches (or tracking-error type portfolio 

problems) when investors want to optimize a distance with respect to some financial benchmarks. 

Moreover, in other cases it could be important to optimize a measure of randomness of a given portfolio 

in order to maximize the returns of the portfolio choices. In all these portfolio selection approaches, we 

should rank different investor preferences and it is for this reason ordering theory provides some 

intuitive rules that are consistent with utility theory under uncertainty conditions. In particular, recent 

research classifies portfolio selection problems with respect to investors’ preference orderings.
1
 

The first macro-classification is between risk ordering/measure and uncertainty 

ordering/measure. Typically, we refer to risk orderings as the stochastic orderings between random 

variables that are implied by the monotony order.
2
 Uncertainty orderings characterize the different 

degrees of uncertainty and dispersion. Since the uncertainty and the dispersion of a variate X is referred 

to the randomness of X we should expect its presence in the same (or proportional) quantity in its 

opposite –X. Thus, we say that X exhibits higher uncertainty than another variate Y when X dominates Y 

for a given risk ordering and also -X dominates -Y with respect to the same or another risk ordering. 

Roughly speaking, we define risk (uncertainty) measures as all probability functionals consistent with a 

risk (uncertainty) ordering; that is, if a random variable X is preferred to Y with respect to a given risk 

(uncertainty) ordering, this implies that the risk (uncertainty) measure of X should be lower than the 

measure of Y. Vice versa, a reward measure is a functional v isotonic with a risk ordering, i.e., if X>Y, 

implies that ( ) ( )v X v Y≥ . However, we do not know a priori all possible risk/uncertainty orderings. 

                                                   
1 See, among others, Rachev et al. (2008) and Ortobelli et al. (2008). 
2
 X is preferred to Y with respect to the monotony order iff X>Y. 
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Thus, we cannot say a priori that a measure is consistent with a risk or an uncertainty ordering. 

Consequently, in recent years, several papers have proffered alternative definitions of risk/uncertainty 

measures based on some properties that serve to identify the risk and the uncertainty (see, among others, 

Artzner et al. (1999)). For most of these measures, it is also possible to prove their consistency with 

risk/uncertainty orderings.  

As demonstrated by many studies in behavioral finance,3 not all investors are non-satiable and 

risk-averse and, for this reason, it is important to classify the optimal choices for any admissible ordering 

of preferences. Once we know the kind of ordering be used for the portfolio problem, we have to identify 

a probability functional (referred to as a FORS probability functional) that characterizes an ordering 

among the admissible choices and that is consistent with investors preferences. Therefore, as suggested 

by Ortobelli et al. (2008), we get choices that are efficient in the sense of the preference ordering when 

we opportunely optimize the probability functional associated with that ordering. However, several new 

questions arise from this analysis. The main contribution of this paper is that it answers the following 

two questions: 

• What is the “right” ordering of preferences that should be used?  

• Can we describe some practical optimization problems for different orderings of preferences that 

(at least in some cases) can be used even for large-scale portfolios? 

To answer these questions, we propose and discuss several new portfolio selection models. In particular, 

we investigate on the relationships between FORS probability functionals and the theory of probability 

metrics, and we demonstrate that many recent results on risk measures and portfolio selection can be seen 

as particular cases of the results presented in this paper. An answer to the question about the “right” 

ordering of preferences should be obviously partial, and depending on the particular investor’s problem. 

So, we review several orderings utilized in portfolio theory and introduce new potential orderings of 

preferences. In the paper, we manly discuss the solutions to the following three specific portfolio 

problems associated with many possible orderings of preference.  

                                                   
3
 See, among others, Levy and Levy (2002) and the references therein. 
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1. Suppose an investor wants to outperform a benchmark taking into account the distributional 

characteristics of portfolio returns. In this case, we should use a risk ordering among portfolios 

taking into account the performance with respect to the benchmark. Moreover, a good asset manager 

should choose the opportune ordering for this active tracking error strategy.  

2. Suppose an investor wants to maximize his/her profit by purchasing a portfolio of put and call 

options on some asset class indexes. From option pricing theory, we know that if we maximize the 

concentration of the underlying log-return indexes, we implicitly optimize the investor’s 

opportunities to exercise the options. So, in this case, the asset manager should use an uncertainty 

ordering on the underlying log-return indexes taking into account the performance of the portfolio 

return on the derivatives.  

3. Alternatively, suppose an investor seeks to track a benchmark as closely as possible (i.e., follows 

an indexing strategy). In this case, we should order the distance with respect to the benchmark. Thus, 

a good asset manager should minimize an opportune probability functional to track the benchmark 

with a portfolio of returns.  

As expected, the three portfolio problems above suggest to use different orderings among 

random variables. In this paper, we try to identify different possible answers to these three problems, 

distinguishing those practical optimization problems for different orderings of preferences that in some 

cases could be used for large-scale portfolios.  

 We have organized the paper as follows. In Section 2, we review the concept of FORS orderings 

and derive practical reward-risk models based on measures consistent with the most known orders. In 

Section 3, we begin by describing practical portfolio selection problems consistent with uncertainty 

orderings. Then, after describing tracking error measures based on probability metrics, we propose 

tracking error portfolio selection problems consistent with tracking error orderings. In the last section we 

summarize our contribution.  

 

 



5 
Authors: Ortobelli, Rachev, Shalit, Fabozzi 

Article submitted to Management Science; manuscript no. MS-XXXX-2008 

 

 

  

2. Practical Reward-Risk Portfolio Problems Consistent with Risk Orderings  

 

We begin this section by reviewing the concept of FORS orderings and measures and then propose 

portfolio problems where a benchmark asset with return 
Yr  and n risky assets with returns 

1[ ,..., ]'nr r r=  

are traded. No short selling is allowed; therefore the components i
x  of the vector of weights 

1 2[ , ,..., ] 'nx x x x=  are non-negative. All portfolio problems in this section are consistent with the main 

risk orderings used in the literature and thus should serve to solve the first of the three portfolio 

problems identified in Section 1. Moreover, for all portfolio optimization problems, we assume to have T  

independent and identically distributed (i.i.d.) observations of the returns ( ) 1, ,[ ,..., ]'k k n kr r r=  and of the 

benchmark return ,Y kr , k = 1,…,T.  

 According to utility theory, investors maximize an expected state-dependent utility function and 

thus they implicitly maximize their performance with respect to a given benchmark (see Rachev et al. 

(2008)). Thus, one general way to describe an ordering is by considering functionals on a product space 

U V= Λ ×  of joint random variables defined on ( ), ,PrΩ ℑ  with real values where Λ  is a non-empty set of 

the admissible choices and V is the space of all possible benchmarks. However if the space of benchmarks 

is not mentioned, we assume U = Λ . Following Ortobelli et al. (2008), defining a FORS ordering 

necessitates a probability functional :U Bρ × → �  (where (B,MB) is a measurable space) that satisfies 

two properties: (1) the invariance in law and (2) the consistency of preferences. In particular, we refer to a 

FORS measure induced by order of preference f , any probability functional :U Rµ →   that is 

consistent with respect to the order of preferences f . That is, if X is preferred to Y (XfY), this implies 

that ( , ) ( , )X Z Y Zµ µ≤  for a fixed and arbitrary benchmark Z belonging to V.  

Let :U Bρ × → �  (with [ ] m
B = ⊆a,b � , 

i ia b−∞ ≤ < ≤ +∞ , i=1,…,m) be a simple (invariant 

in law) functional (i.e., for every ,X Y ∈ Λ , 
X Y X YF Fρ ρ= ⇔ = ) that is consistent with the order of 

preferences f  on the class Λ ; that is, ,X Y∀ ∈ Λ  
X Yρ ρ≤  anytime that X is preferred to Y with respect 
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to the order of preferences f  ( X Yf ). Then, we say  X dominates Y in the sense of FORS ordering 

induced by f  (namely X FORS Y
f

) if and only if ( ) ( )X Yu uρ ρ≤  u B∀ ∈ . We call the simple functional 

ρ , the FORS functional (measure) associated with the FORS ordering of random variables belonging to 

Λ . A FORS functional can satisfy different properties, so for example, we say that the FORS functional 

(measure) associated with the FORS ordering satisfies the convex property if for any t B∈  and [0,1]a ∈ , 

(1 ) ( ) ( ) (1 ) ( )
aX a Y X Y

t a t a tρ ρ ρ+ − ≤ + − . We call FORS risk-ordering (measure) any FORS ordering 

(measure) induced by (consistent with) the monotony order. A reward FORS measure v is a functional 

isotonic with respect to FORS-risk ordering induced f , i.e., if X FORS Y
f

, then ( ) ( )v X v Y≥ . Moreover, 

we say that X dominates Y with respect to a FORS-uncertainty order when X FORS Y
f

 and 

X FORS Y− −
f

 for some given FORS-risk orderings induced by the order of preferences f .  

