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1. 1 Introduction 

There are several tasks in the investment management process. These in-
clude setting the investment objectives, establishing an investment policy, 
selecting a portfolio strategy, asset allocation, and measuring and evaluat-
ing performance. Bayesian methods have been either used or proposed as a 
tool for improving the implementation of several of these tasks. There are 
principal reasons for using Bayesian methods in the investment manage-
ment process. First, they allow the investor to account for the uncertainty 
about the parameters of the return-generating process and the distributions 
of returns for asset classes and to incorporate prior beliefs in the decision-
making process. Second, they address a deficiency of the standard statisti-
cal measures in conveying the economic significance of the information 
contained in the observed sample of data. Finally, they provide an analyti-
cally and computationally manageable framework in models where a large 
number of variables and parameters makes classical formulations a formi-
dable challenge.  

The goal of this chapter is to survey selected Bayesian applications to 
investment management. In Section 1.2, we discuss the single-period port-
folio problem, emphasizing how Bayesian methods improve the estimation 
of the moments of returns, primarily the mean. In Section 1.3, we describe 
the mechanism for incorporating asset-pricing models into the investment 
decision-making process. Tests of mean-variance efficiency are surveyed 
in Section 1.4. We explore the implications of predictability for investment 
management in Section 1.5 and then provide concluding remarks in Sec-
tion 1.6. 

1.2. The Single-Period Portfolio Problem 

The portfolio choice problem represents a primary example of decision-
making under uncertainty. Let 1+Tr  denote the vector (N × 1) of next-
period returns and W current wealth. We denote next-period wealth by 

( )11 '1 ++ += TT rWW ω  in the absence of a risk-free asset and 

( )11 '1 ++ ++= TfT rrWW ω  when a risk-free asset with return fr  is pre-

sent. Let ω  denote the vector of asset allocations (fractions of wealth allo-
cated to the corresponding stocks). In a one-period setting, the optimal 
portfolio decision consists of choosing ω  that maximizes the expected 
utility of next-period’s wealth, 
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( )( ) ( ) ( )∫ ++ = drrpWUWUE TT θ
ωω

|maxmax 11 , (1.1) 

subject to feasibility constraints, where θ  is the parameter vector of the re-
turn distribution and U  is a utility function generally characterized by a 
quadratic or a negative exponential functional form. A key component of 
Eq. (1.1) is the distribution of returns ( )θ|rp , conditional on the un-

known parameter vector θ . The traditional implementation of the mean-

variance framework1 proceeds with setting θ  equal to its estimate ( )rθ̂  
based on some estimator of the data r  (often the maximum likelihood es-
timator). Then, the investor’s problem in Eq. (1.1) leads to the optimal al-
location given by 

( ) ( )( )rrUE θθωω
ω

ˆ|'maxarg* ==
. 

(1.2) 

The solution in Eq. (1.2), known as the certainty equivalent solution, treats 
the estimated parameters as the true ones and completely ignores the effect 
of the estimation error on the optimal decision. The resulting portfolio dis-
plays high sensitivity to small changes in the estimated mean, variance, 
and covariance, and usually contains large long and short positions that are 
difficult to implement in practice.2  

Starting with the work of (Zellner and Chetty 1965), several early stud-
ies investigate the effect parameter uncertainty plays on optimal portfolio 
choice by re-expressing Eq. (1.1) in terms of the predictive density func-

                                                      
1 The mean-variance selection rule of (Markowitz’s 1952), given by 

1'*,'..,'min =≥Σ ιωµµωωω
ω

ts , where µ  is the vector of expected re-

turns ,Σ is the covariance matrix of returns, and ι is a compatible vector of 
ones, provides the same set of admissible portfolios as the quadratic-type ex-
pected-utility maximization in Eq. (1.1). (Markowitz and Usmen 1996) point 
out that the conventional wisdom that the necessary conditions for application 
of mean-variance analysis are normal probability distribution and/or quadratic 
utility is a “misimpression” (Markowitz and Usmen 1996, p. 217). Almost op-
timal solutions are obtained using a variety of utility functions and distribu-
tions. For example, it is possible to weaken the distribution condition to mem-
bers of the location-scale family. See (Ortobelli, Rachev, and Schwartz 2004).  