 When [ , ]B a b= ⊆ �  and the FORS-risk measure associated with the FORS-risk ordering Xρ  is a 

bounded variation function for every random variable X belonging to Λ , then, for every 1α > , we refer 

to α  FORS-risk ordering induced by f  the following ordering defined:  

,
X FORS Y

αf

 iff , ,( ) ( )
X Y

u uα αρ ρ≤  [ , ]u a b∀ ∈ , 

where ( )
1

,

1
( ) ( ) 1

( )

( ) 1

u

X
a

X

X

u t d t if
u

u if

α

α

ρ α
αρ

ρ α

−
− >

Γ= 
 =

∫
 is called functional associated with the α  FORS 

order induced by f . For the fractional integral property, we can write 

1

, ,

1
( ) ( ) ( )

( )

t
v

X X v
a

t t u u du
v

α
αρ ρ

α
− −= −

Γ − ∫ .                                        (1) 

Then, for every 1vα > ≥ , 
,v

X FORS Y
f

 implies 
,

X FORS Y
αf

. Moreover, FORS orderings can be 

represented in terms of utility functions, since 
,

X FORS Y
αf

 if and only if 

( ) ( ) ( ) ( )
b b

X Y
a a

u d u u d uφ ρ φ ρ≥∫ ∫  for every φ  belonging to a given class of functions W
α . When the 
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simple probability FORS-risk measure ( )Xρ λ  associated with a FORS ordering for any [ , ]a bλ ∈  is:  

1) positively homogeneous (i.e., ( ) ( )0 X Xαα ρ λ αρ λ∀ ≥ = ),  

2) translation invariant ( ) ( ), X t Xt tρ λ ρ λ+∀ ∈ = −� ),  

3) sub-additive  ( ( ) ( ) ( )X Y X Yρ λ ρ λ ρ λ+ ≤ + ),  

then ( )Xρ λ  is a coherent measure [ , ]a bλ∀ ∈  in the sense of Artzner et al. (1999). In this case, we 

define 
Xρ  coherent FORS functional associated with the underlining ordering. Moreover, we call 

Xρ  

characteristic FORS functional of the associated ordering when ( )Xρ λ  is only positively homogeneous 

and  translation invariant [ , ]a bλ∀ ∈ . As suggested by Ortobelli et al. (2008), we can obtain a subclass of 

the optimal choices with respect to the order of preferences f  by solving the optimization problem:  

min ( )

subject to

X
X

t

t B

ρ
∈Λ

∈
                                                                    (2) 

where :U Bρ × → �  is a FORS measure associated with a FORS ordering induced by an order of 

preferences f . Since in many portfolio problems
4
 investors employ different orderings of preferences for 

random rewards and random risks, then we could have a FORS-risk measure 
1:U Bρ × → �  consistent 

with an ordering of the risks 
1f  and a FORS-reward measure 

2:v U B× → �  isotonic with an ordering of 

the rewards 2f . Thus, by minimizing the risk measure ρ  provided that the expected reward v is 

constrained by some minimal value R  for different values of 
1 1 2 2;t B t B∈ ∈ , as in the following portfolio 

problem: 

( )

( )

1

2

1 1 2 2

min subject to

;

; ,

X
X

X

t

v t R

t B t B

Λ
ρ

∈

≥

∈ ∈

                                                           (3) 

we obtain optimal choices consistent with a new ordering of preferences that take into account both 

orderings of rewards and risks. The importance of including the investor’s preference toward reward in 

                                                   
4
 See Rachev et al. (2008) 
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portfolio analysis is well founded (see Rachev et al. (2008)). To consider both risk and reward, the so-

called performance measures used in portfolio selection literature employ reward/risk ratios. Moreover, 

for some constraints and under some particular assumptions the solution of problem (3) is equivalent to 

the maximization of a reward/risk ratio /v ρ . As a matter of fact, according to Rachev et al. (2008), we 

know that when v is a positive, positively homogeneous, and concave FORS-reward measure induced by 

a risk ordering and ρ  is a positive, positively homogeneous, and convex FORS measure that is consistent 

with another stochastic order, maximizing the ratio ( ) ( )2 1X Xv t tρ  is equivalent to maximizing the 

measure v  maintaining the risk ρ  opportunely lower than a fixed risk. It is also equivalent to minimizing 

the risk ρ  maintaining the measure v  opportunely higher than a fixed reward. The following proposition 

summarizes these conditions:   

Proposition 1 Consider a  frictionless economy where a benchmark asset with return Yr  and 2n ≥  risky 

assets with returns 
1[ ,..., ]'nr r r=  are traded. Let ,v ρ  be two probability functionals defined on a space 

of random portfolios with weights that belong to  

{ }/ ' 1; ; ; ,n n k k
V x R x e Lb Ax Ub A R Lb Ub R

×= ∈ = ≤ ≤ ∈ ∈ , 

where we assume they are strictly positive. Suppose that v is a positively homogeneous concave FORS-

reward measure induced by a risk ordering and ρ  is a positively homogeneous convex FORS-risk 

measure that is consistent with another stochastic order. If we maximize ratios ( ' ) ( ' )v x r x rρ , 

( ' ) ( ' )Yv x r r x rρ− , or ( ' ) ( ' )Y Yv x r r x r rρ− −  subject to the portfolio weights that belong to the space  

V , we obtain non-dominated portfolios 'x r  (or ' Yx r r− ) with respect to both previous  stochastic 

orders (of v and ρ ).  

Proposition 1 justifies the use of performance measures that enable investors to determine 

optimal non-dominated choices. Furthermore, the portfolio selection problems based on reward-risk 

analysis of Proposition 1 define quasi-concave problems (see Rachev et al. (2008) and the references 

therein). In addition, from Bauerle and Müller (2006) we know that the minimization of a convex 
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measure ρ that satisfies the Fatou property
5
 gives a choice that cannot be dominated by  the preferences 

of risk-averse investors (i.e., an alternative portfolio preferred to it by all risk-averse investors does not 

exist). Thus, we get the following corollary: 

Corollary 1 Under the assumption of Proposition 3, the solution to problem (3) and the maximization of 

ratios ( ' ) ( ' )v x r x rρ , ( ' ) ( ' )Yv x r r x rρ− , or ( ' ) ( ' )Y Yv x r r x r rρ− − , subject to the portfolio weights 

that belong to the convex closed space V,  is a quasi-concave problem. Moreover, if the measures ρ and 

v satisfy the Fatou property, the optimal choices are optimal even for non-satiable risk-averse investors.  

There exist many possible generalizations to these results and there are many performance measures that 

do not fit the previous classification even if they present very good performance.
6
 On the other hand, 

these considerations and the computational simplicity of the optimization problems suggest using 

optimization of the performance measures ( ' ) / ( ' )v x r x rρ  as an alternative to classical portfolio selection 

models.  Next, we assume that the reward measure is the mean and we analyze mean-risk portfolio 

selection problems that are consistent with the most commonly used risk orderings in financial literature.  

2.1 Practical Portfolio Selection Problems Associated with Stochastic Dominance Orderings 

Recall that X dominates Y with respect to α  stochastic dominance order X Y
α
≥  (with α 1≥ ) if and only 

if ( )( ) ( ( ))E u X E u Y≥  for all u belonging to a given class Uα of utility functions.
7
 Moreover the derivatives 

of u satisfy the inequalities 1 ( )( 1) 0k k
u

+− ≥  where k = 1,…, m−1 for the integer m that satisfies 

1m mα− ≤ < . The ordering X Y
α
≥  is also equivalent to saying that for every real t:  

( )( )1( ) ( )
( ): ( ) ( )X YF t E t X F t

αα αα
−

+
= − Γ ≤  whenα >1, and ( ) Pr( ) ( ) Pr( )X YF t X t F t Y t= ≤ ≤ = ≤  when α =1, (4) 

where 1

0
( ) z

z e dz
αα

+∞
− −Γ = ∫ . In particular, first-degree stochastic dominance (FSD) states an ordering of 

                                                   
5 That is, for any sequence { }n n

X
∈�

of integrable random variables such that ( ) 0n

n
E X X →∞− → , 

implies ( ) lim inf ( )
n

k n k
X Xρ ρ

→∞ ≥
≤ . 

6
 See, for example, the Rachev ratio and generalized Rachev ratio in Rachev et al. (2008). 

7
 See Levy (1992) and Ortobelli et al. (2008) and the references therein.. 
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preferences for non-satiable agents and second-degree stochastic dominance (SSD) states an ordering of 

preferences for non-satiable risk-averse investors. Moreover, we refer to α  bounded stochastic 

dominance order between X and Y (namely, 
b

X Y
α
≥ ) when ( ) ( )( ) ( )X YF t F t

α α≤  for any t belonging to the 

support of X and Y. Consider T i.i.d. observations of the returns 1[ ,..., ]'nr r r=  and of the benchmark 

return rY. Then, a consistent estimator of ( )

'( ) ( )
Yx r rF t

αα −Γ  is given by 

( )
( ) ,

1
( )

' ( ) , [ ' ]

1

1ˆ ( ) '
Y k Y k

T

x r r k Y k t x r r

k

G t t x r r I
T

αα −

− > −
=

= − +∑  where 
( ) ,

( ) ,

[ ' ]

1 if '

0 otherwisek Y k

k Y k

t x r r

t x r r
I > −

> −
= 


. When no 

short sales are allowed, the support of all admissible portfolios is given by the interval 

( )( ) , ( ) ,
1 1

min min ' , max max '
k Y k k Y k

x S k T x S k T
x r r x r r

∈ ≤ ≤ ∈ ≤ ≤
− −  where { }1/ 1; 0n n

i iiS x x x== ∈ = ≥∑� . However, for all 

( )( ) , ( ) ,
1 1

min min ' ,max min '
k Y k k Y k

x S k T k Tx S
t x r r x r r

∈ ≤ ≤ ≤ ≤∈
∈ − − , minimizing ( )

'
ˆ ( )

Yx r rG t
α

−  gives the value 0 and the optimal 

weights ( )( ) ,
1

ˆ arg max min ' k Y k
k Tx S

x x r r
≤ ≤∈

= − . In order to find portfolios that are not first-order dominated, we 

should minimize 
( ) ,

(1)

' [ ' ]

1

1ˆ ( )
k Y k

T

x r t x r r

k

G t I
T

> −
=

= ∑  for any 
( ) ,

1
max min ' k Y k

k Tx S
t c x r r

≤ ≤∈
≥ = − . Instead, in order to find 

in mean-risk space the optimal portfolios that are non-dominated with respect to α  stochastic 

dominance order for 1α >  for a given mean equal to or greater than m and a parameter 

( ) ,
1

max min ' k Y k
k Tx S

t c x r r
≤ ≤∈

≥ = − , one solves the following optimization problem with linear constraints: 

1

1

( )

1 1

, ( )

1
min subject to

1
' ; 1; 0; 1,...,

T

0; ' , 1,..., .

T

k
x

k

T n

t j j

t j

k k Y k k

v
T

x r m x x j n

v v t r x r k T

α −

=

= =

≥ = ≥ =

≥ ≥ + − =

∑

∑ ∑                                (5) 

In particular, in order to get optimal choices for non-satiable risk-averse investors, we solve the previous 

linear programming (LP) problem for 2α = , which is then a convex optimization problem that is 

linearizable using the fractional integral property (1). As a matter of fact, for 2α > ,  
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 ( )( ),( ) ( ) 3

' '( ) ( 2) ( ) ( ) '
Y Y

t
M T

x r r x r r YG t F t t u E u x r r duα α αα→∞ −
− − +−∞

→Γ − = − − +∫%  for any 
( ) ,

1
max min ' k Y k

k Tx S
t c x r r

≤ ≤∈
≥ = −     

where 
( ) ,

3 1
1

( )

' ( ) ,
'1 1

1
( ) ( ) '

Y
k Y k

M T

x r r k Y k t c
c i x r ri k M

t c t c t c
G t M i c i x r r I

M M T M

α α

α

− −
−

− −  
+ > −  = =   

   − − −   
= − + − +      

      
∑ ∑% . Thus, 

( )

' ( )
Yx r rG t

α
−

%  is a consistent estimator of ( )

'( 2) ( )
Yx r rF t

αα −Γ −  when M is large enough
8
. So, in a mean-risk 

space, we get non-dominated portfolios with respect to α  ( 2α > ) stochastic dominance bounded order 

by solving the following LP problem for 
( ) ,

1
max min ' k Y k

k Tx S
t c x r r

≤ ≤∈
≥ = − , and a mean equal to or greater than 

m: 

3
1

,

1 1

( ) ,

1 1

, ( ) ,

1
min ( ) subject to

1
' ; 1; 0; 1,..., ; 0;

T

' , 1,..., ; 1,..., .

M T

k i
x

i i

T n

t j j k i

t j

k i k Y k

t c t c
M i v

M M T

x r m x x j n v

t c
v c i x r r k T i M

M

α −
−

= =

= =

 − − 
−  

  

≥ = ≥ = ≥

− 
≥ + − + = = 

 

∑ ∑

∑ ∑                            (6) 

2.2 Practical Portfolio Problems Associated with Inverse Stochastic Dominance Orderings 

As an alternative to classic stochastic orders, we can use the dual (also called inverse) representations of 

stochastic dominance rules.9 We say X dominates Y with respect to α  inverse stochastic dominance 

order X Y
α−

≥  (with α ≥1) if and only if for every [0,1]p ∈ ,  

( ) 1 1 ( )

0

1
( ) ( ) ( ) ( )

( )

p

X X YF p p u dF u F p
α α α

α
− − − −= − ≥

Γ ∫  when α >1, and 1 1( ) ( )X YF p F p
− −≥  when α =1 

where )(lim)0( 1

0

1
pFF X

p
X

−

→

− =  and { }1( ) inf : Pr( ) ( )X XF p x X x F x p
− = ≤ = ≥  (0,1]p∀ ∈ , is the left inverse 

of the cumulative distribution function FX. Thus in this case, ( )( )XF p
α−−  is the FORS measure associated 

with this FORS-risk ordering. In risk management literature, the opposite of the p-quantile 1( )XF p
−  of X 

                                                   
8
 We should choose M equal to or larger than ( ) /t c d− where 

( ) ( )( ){ }: 1:
min inf ' ' 0; 2,...,

Y Yk T k Tx
d z x r r x r r z k T

−
= = − − − > =  and ( )

:
'

Y k T
x r r−  points out the k-th observation of 

T ordered observations of ( )' Yx r r− . 
9
 See Ortobelli et al. (2008) and the references therein. 
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is referred to as value-at-risk (VaR) of X, namely 1( ) ( )p XVaR X F p
−= − . VaR expresses the maximum 

loss among the best 1-p percentage cases that could occur for a given horizon. A consistent statistic of 

the p-quantile of X is given by the order statistic [ ]:pT TX  that indicates the [pT]-th observation of T 

ordered observations of X. Then, in order to find the optimal portfolio that is non-dominated at the first 

inverse order, we minimize [ ]:pT TX−  under usual constraints. Moreover, using the fractional integral 

property (1) for any 1α > , we get ( ) 2 1

0
( 1) ( ) ( ) ( )

p

X XF p p u F u duα αα − − −Γ − = −∫ . Assuming equally probable T 

scenarios, a consistent estimator of ( )

'( 1) ( )
Yx r rF p

αα −
−Γ −  when p s T=  for a given integer s T≤  is given 

by 

21

:

1

1
( ' )

s

Y i T

i

s i
x r r

T T

α −−

=

− 
− 

 
∑ . Thus, we get portfolios in a mean-risk space that are optimal with 

respect to the α -th inverse stochastic dominance order for any 1α >  by solving the optimization 

problem: 

21

:

1

( )

1 1

min ( ' ) subject to

1
' ; 1; 0; 1,...,

T

s

Y i T
x

i

T n

t j j

t j

s i
x r r

T

x r m x x j n

α −−

=

= =

− 
− − 

 

≥ = ≥ =

∑

∑ ∑
                                      (7) 

for a given s T≤  and a mean equal to or greater than m. Recall that first- and second-stochastic 

dominance rules are equivalent to their inverse orderings.
10

 Furthermore, 

( ) ( )( 2) 1

0
( )

p

X X X
F p L p F t dt

− −= = ∫  is the absolute Lorenz curve (or absolute concentration curve) of asset X 

with respect to its distribution function FX. The absolute concentration curve ( )X
L p  valued at p shows 

the mean return accumulated up to the lowest  p percentage of the distribution. Both measures  and 

( )X
L p  have important financial and economic interpretations and are widely used in the recent risk 

literature. In particular, the negative absolute Lorenz curve divided by probability p is a coherent risk 

measure in the sense of Artzner et al. (1999) that is called conditional value-at-risk (CVaR) or expected 

                                                   
10

 That is, 
1 1( ) ( )X YX FSD Y F p F p

− −⇔ ≥ , [0 ,1]p ∈  and ( ) ( )( 2) ( 2)

X Y
X SSD Y F p F p− −⇔ ≥ , [0 ,1]p ∈ . 
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shortfall, expressed as  

( ) ( )( ){ }( ) infp X
u

CVaR X L p p u E X u p
+

= − = + − −                            (8) 

where the optimal value u is 1( ) ( )p XVaR X F p
−= − . Thus, as a consequence of Equation (8), the recent 

literature has shown that we can minimize CVaR for a fixed mean by solving a LP problem. Moreover, 

coherent risk measures using specific functions for the Lorenz curve are easily obtained. In particular, 

we observe that some classic Gini-type measures are coherent measures. As a matter of fact, by 

definition, for every 1v ≥  and for every (0,1)β ∈  we have that  

( )( ( 1)) 2

( , )
0

( ) : ( 1) ( ) 1 ( ) ( )v v v v

v X X
GT X v F v v u L u du

β

β β β β β− + −= −Γ + = − − −∫  

is consistent with 
( 1)v− +
≥ . Then using the coherency of CVaR, we easily prove that ( , ) ( )vGT Xβ  is a 

coherent FORS functional associated with (v+1) inverse stochastic dominance order and the following 

remark holds. 

Remark 1 For every 1v ≥  and for every (0,1)β ∈ , the measure 
( ( 1))

( , )( ) ( 1) ( )v v

v XGT X v Fβ β β− += −Γ +  is a 

linearizable coherent risk measure consistent with 
( 1)v− +
≥  order.  

Since the measures ( , )( )vGT Xβ  are strictly linked to the  extended Gini mean difference (as we will show in 

the next section), we refer to them as Gini-type coherent measures. Moreover, from Remark 1, when we 

minimize the measure ( , )( ' )v YGT x r rβ −  and s Tβ =  for a given integer s T≤ , then using Equation (8) we 

can linearize its consistent estimator 

21

'

1

( 1) ˆ
Y

vs

x r rv
i

v v s i i
L

T T Tβ

−−

−
=

− − −   
   
   

∑  where ' :

1

1ˆ ( ' )
Y

i

x r r Y k T

k

i
L x r r

T T
−

=

 
= − 

 
∑ . 