2 See, for example, (Best and Grauer 1991) 
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tion.3 The predictive density function reflects estimation risk explicitly 
since it integrates over the posterior distribution, which summarizes the 
uncertainty about the model parameters, updated with the information con-
tained in the observed data. The optimal Bayesian portfolio problem takes 
the form: 

( )( ){ }
( ) ( ) ( )∫∫ ++

+ =

rprpWU

WUEE

TT

Tr

||max

|max

11

1|

θθ

θ

ω

θθω

 

( ) ( ) ( )[ ]∫ ∫ ++ drdrprpWU TT θθθ
ω

||max 11
, 

(1.3) 

where by Bayes’ rule, the posterior density ( )rp |θ  is proportional to the 
product of the sampling density (the likelihood function) and the prior den-
sity, ( ) ( )θθ prf | . 

The multivariate normal distribution is the simplest and most convenient 
choice of sampling distribution in the context of portfolio selection, even 
though empirical evidence does not fully support this model.4 In the case 
where no particular information (intuition) about the model parameters is 
available prior to observing the data, the decision-maker has diffuse (non-
informative) prior beliefs, usually expressed in the form of the Jeffrey’s 

prior ( ) 2/)1(
,

+−Σ∝Σ N
p µ , where µ  and Σ  are, respectively, the mean 

vector and the covariance vector of the multivariate normal return distribu-
tion, N is the number of assets in the investment universe, and ∝  denotes 
“proportional to”. The joint predictive distribution of returns is then a mul-
tivariate Student-t distribution. 

Informative prior beliefs are usually cast in a conjugate framework to 
ensure analytical tractability of the posterior and predictive distributions. 
The predictive distribution is multivariate normal only when the covari-
ance Σ  is assumed known and µ  is asserted to have the conjugate prior 

( )IN 2
0 ,τιµ , where 0µ  stands for the prior mean, ι  is a vector of ones, 

and I2τ is the diagonal prior covariance matrix. When both parameters are 
unknown and conjugate priors are assumed (the conjugate prior for Σ  in a 

multivariate setting is an inverse-Wishart with scale parameter 1−S , where 

                                                      
3 See, for example, (Barry 1974; Winkler and Barry 1975; Klein and Bawa 1976; 

Brown 1976; Jobson, Korkie and Ratti 1979; Jobson and Korkie 1980; Chen 
and Brown 1983). 

4 For example, see (Fama 1965). 
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S  is the sample covariance matrix), the predictive distribution is multi-
variate Student-t.5 

(Klein and Bawa 1976) compare the Bayesian and certainty equivalent 
optimal solutions under the assumption of a diffuse prior for the parame-
ters of the multivariate normal returns distribution ((Barry 1974) asserts in-
formative priors) and show that in both cases the admissible sets are the 
same up to a constant. However, the optimal choice differs in the two sce-
narios since portfolio risk is perceived differently in each case. Both the 
optimal individual investor’s portfolio and the market portfolio have lower 
expected returns in the Bayesian setting. (Brown 1976) shows that the fail-
ure to account for estimation risk leads to suboptimal solutions. 

It is instructive to examine the posterior mean under the informative 

prior assumption. Assuming that I2σ=Σ , the i th element of µ ’s poste-
rior mean has the form 








 +






 +=
−

022

1

22
2 11

,| µ
τστσ

σµ ii r
TT

r  
(1.4) 

where ir  is the sample mean of asset i, and T is the sample size. The poste-

rior mean is a weighted average of the prior and sample information; that 
is, the sample mean ir  of asset i is shrunk to the prior mean 0µ . The de-

gree of shrinkage depends on the strength of the confidence in the prior 

distribution, as measured by the prior precision 2/1 τ . The higher the prior 
precision, the stronger the influence of the prior mean on the posterior 
mean. Shrinking the sample mean reduces the sensitivity of the optimal 
weights to the sampling error in it. As a result, weights take less extreme 
values and their stability over time is improved. The prior distribution of 
µ  could be made uninformative by choosing a very large prior variance 

elements 2τ . In the extreme case of an infinite prior variance, the posterior 
mean coincides with the sample mean and the correction for estimation 
risk becomes insignificant (Brown 1979; Jorion 1985). 