In particular, we can determine choices that are optimal with respect to α  inverse stochastic dominance 

orders for any 2α >  by solving the LP problem: 
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1 1

31

,
, ,...,

1 1

( ) ,

1 1

, ( ) ,

1
min subject to

1
' ; 1; 0; 1,..., ; 0;

T

' ; 1,..., ; 1,..., 1 ,

s

s T

i t i
x b b

i t

T n

t j j t i

t j

t i t Y t i

s i i
b v

T T T

x r m x x j n v

v x r r b t T i s

α

−

−−

= =

= =

−   
+  

   

≥ = ≥ = ≥

≥ − + − = = −

∑ ∑

∑ ∑                            (9) 

for a given mean equal to or greater than m.  

Other typical coherent FORS functionals associated with FORS orderings can be derived from 

Acerbi’s (2002) spectral measures. Hence, any spectral measure  

1
1

0
( ) ( ) ( )XM X u F u duφ φ −= −∫                                                (10) 

is a coherent risk measure identified by its risk spectrum φ  that is an a.e. non-negative decreasing and 

integrable function such that 
1

0
( ) 1u duφ =∫ . Moreover, for any spectrum φ  with 0, ' 0,φ φ> <  in (0,1), we 

can introduce a new ordering, that we call φ -spectral FORS-risk ordering, so that we say that X dominates 

Y with respect to the φ -spectral FORS-risk ordering (namely, X FORS Yφ
≥

) if and only if  

1

( , ) ( , )
0

0

1
( ) : ( ) ( ) ( ) (0,1]

( )

t

X X Yt
ST t u F u du ST t t

u du
φ φφ

φ

−−
= ≤ ∀ ∈∫
∫

                          (11) 

This is a FORS-risk ordering, since it is consistent with monotone ordering and ( , ) ( , )Y XST STφ φ=  if and only 

if 
X YF F= .Moreover, for any (0,1)t ∈ , ( , ) ( )XS T tφ  is a spectral coherent measure with spectrum  

0

( )
if

( )( )

0 if ( ,1]

t

u
u t

v dvu

u t

φ

φφ


≤

= 


∈

∫% .                                                       (12) 

Furthermore, we can rewrite the spectral FORS measure associated with the φ -spectral FORS ordering as: 

1

( , )
0 0

0 0 0

1 1 ( )
( ) ( ) ( ) '( ) ( ) ( )

( ) ( ) ( )
X X X XST u F u du u L u du L

u du u du u du

β β

φ β β β

φ β
β φ φ β

φ φ φ

−−
= = −∫ ∫
∫ ∫ ∫

 (0,1]β∀ ∈ .   (13) 

Again, we can apply Equation (8) to linearize the concentration curve of Equation (13), since ' 0φ < . 

Thus assuming s Tβ =  for a given integer s T≤ , we can use the consistent estimator of 
( , ' ) ( )

Yx r rS T φ β− :  
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( ) ( )
1

' '

1

0

1 1 ˆ ˆ'
( )

Y Y

s

x r r x r r

i

i i
L L

T T Tu du
β

φ φ β β
φ

−

− −
=

    
−    

    
∑

∫
. 

We obtain the optimal choices with respect to φ -spectral FORS-risk ordering by solving the following 

LP problem: 

( )
1 1

1

,
, ,..., ,

1 1 1

, ( ) , , ( )

1

( ) ,

1

1 1 1
min ' subject to

1
' ; 0; ' ; 1,..., ; 1,..., 1

T

1; 0; 1,..., ; 0; '

T

T s T

k i k i
x a b

k i k

T

t i t Y t i t i t

t

n

j j t t t Y

i

i i
b u a v

T T T T T

v x r r a v x r m t T i s

x x j n u u b x r r

α
φ β β φ

−

−

= = =

=

=

    
+ − +    

    

≥ − + − ≥ ≥ = = −

= ≥ = ≥ ≥ − − +

∑ ∑ ∑

∑

∑ ,t

                  (14) 

for some given mean equal to or greater than m.  

2.3 Practical Portfolio Selection Problems Associated with Behavioral Finance Orderings 

The first behavioral finance orderings introduced in the finance literature are the orderings deduced from 

Markowitz’ studies on investors’ utility (referred to as Markowitz orderings) and the orderings according 

to prospect theory (referred to as Prospect orderings)11. Optimal choices consistent with these orderings 

are optimal for non-satiable investors that are neither risk-averse nor risk-lovers. According to the 

definition of prospect ordering given by Levy and Levy (2002), X dominates Y in the sense of prospect 

theory ( X P SD Y ) if and only if  

( , ) [0,1] ( ,0]a y∀ ∈ × −∞ , ( , ): ( ) (1 ) ( ) ( , )X X X Yg a y ag y a g y g a y= + − ≤% , 

where ( )( )[ (0, ]]
0

( ): ( ) (0)
y

X X X y Xg y F u du E y X I yF
−

∈ −= = − − −∫  and ( )( )
0

[ ( ,0]]
( ): ( ) (0)

X X X y X
y

g y F u du E X y I yF∈= = − − −∫% . 

Since a consistent estimator of ( , )Xg a y  is given by  

( ) ( ) ( )
( ) , ( ) , ( ) ,' ( ) , [ ' (0, ]] [ ' 0] ( ) , [ ' ( ,0]]

1 1 1

1
ˆ ( , ) ' 1 '

Y k Y k k Y k k Y k

T T T

x r r k Y k x r r y x r r k Y k x r r y

k k k

g a y a y x r r I y I a x r r y I
T

− − ∈ − − < − ∈
= = =

 
= − − + − − − − − 

 
∑ ∑ ∑ , 

we get non-dominated portfolios with respect to prospect theory order minimizing '
ˆ ( , )

Yx r rg a y−  for 

                                                   
11

 See Levy and Levy (2002) and the references therein.. 
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different values of ( , ) [0,1] [ ,0]a y c∈ × , where ( )( ) , ( ) ,
1 1

max min min ' , maxmax 'k Y k k Y k
x S k T x S k T

c x r r x r r
∈ ≤ ≤ ∈ ≤ ≤

= − − −  and 

{ }1/ 1; 0n n
i iiS x x x== ∈ = ≥∑� . 

According to the definition of Markowitz orderings given by Levy and Levy (2002), we say X dominates 

Y in the sense of Markowitz order ( X M SD Y ) if and only if for every ( ,0]y∈ −∞  

( )( )(2)( ): ( ) ( ) ( )
y

X X X Ym y F u du F y E y X m y
+−∞

= = = − ≤∫  and ( )( ) ( )( )( ) ( ) 0
Y X

y
F u F u du E X y E Y y

+∞

+ +−
− = + − + ≥∫  

if and only if 

( )( )( , ) : ( ) (1 ) ( , )
X X Y

m a y am y a E X y m a y
+

= − − + ≤ , ( , ) [0,1] ( ,0]a y∀ ∈ × −∞   

In this case, we obtain optimal portfolios in the sense of Markowitz order by solving the following  

portfolio problem in a mean-risk space: 

( )
( ) ,( ) , [ ' ]

1 1

( )

1 1

, ( )

1
min ' subject to

1
' ; 1; 0; 1,..., ;

T

0; ' ; 1,..., ,

k Y k

T T

k k Y k x r r y
x

k k

T n

t j j

t j

k k Y k k

a a
v x r r y I

T T

x r m x x j n

v v y r x r k T

− >−
= =

= =

−
− − +

≥ = ≥ =

≥ ≥ + − =

∑ ∑

∑ ∑                          (15) 

for different values of ( , ) [0,1] [ ,0]a y c∈ ×  with ( )( ) , ( ) ,
1 1

max min min ' , maxmax '
k Y k k Y k

x S k T x S k T
c x r r x r r

∈ ≤ ≤ ∈ ≤ ≤
= − − −  and a 

given mean equal to or greater than m. Moreover, we can propose portfolio selection problems consistent 

with the generalized Markowitz- and Prospect-type orderings proposed by Ortobelli et al. (2008). In 

addition, we introduce many new kinds of behavioral finance orderings associated with the FORS 

aggressive-coherent functionals  

( ) ( )1 2 1, 2 2, 1( , , ) (1 )
X X X

S a t t a t a tρ ρ −= − −  

where 
1 1 2 2[0,1], ,a t B t B∈ ∈ ∈  and 1, 2,,

X X
ρ ρ  are two simple coherent FORS functionals.

12
  Even if we 

minimize one of  these FORS aggressive-coherent functionals, we obtain optimal choices for non-satiable 

investors that are neither risk-averse nor risk-lovers. For example, for any ( ), , [0,1] [0,1] [0,1]a t β ∈ × ×  we 

                                                   
12

 See Rachev et al. (2008) and Ortobelli et al. (2008). 
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can consider either the Gini type functional 
1 2( , ) ( , )( , , ) ( ) (1 ) ( )

X t v v
g a t aGT X a GT Xββ = − − −  where 

1 2, 1v v > .  For this functional, we derive behavioral finance orderings that are strongly dependent on the 

absolute Lorenz concentration curve. Thus, the associated portfolio problems can be partially linearized 

using Equation (8). As a matter of fact, when s Tβ =  and t k T=  for some given integers ,s k T≤ , the 

consistent estimator of ' ( , , )
Yx r r

g a t β−  is given by: 

1 2

1 2

2 21 1
1 1 2 2

' ' '

1 1

( 1) (1 ) ( 1)ˆ ˆˆ ( , , )
Y Y Y

v vs k

x r r x r r r x rv v
i i

av v a v vs i i k i i
g a t L L

T T T T T T
β

β β

− −− −

− − −
= =

− − − −− −       
= +       

       
∑ ∑ . 

If we minimize this functional we can apply Equation (8) to linearize the concentration curve 

( )'
ˆ

Yx r rL i T−− . However, the second concentration curve ( )'
ˆ

Yr x rL i T−  should be estimated using 

:

1

1
( ' )

i

Y k T

k

r x r
T =

−∑  since, in the minimization problem, it appears with a positive sign. The high 

computational complexity of these portfolio selection models is a common problem for all previously 

proposed models which are consistent with behavioral finance orderings.  

 

3. Practical Portfolio Problems with Uncertainty and Tracking Error Orderings  

 

In this section, we present portfolio selection problems where investors want to optimize the uncertainty 

(as in example (2) in Section 1) or where investors want to track a benchmark as closely as possible (like 

in example (3) in Section 1). Moreover, we clarify some connections between the theory of orderings 

and the theory of probability distances/metrics (see Rachev (1991)). 

3.1 Practical Portfolio Problems Consistent with Uncertainty Orderings 

Probably the most well known uncertainty ordering in financial literature is the concave ordering more 

popularly referred to as the  Rothshild-Stiglitz (R-S) ordering.
13

 We say that X dominates Y in the sense of 

Rothschild and Stiglitz ( RSDX Y ) if and only if all risk-averse investors prefer the less uncertain 

                                                   
13

 See Levy (1992) and the references therein. 
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variable X to Y (if and only if E(X) = E(Y) and 
2

X Y≥ ). More generally, we state that X dominates Y in the 

sense of 1 2,α α - R-S order (with 1 2, 2α α ≥ ) if and only if 
1

X Y
α
≥  and 

2

X Y
α

− ≥ − , that is, if and only if  

1 2 1 2 1 2( , ) ( ) ( ) ( , )
( , ) : ( ) (1 ) ( ) ( , )X X X YF b t bF t b F t F b t

α α α α α α= + − ≤  for every [0,1],b t∈ ∈� ,         (16) 

where ( )( ) ( )( )1( ) ( ) 31
( ) ( ) ( ) ( )

( 2)

t

X XF t E X t F t t u E X u du
αα α αα

α

−− −
−+ +−∞

= − Γ = − = − − +
Γ − ∫ . Generally, we 

refer to 1 2,α α - R-S as simply α -R-S order when 1 2α α α= = . Similarly, we state X dominates Y in the 

sense of 1 2,α α -inverse R-S order (with 1 2, 2α α ≥ ) if and only if, 
1

X Y
α−
≥  and 

2

X Y
α−

− ≥ − , that is, if and 

only if  

1 2 1 2 1 2( , ) ( ) ( ) ( , )
( , ) : ( ) (1 ) ( ) ( , )

X X X Y
F b p bF p b F p F b p

α α α α α α− − − − − −= + − ≥  [0,1], [0,1]b p∀ ∈ ∀ ∈ ,         (17) 

where 
1 1

( ) 1 1 ( ) 3

0

1 1
( ) ( ) ( ) (1 ) (1 ) ( )

( ) ( 2)

p

X X X X
p

F p u p dF u F p p u L u du
α α α α

α α

−
− − − − −

− −= − = − = − −
Γ Γ −∫ ∫ . When 

1 2 2α α= =  in the order relations (16) and (17), we get the classic R-S order. Clearly, changing the 

parameters in (16) and (17), we can obtain many alternative uncertainty measures consistent with the 

respective R-S type ordering. For example,  

( )
( )( ) ( )( )

( )( ) ( )( )( )
2 2

( ) ( )
(3,3)

( ) ( ) 1
0.5, ( )

4 2

E X E X

X

E E X X E X E X
F E X E t X dt E X t dt

−+ +

+ +−∞ −∞

− + −
= = − + +∫ ∫   

gives a quarter of the variance of X that is obviously an uncertainty measure. Since for all these 

orderings we assume 
1 2, 2α α ≥ ,  the associated functionals satisfy the convexity property and they can 

be easily linearized when we minimize their consistent estimators of 1 2( , )
( , )XF b t

α α± ±  as suggested in  

Section 2. For example, as a consequence of the results in Section 2.1, we can minimize the variance for 

a mean equal to or greater than a value m, solving the classic Markowitz’ mean variance problem with 

the following LP optimization problem: 
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1( ) ( ) 11
1 1

, ,

1 1 1 11

( ) , ( ) ( )

1 1 1

, ( )

11

' '
1 1

min subject to

1 1 1
' ; 1; 0; 1,..., ; ' ' ;

T T

1 1
'

T

T T

t t MM T T
t t

k i k i
x

i k i k

T n T

t j j k i t k

t j t

T

k i t

t

x r Tc x r Tc

v u
TM T TM T

x r m x x j n v c i x r c x r
M

u c i c x r x
M

−−
= =

= = = =

= = =

=

− − −

+

 
≥ = ≥ = ≥ + − − 

 

 
≥ + − − + 

 

∑ ∑
∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ( ) , ,' ; 0; 0; 1,..., ;k k i k ir u v k T≥ ≥ =

     (18) 

where ( )( ) , ( ) ,
1 1

max min min ' , maxmax 'k Y k k Y k
x S k T x S k T

c x r r x r r
∈ ≤ ≤ ∈ ≤ ≤

= − − − , and M, 1M  are large. However, we also 

suggest the use of an uncertainty measure for some particular problems such as problem (2) in Section 1. 

Let us apply the use of uncertainty measures in that case and assume we want optimize the choice among 

n European options on n indexes with log-returns 1[ ,..., ]'nz z z= . Considering T i.i.d. observations of the 

vector of log-returns 
( ) 1, ,[ ,..., ]'k k n kz z z=  indexes k=1,…,T, then we can apply the Taylor approximation 

of the derivatives returns ( ), , 1 , ,i t i t i t i tR V V V+= −  obtaining for historical data the quadratic 

relation
2

, , ,i t i t i tR Ar Br C= + + , where 2

, ,
2

i t i t
A P V= Γ , , ,i t i tB P V= ∆ , ,i tC V= Θ  are functions of the Greeks 

2

,

2

,

i t

i t

V

P

∂
Γ =

∂
, 

,

,

i t

i t

V

P

∂
∆ =

∂
 and 

,i tV

t

∂
Θ =

∂
, while ,i tV , ( ), , 1 , ,i t i t i t i tr P P P+= − , and Pi,t are, respectively, the 

value of the i-th European option, the return of the underlying i-th asset for the option, and the spot price 

of the underlying i-th asset at time t. Therefore, if we have T i.i.d. observations of the vector of log-

returns ( ) 1, ,[ ,..., ]'t t n tz z z= ,  t =1,…,T, we can easily obtain T i.i.d. observations of the returns  

, ,exp( ) 1i t i tr z= − . Using the above transformation, we get T i.i.d. “approximated” observations of the 

vector of option returns, ( ) 1, ,[ ,..., ]'t t n tR R R= . Since option return distributions present asymmetries and 

heavy tails, we can control them considering opportunely
14

 the first four moments of the option returns. 

Then, investors could determine optimal choices isotonic with 1 2,α α - R-S order of the log returns by 

solving the following optimization problem for some values m, ; 1,2iq i = and t: 

                                                   
14 There is a strong connection between moments and stochastic orders as many authors have pointed out (see, 

among others, Levy (1992) and Ortobelli et al. (2008) and the references therein.  
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( ) ( )

( )( )( )
( )

( )( )( )
( )

1 2

( ) ( )

1 1

( ) [ ' 0] ( ) [ ' 0]

1 1

3 4

1 23/ 2 2

( )

1 1

1
max ' '

' ' ' '
subject to ;

' '

1
' ' ; 1; 0; 1,..., ;

k k

T T

k t x z k x z t
x

k k

R R

T n

k R j j

k j

b b
t x z I x z t I

T T

E x R E x R E x R E x R
q q

x Q x x Q x

x R m x Q x x x j n
T

α α− −

− ≥ − ≥
= =

= =

−
− + −

− −
≥ ≤

≥ = ≥ =

∑ ∑

∑ ∑

                   (19) 

where 
RQ  is the variance-covariance matrix of the vector of option returns 1[ ,..., ]'

n
R R R= . For this 

optimization problem, we maximize the uncertainty of portfolio of log returns requiring that the Sharpe 

performance of option returns is equal to or greater than m for some opportune skewness and kurtosis.  

Alternatively we can solve the problem associated with the 1 2,α α -inverse R-S order ( 1 2, 2α α > ) 

solving the analogous problem for some values m, ; 1,2iq i = and p s T=  ( for an integer s T≤ ) 

( )( )( )
( )

( )( )( )
( )

1 21 11 1

: :
, ,

1 1

3 4

1 23/ 2 2

( )

1 1

1
max ( ' ) ( ' )

' ' ' '
subject to ;

' '

1
' ' ; 1; 0; 1,..., ;

i i

s T s

i T k T
x a c

i k

R R

T n

k R j j

k j

b s i b T s k
x z x z

T T T T

E x R E x R E x R E x R
q q

x Q x x Q x

x R m x Q x x x j n
T

α α− −− − −

= =

= =

− − − −   
+ −   

   

− −
≥ ≤

≥ = ≥ =

∑ ∑

∑ ∑

                (20) 

where ( )
:

'
k T

x z  is the k-th of T ordered observations of the underlying log returns portfolio 'x z . 

Moreover, in many portfolio selection problems some concentration measures have been used to 

measure the uncertainty of the choices. The classical example is Gini's mean difference (GMD) and its 

extensions related to the fundamental work of Gini
15

.  

3.1.1 Gini's Mean Difference and Extensions  

Gini's mean difference (GMD) is twice the area between the absolute Lorenz curve and the line joining 

the origin with the mean located on the right boundary vertical. We report here the most used of the 

myriad representations: 

( ) ( )( )
1

1 2 1 2
0

(2) ( ) 2 ( ) ( ) (min( , )) 2cov , 1 ( )X X XE X L u du E X X E X E X X X F XΓ = − = − = − = − −∫ , 

                                                   
15

 See Shalit and Yitzhaki (1984) and the references therein 
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where X1 and X2 are two independent copies of X. GMD depends on the spread of the observations 

among themselves and not on the deviations from some central value. Consequently, this measure relates 

location with variability, two properties that Gini himself argue are distinct and do not depend on each 

other. While the Gini index, i.e. the ratio GMD/E(X),
 16

  has been used for the past 80 years as a measure 

of income inequality, the interest in GMD as a measure of risk in portfolio selection is relatively recent
17

. 

Alternatively to GMD we can consider the extended Gini's mean difference that takes into account the 

degree of risk aversion as reflected by the parameter v. As we can see from the following representation, 

this index can also be expressed as a function of the Lorenz curve:  

( )( )
1 12

0
( ) ( ) ( 1) (1 ) ( ) cov , 1 ( ) .

vv

X X Xv E X v v u L u du v X F X
−−Γ = − − − = − −∫          (21) 

From this definition, it follows that the measures ( ( 1))( ) ( ) ( 1) (1)v

X Xv E X v F
− +Γ − = −Γ +  characterize the 

previous Gini FORS orderings. Thus, as a consequence of Remark 1 the extended GMD is a deviation 

measure associated with the expected bounded coherent risk measure ( ) ( )X v E XΓ −  for every v>1. 

Interest in the potential applications to portfolio theory of GMD and its extension has been fostered by 

Shalit and Yitzhaki (1984), who have explained the financial insights of these measures. Moreover, 

using Gini measures, we can consider the Gini tail measure for a given β : associated with a dilation 

order (see Fagiuoli et al (1999)) ( )1

,
0

(1) ( ) ( )
X X

E X F u du
β

β β−Γ = − ∫ , that can also be extended 

considering 1v >  and using the tail measure: 

1 1 2

,
0 0

( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )v v v v

X X X
v E X v u F u du E X v v u L u du

β β

β β β β β− − −Γ = − − = − − −∫ ∫     (22) 

for some [0,1]β ∈ . Even in this case, ( ( 1))

, ( ) ( ) ( 1) ( )v v

X Xv E X v Fβ β β− +Γ = − Γ +  (for every v>1) is the 

deviation measure associated with the expected bounded coherent risk measure 
, ( ) ( )

X
v E XβΓ − . 

Moreover, if X RSD Y then E(X) = E(Y) and 
2

X Y
−
≥ . Thus, ( ( 1))

,( 1) ( ) ( ) ( )v v

X Yv F v E Yββ β− +−Γ + ≤ Γ −  for 

                                                   
16

 In the income inequality literature, the Gini index is the area between the relative Lorenz curve and the 45° line 

expressing complete equality 
17

 See Shalit and Yitzhaki (1984). 



22 
Authors: Ortobelli, Rachev, Shalit, Fabozzi 

Article submitted to Management Science; manuscript no. MS-XXXX-2008 

 

 

  

every 1v ≥  and for every [0,1]β ∈ , i.e. , ,( ) ( )
X Y

v vβ βΓ ≤ Γ . This means that , ( )
X

vβΓ  is an uncertainty 

measure consistent with R-S order. Moreover, ( )1 1

0

( ) ( ) ( 1) 1 ( ) ( )

v

X Y

u
E X E Y v d F u F u

β

β
− − 

− = Γ + − − 
 
∫  for 

any [0,1]β ∈  if and only if 
X Y

F F=  if and only if , ,( ) ( )
X Y

v vβ βΓ = Γ  for any [0,1]β ∈ , as remarked in the 

following: 

Remark 2 For every 1v ≥  and for every (0,1)β ∈  the Gini tail measure  

( ( 1))

, ( ) ( ) ( 1) ( )v v

X X
v E X v Fβ β β− +Γ = − Γ +  is consistent with R-S order. Moreover, if , ,( ) ( )

X Y
v vβ βΓ = Γ  

for any  [0,1]β ∈ , then 
X Y

F F= . 

From Remark 2 we deduce that for any 1v ≥ , we can introduce a new uncertainty FORS 

ordering induced by R-S ordering. That is, we say that X dominates Y in the sense of v-Gini uncertainty 

ordering if and only if , ,( ) ( )
X Y

v vβ βΓ ≤ Γ  for any [0,1]β ∈ . These new uncertainty orderings generalize 

the dilation order that holds when v=1 (see Fagiuoli et al (1999)). Observe that although we can 

minimize a Gini tail measure , ( )
X

vβΓ  by solving an optimization problem with linear objective function, 

we cannot easily maximize , ( )
X

vβΓ  with the same linear optimization problem because the 

concentration curve appears with a negative sign.  

Therefore, if investors want to optimize a portfolio of European options as suggested in Section 

1, they could maximize the uncertainty with respect the v-Gini ordering by solving the following 

optimization problem for some values m, ; 1,2iq i = and /s Tβ =  (with an integer s T≤ ): 

( )

( )( )( )
( )

( )( )( )
( )

11

( ) :
1 1

3 4

1 23/ 2 2

( )

1 1

1
max ' ' subject to

' ' ' '
;

' '

1
' ' ; 1; 0; 1,..., ;

vT s

t v k Tx
t k

R R

T n

k R j j

k j

v s i
x z x z

T T T

E x R E x R E x R E x R
q q

x Q x x Q x

x R m x Q x x x j n
T

β

−−

= =

= =

− 
−  

 

− −
≥ ≤

≥ = ≥ =

∑ ∑

∑ ∑

                              (23) 

where ( )
:

'
k T

x z  is the k-th of T ordered observations of the underlying log returns portfolio 'x z . The 
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portfolio optimization problems (19), (20), and (23) that propose to maximize the uncertainty of the 

underlying log returns are not computationally simple compared to those presented in Section 2. There 

exists a theoretical motivation to this fact. As a matter of fact, Bauerle and Müller (2006) have proved 

that measures which satisfy the convexity property (such as the functionals (16), (17), and (22)) are 

uncertainty measures. Thus, when we maximize the uncertainty on a compact set of choices, we could 

have more local optima. Instead, if we want to minimize the uncertainty, we can easily linearize all the 

functionals (16), (17), and (22) using arguments similar to those of Section 2. 

3.2 Practical Portfolio Problems Consistent with Tracking Error Orderings 

As shown by Stoyanov et al. (2008), there is a strong connection between probability metric theory and 

portfolio theory. In this subsection, we first recall some of the basic properties of probability distances 

that under some opportune assumption can be also used as uncertainty measures (concentration/dispersion 

measures), then we introduce the concept of FORS tracking error orderings and measures. Thus, we 

propose portfolio problems where a benchmark asset with return Yr  and n risky assets with returns 

1[ ,..., ]'nr r r=  are traded. In particular, we examine portfolio problems consistent with some particular 

tracking error orderings using T i.i.d. observations of the vector of returns ( ) 1, ,[ ,..., ]'k k n kr r r= , and of the 

benchmark return 
,Y kr , k =  1,…,T. 

As observed in Section 1, often investors want to reduce a distance with respect to a given 

benchmark. Any probability functional µ is called a probability distance with parameter K if it is positive 

and satisfies the following additional properties:  

1) Identity ( ) ( ) ( , ) 0f X f Y X Yµ= ⇔ = ;  

2) Symmetry ( , ) ( , )X Y Y Xµ µ=    

3) Triangular inequality ( )( , ) ( , ) ( , )X Z K X Y Y Zµ µ µ≤ +  for all admissible random variables X, Y, and Z   

where  f(X) identifies some characteristics of the random variable X. If the parameter K equals 1, we have a 

probability metric. We can always define the alternative finite distance ( )( , ) ( , )H X Y H X Yµ µ= , where 
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:[0, ) [0, )H +∞ → +∞  is a non-decreasing positive continuous function such that H(0)=0 and 

0

(2 )
sup

( )
H

t

H t
K

H t>

= < +∞ .
18

  Therefore, for any probability metric µ , Hµ  is a probability distance with 

parameter 
HK . In this case, we distinguish between primary, simple, and compound probability 

distances/metrics that depend on certain modifications of the identity property (see Rachev (1991)). 

Compound probability functionals identify the random variable almost surely 

i.e.: ( , ) 0 Pr( ) 1X Y X Yµ = ⇔ = = . Simple probability functionals identify the distribution (i.e., 

( , ) 0 X YX Y F Fµ = ⇔ = ). Primary probability functionals determine only some random variable 

characteristics. Often we can associate a distance ordering (on the space of random variables Λ ) to 

compound (or simple) distances µ  defined between a random variable belonging to Λ  and a fixed 

benchmark Z V∈ Λ = . The ordering depends on the metric/distance definition and is related to a FORS 

functional  :U Bρ × → �  (where (B,MB) is a measurable space) that serves to order distances between 

distributions or random distances as explained in the following: 

Definition 1 We say X is preferred to Y with respect to the µ -compound (simple) distance from Z (namely 

Z
X Yµf ) if and only if there exists a probability functional : Z Bρ Λ × × → �  dependent on µ  such that 

for any t B∈  and ,X Y ∈ Λ , ( ) ( )X Yt tρ ρ≤ . In this case, the equality 
X Yρ ρ=  implies a distributional 

equality ( , ) ( , )g X Z g Y ZF F=  for compound distances µ  and a distance equality ( , ) ( , )X Z Y Zg F F g F F=  for 

simple distances µ  (where ( , )g x z  is a distance in � ). We call 
Xρ  (tail) tracking error measure 

(functional) associated with the µ -FORS tracking error ordering. 

Consequently, in passive tracking error strategies we should minimize the functional 
Xρ  

associated with the µ -FORS tracking error ordering as done in optimization problem (2). This is generally 

different from active tracking error strategies where investors want to outperform the benchmark and 

                                                   
18

 See Rachev (1991) for further generalizations. 
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optimize a particular non-symmetric probability functional (see, among others, Stoyanov et al. (2008)). As 

a matter of fact, for active tracking error strategies we should also require that the optimal portfolio reward 

measure be greater than the reward measure of the benchmark. 

 In essence, probability metrics can be used as tracking error measures. In solving the portfolio 

problem with a probability distance, we intend to “approach” the benchmark and change the perspective 

for different types of probability distances. Hence, if the goal is only to control the uncertainty of an 

investor’s portfolio or to limit its possible losses, mimicking the uncertainty or the losses of the benchmark 

can be done using a primary probability distance. When the objective for an investor’s portfolio is to 

mimic entirely the benchmark, a simple or compound probability distance should be used. In addition to its 

role as measuring tracking error, a compound distance can be used as a measure of uncertainty. As a 

matter of fact, if we apply any compound distance ( , )X Yµ  to X and 
1Y X=  that are i.i.d., then we get: 

1 1( , ) 0 Pr( ) 1X X X X Xµ = ⇔ = = ⇔  is a constant almost surely. 

 For this reason, we refer to  
1( , ) ( )IX X Xµ µ=  as a concentration measure derived by the 

compound distance µ . Similarly, if we apply any compound distance ( , )X Yµ  to X and ( )Y E X=  (either 

( )Y M X= , i.e. the median or a percentile of X, if the first moment is not finite), we get: 

( , ( )) 0 Pr( ( )) 1X E X X E X Xµ = ⇔ = = ⇔  is a constant almost surely. 

Hence, ( )( , ( )) ( )E XX E X Xµ µ= can be referred to as a dispersion measure derived by the compound 

distance µ . Let’s consider the following examples of compound metrics, the associated concentration, 

dispersion measures, tracking error orderings, and associated practical portfolio problems. 

3.2.1 Examples of Probability Compound Metrics: 

As observed above, for each probability compound metric we can always generate a probability compound 

distance ( )( , ) ( , )H X Y H X Yµ µ=  with parameter 
HK . 

p
L -metrics: For every 0p ≥  we recall the p

L -metrics: ( )
min(1,1/ )

( , )
p

p

p X Y E X Yµ = − ;  the associated 
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concentration measures are ( )
min(1,1/ )

, 1( )
p

p

I p X E X Xµ = − , where 1X  is an i.i.d. copy of X; and the 

associated dispersion measures are the central moments  ( )
min(1,1/ )

( ), ( ) ( )
p

p

E X p X E X E Xµ = − . The dispersion 

and concentration measures ( ), ( )
E X p

Xµ  and , ( )
I p

Xµ  are uncertainty measures consistent with ( 1)p +  R-

S order for any 1p ≥ . We can consider for p
L  metrics the FORS tracking error measures  

( ) ( ) ( )( )
1/ min(1,1/ )

, [ ] [ ]
( ) ( , ) Pr

p pp p

X p p X Z t X Z t
t XI ZI t X Z t E X Z tρ µ

− ≥ − ≥
+

= − − ≥ = − −  

for any [0, )t ∈ +∞  associated with an 
p

µ  FORS tracking error ordering. Besides , ,X p Y p
ρ ρ=  implies that 

X Z Y Z
F F

− −
= . Thus, all investors who choose portfolios consistent with this 

p
µ  FORS tracking error 

ordering should solve the following portfolio selection problem for some given t>0: 

1

( ) ,

1

, ( )

1
min subject to

1; 0; 1,..., ; '

' ; ; 0; 1,...,

T

k
x

k

n

j j k k Y k

j

p p

k Y k k k k k

u
T

x x j n v x r r

v r x r u v t u k T

=

=

= ≥ = ≥ −

≥ − ≥ − ≥ =

∑

∑                                (24) 

that is linear when p = 1 and convex when 1p > . Alternatively, we could introduce as FORS tracking 

error functional associated with an pµ  FORS tracking error ordering the probability functional 

( ) ( )1/ min(1,1/ )

( ) ( , )
q q

X q
q X Z E X Zρ µ= = −  for any (0, ]q p∈  that still identifies the distribution 

X Z
F

−
. So 

investors who choose portfolios consistent with this 
p

µ  FORS tracking error ordering should solve the 

following portfolio selection problem with linear constraints for some (0, ]q p∈ : 

1

( ) ,

1

, ( )

1
min subject to

1; 0; 1,..., ; ' ;

' ; 1,..., .

T
q

k
x

k

n

j j k k Y k

j

k Y k k

v
T

x x j n v x r r

v r x r k T

=

=

= ≥ = ≥ −

≥ − =

∑

∑                                  (25) 

That is, a convex programming problem when 1p >  and we use [1, ]q p∈ .  
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Ky Fan metrics: { }1( , ) inf 0 /Pr( )k X Y X Yε ε ε= > − > <  and 2 ( , )
1

X Y
k X Y E

X Y

 −
=   + − 

, the respective 

concentration measures are { }1, 1( ) inf 0/Pr( )Ik X X Xε ε ε= > − > < , 
1

2,

1

( )
1

I

X X
k X E

X X

 −
=   + − 

, while the 

associated dispersion measures are { }1, ( )( ) inf 0/Pr( ( ) )E Xk X X E Xε ε ε= > − > < , 2, ( )

( )
( )

1 ( )
E X

X E X
k X E

X E X

 −
=   + − 

. 

For Ky Fan metrics we consider the FORS tracking error measure 

,2 2 [ ] [ ]
( ) ( , )X X Z t X Z t
t k XI ZIρ

− ≥ − ≥
= associated with the 2k -FORS tracking error ordering, where ,2 ,2X Yρ ρ=  

implies 
X Z Y Z

F F
− −

= . Therefore, we get choices consistent with 1k  FORS tracking error metric by 

solving the optimization problem:  

( ) ,

1

[ ' ]
1

min subject to

1; 0; 0;

1
.

k Y k

x

n

j j

j

T

x r r u
k

u

x x u

I u
T

=

− >
=

= ≥ ≥

<

∑

∑

                                                          (26) 

On the other hand, investors who choose portfolios consistent with this 
2k  FORS tracking error ordering 

should minimize the consistent estimator ,2
ˆ ( )X tρ =

( ) ,
( ) , [ ' ]

1 ( ) ,

'1

1 '

k Y k

T k Y k x r r t

k k Y k

x r r I

T x r r

− ≥

=

−

+ −
∑  for some t>0. 

Generally, when we consider the compound metric/distance as dispersion/concentration measure 

( , ( ))X f Xµ  (where f(X) is either a functional of X or an independent copy of X), we should obtain a 

tracking error measure between X and Z using ( , ( ))X Z f X Zµ − − . In particular, some of these tracking 

error type measures (i.e., ( , ( ))X Z f X Zµ − − ) have been used in the portfolio literature by, for example, 

Stoyanov et al. (2008) . 

 Moreover, even simple probability distances can be used as dispersion measures and tracking error 

measures, but, generally not as concentration measures. As a matter of fact, when we apply any simple 

distance ( , )X Yµ  to X and ( )Y E X=  (either ( )Y M X= , i.e., median or a percentile of X, if the first 
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moment is not finite), we get:  

( )( , ( )) 0 X E XX E X F F Xµ = ⇔ = ⇔  is a constant almost surely. 

 Thus, we refer to ( )( , ( )) ( )E XX E X Xµ µ=  as a dispersion measure derived by the simple distance 

µ . As for compound metrics, we can generate a simple probability distance ( )( , ) ( , )H X Y H X Yµ µ=  with 

parameter 
HK  for any simple probability metric ( , )X Yµ . Let’s consider the following examples of simple 

metrics, the associated dispersion measures, and FORS tracking error orderings. 

3.2.2 Examples of Simple Probability Metrics:  

FORS tracking error simple metrics and downside risk measures: Consider a frictionless economy where 

a benchmark asset with return Yr  and 2n ≥  risky assets with returns 1[ ,..., ]'nr r r=  are traded. Let 

:[ , ]X a b Rρ →  be a FORS measure associated with a FORS risk ordering defined over any admissible 

portfolio of returns  X=x’r and over the return Y=
Yr . Then we define for any positive p the FORS tracking 

error metric: 

( ) ( ) ( )( )
min(1 1)

' , 'Y Y

/p,
b p

x r r x r r
a

p dρ ρ λ ρ λ λ= −∫ . 

Similarly, we describe the associated dispersion measures whose definition depends on the 

definition of the functional 
Xρ . For any of these FORS tracking error metrics, we consider the FORS 

tracking error orderings with the associated (tail) FORS tracking error measures:  

( ) ( ) ( )
[ ' ] [ ]

min(1 1)

' , ',
Y x r t Y r tY

/p,
pb

x r r x rI r I
a

p t dρ ρ λ ρ λ λ
≤ ≤

 = − 
 ∫ [ , ]t a b∀ ∈ , 

where ' , ' ,( ,.) ( ,.)
Y Yx r r w r rp pρ ρ=  if and only if 

' 'Y Yx r r w r rρ ρ ρ ρ− = − . In addition, ' Yx r FORS r
f

, if and 

only if ( ) ( )( )' 0
Y

b u

x r r
a

dρ λ ρ λ λ
+

− =∫ . Thus, when investors want to outperform the benchmark 
Yr , they 

minimize the following non-symmetric measures  

( ) ( ) ( )( )( )
min(1 1)

' , 'Y Y

/u,
ub

dsr

x r r x r r
a

u dρ ρ λ ρ λ λ
+

= −∫ , 
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that we call portfolio FORS downside risk measures. Observe that ( )' ( ' ), ( )Y Y

dsr

x r E x r r E r uρ − −  is a relative 

deviation metric in the sense of Stoyanov et al. (2008). Generally, the benchmark 
Yr  is not dominated in 

the sense of FORS
f

, otherwise the minimization of the portfolio FORS downside risk leads to infinite 

solutions. When the benchmark Yr  is not dominated, we can consider the FORS downside tracking error 

ordering with the associated functional  

( ) ( ) ( )( )[ ' ] [ ]

min(1 1)

' , ',
Y x r t Y r tY

/p,
pb

dsr

x r r x rI r I
a

p t dρ ρ λ ρ λ λ
≤ ≤

+

 
= − 
 
∫ , [ , ]t a b∀ ∈ , 

where ' , ' ,( ,.) ( ,.)
Y Y

dsr dsr

x r r w r rp pρ ρ=  if and only if ( ) ( )' 'Y Yx r r w r rρ ρ ρ ρ
+ +

− = − . In this case, when 

( ) ( )' , ' ,, ,
Y Y

dsr dsr

x r r w r rp t p tρ ρ≤  for any t belonging to [a,b], we say that portfolio x’r represents a higher out 

performance than w’r in the sense of FORS
f

 ordering and with respect to the common benchmark Yr . 

Clearly, when we optimize a FORS downside risk measure we generally require that the optimal 

portfolio presents a higher reward measure than the benchmark. Typical examples of FORS tracking 

error measures and FORS downside risk measures are those based on Gini type metrics and Generalized 

Zolotarev  ones which are discussed next.  

Generalized Zolotarev metric: For every 0q ≥ , the generalized Zolotarev metric among variates X, Y 

with support on the interval [a,b] is given by ( )
min(1/ ,1)

( ) ( )

, ( , ) ( ) ( )
q

b q

q X Y
a

GZM X Y F t F t dt
α α

α = −∫  and 

the associated dispersion measure is 
( )

min(1/ ,1)
1

( )
( ) ( )

,
( )

( )
( , ( )) ( ) ( )

( )

q
q

E X bq

q X X
a E X

t E X
GZM X E X F t dt F t dt

α

α α
α

α

− − = + −
 Γ
 
∫ ∫ . 

This metric has been introduced by Zolotarev for q=1 and extended by Rachev (1991) for 1q ≠ . 

Associated to a ,pGZM α  FORS tracking error ordering we can consider the FORS tracking error measure 

1/ min(1/ ,1)

, [ ] [ ]( ) ( , ) p

X p X t Z tt GZM XI ZIαρ ≤ ≤=  where
X Yρ ρ=  implies that ( ) ( ) ( ) ( )

X Z Y ZF F F F
α α α α− = − . Then, 

for any 
,

1
min Y k

k T
t c r

≤ ≤
≥ = , a consistent estimator of 1/ min(1/ ,1)

, [ ' ] [ ]( ' , )
Y

p

p x r t Y r tGZM x rI r Iα ≤ ≤  for M large is the 
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functional 
( ) ,

1 1

( , )

' , ( ) ,
'

0 1

1
( ) '

( )Y
k Y k

p
M T

p

x r r k Y kt c t c
c i x r c i r

i k M M

t c t c t c
G t c i x r I c i r I

M T M M

α α

α

α

− −

− −   
+ > + >   = =    

 
− − −    = + − − + −    Γ    

 
∑ ∑% , 

since 
,( , ) 1/ min(1/ ,1)

' , , [ ' ] [ ]( ) ( ' , )
Y Y

M Tp p

x r r p x r t Y r tG t GZM x rI r I
α

α
→∞

≤ ≤→% . Thus all investors that choose portfolios 

consistent with this ,pGZM α  FORS tracking error ordering should solve the following portfolio selection 

problem for some given 
,

1
min Y k

k T
t c r

≤ ≤
≥ = : 

( , )

' ,

1

min ( ) subject to

1; 0; 1,..., .

Y

p

x r r
x

n

j j

j

G t

x x j n

α

=

= ≥ =∑

%

                                                      (27) 

Gini's Index of Dissimilarity and Extensions: To measure the degree of difference between two random 

variables, Gini introduced the index of dissimilarity. The index properly measures the distance between 

two variates and has been intensively used in mass transportation problems. We present here some of the 

many representations of Gini's index of dissimilarity:  

( ){ } ( )
1

1 1

,
0

(1) ( ) ( ) ( ) ( ) inf / ( , )X Y X Y X Y F X Y F
G F x F x dx F u F u du E X Y F F F E X Y

+∞
− −

−∞
= − = − = − ∈ℑ = −∫ ∫ %

% % % %  

where 1( )XX F U
−=% , 1( )YY F U

−=% , U is uniformly distributed (0,1), and ( )( , ) min ( ), ( )X YF x y F x F y=%  is 

the Hoeffding-Frechet bound of the class of all bivariate distribution functions ( , )X YF Fℑ  with marginals 

XF  and YF  (see Rachev (1991)). In portfolio theory, this risk measure evolves with respect to the 

chosen benchmark. For example, when the mean E(X) is used as benchmark Y, the index of dissimilarity 

is the mean absolute deviation of X, a dispersion measure consistent with the R-S stochastic order.  

A logical expansion of Gini’s index of dissimilarity is obtained by the FORS tracking error 

metrics ( ) ( )
( )min 1/ ,1

1
( ) ( )

, ,
0

( ) ( )
q

q

X Z X ZG q F p F p dp
α α

α
− −= −∫ , and the associated downside risk tracking error 

measures ( ) ( )( )
( )min 1/ ,1

1
( ) ( )

, ,
0

( ) ( )
q

q
dsr

X Z Z X
G q F p F p dpα α

α
− −

+
= −∫ . As in Section 2, we can simplify for these measures 

the optimization by considering some linearizations when 2α ≥ . Thus, for example, if we want to 
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minimize the tail FORS tracking error measure ( )' , ,2 ,
Y

dsr

x r rG q p  for some p s T=   we should solve the 

following simplified portfolio selection problem: 

; ; 1,...,
1

1
min
i

s
q

t
x a i s

t

z
T=

=

∑  subject to  

( ), :
1 1 1

1 1
; 0

t T i

t i k i Y tk T
i k k

i
z a v r z

T T T= = =

 
≥ + + ≥ 

 
∑ ∑ ∑  for 1,...,t T=                               (28) 

, 0k iv ≥ ; , ( )'k i k iv x r a≥ − − , 
( )

1

1
' ( )

T

T

t Y

t

x r E r
=

≥∑  1,..., ; 1,...,k T i s= =  

where 1, ,[ ,..., ]'t t n tr r r=  is the vector of returns at time t, ( )
:Y k T

r  is the k-th of T ordered observations of 

Yr , and the optimal values -
ia  are the ( / )i T -th percentiles of the portfolio x’r. 

 

4. Concluding remarks  

 

The first contribution of this paper consisted in classifying three possible portfolio problems 

with respect to the type of ordering required, that could be either a risk ordering, an uncertainty ordering, 

or a distance ordering. By doing so, we introduced new risk and behavioral risk orderings, new Gini 

uncertainty orderings, and new distance orderings that are used to better classify investors choices. 

Furthermore, we proposed new coherent risk measures, uncertainty measures, and tracking error 

measures based on probability functionals consistent with some stochastic orderings. The second 

contribution of the paper lies in the computational applicability of the portfolio problems arising from 

optimizing a risk measure, an uncertainty measure, or a probability distance. Thus, for each opportune 

orderings, we proposed several practical portfolio optimization problems that could be solved even for 

large portfolios when we consider choices consistent with risk orderings.  

 Several new perspectives and problems arise from this analysis. Since we can better specify the 

problem of portfolio optimization by taking into account the attitude of investors toward risk, we have to 

consider the ideal characteristics of the associated statistics and their asymptotic behavior. By using the 
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theory of probability metrics, we can explain and argue why a given metric must be used for a particular 

optimization problem.  
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