The approach of employing shrinkage estimators as a way of accounting 
for uncertainty is rooted in statistics and can be traced back to (James and 
Stein 1961), who recognized the inadmissibility of the sample mean in a 
multivariate setting under a squared loss function. The James-Stein estima-
tor given by  

                                                      
5 See, for example, (Brown 1976) 
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( )rJS διµδµ −+= 1ˆ 0 , 
(1.5) 

where ( )tNt rrr ,,1 ...,,=  is the vector of sample means, has a uniformly 

lower risk than r , regardless of the point 0µ  towards which the means are 

shrunk.6 However, the gains are greater the closer 0µ  is to the true value. 

For the special case when the return covariance matrix has the form 

I2σ=Σ , 2σ  is known, and the number of assets N is greater than 2, the 
weight δ  is given by 









−Σ−
−= − )()'(

)2(
,1min

0
1

0 ιµιµ
δ

rr

TN
. 

 

Within the portfolio selection context, the effort was initiated with the 
papers of (Jobson, Korkie, and Ratti 1979; Jobson and Korkie 1980, 1981) 
and developed by (Jorion 1985, 1986; Grauer and Hakansson 1990). (Du-
mas and Jacquillat 1990) discuss Bayes-Stein estimation in the context of 
currency portfolio selection. 

While the choice of prior distributions is often guided by considerations 
of tractability, the parameters of the prior distributions (called hyper-
parameters) are determined in a rather subjective fashion. This has led 
some researchers to embrace the empirical Bayes approach, which uses 
sample information to determine the hyperparameter values and is at the 
heart of the Bayesian interpretation of shrinkage estimators. The shrinkage 
target is the grand mean of returns M:  

( ) ( )Στµ ,~ MNP .7 (1.6) 

(Frost and Savarino 1986; and Jorion 1986) employ it in an examination 
of the portfolio choice problem, asserting the conjugate inverse-Wishart 
prior for Σ . They estimate the prior parameters via maximum likelihood, 
assuming equality of the means, variances, and covariances. Comparing 
certainty-equivalent rates of return, they find that the optimal portfolios 

                                                      
6 (Berger 1980) points out that the inadmissibility of the sample mean in the fre-

quentist case is translated into inadmissibility of the Bayesian rule under the as-
sumption of diffuse (improper) prior.  

7 It is not unusual to assume that the degree of uncertainty about the mean vector 
is proportional to the volatilities of returns. A value of τ  smaller than 1 reflects 
the intuition that uncertainty about the mean is lower than uncertainty about the 
individual returns. 
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obtained in the Bayesian setting with informative priors outperform the op-
timal choices under both the classical and diffuse Bayes frameworks.8 

(Jorion 1986) assumes that Σ  is known and is replaced by its sample es-

timator S
NT

T

2

1

−−
−

. Jorion derives the so-called Bayes-Stein estimator 

of expected returns – a weighted average of sample means and the mean of 

the global minimum variance portfolio r
ιι

ι
1

1

' −

−

Σ
Σ

 (the solution to the vari-

ance minimization problem under the constraint that the weights sum to 
unity).9 He finds that the Bayes-Stein shrinkage estimator outperforms sig-
nificantly the sample mean, based on comparison of the empirical risk 
function.10 (Grauer and Hakansson 1990) observe that the portfolio strate-
gies based on the Bayes-Stein and the James-Stein estimators are only 
marginally better than the historic mean strategies. 

(Frost and Savarino 1986) obtain a shrinkage estimator not only for the 
mean vector but also for the covariance matrix of the predictive returns 
distribution, thus contributing to a relatively neglected area. A reason why 
there are relatively more studies concerned only with uncertainty about the 
mean (see also the discussion of the Black and Litterman model below) 
may be that optimal portfolio choice is highly sensitive to estimation error 
in the expected means, while variances and covariances (although also un-
known) are more stable over time ((Merton 1980)). However, given that 
the optimal investor decision is the result of the trade-off between risk and 
return, efficient variance estimation seems to be no less important than 
mean estimation.11 

                                                      
8 A certainty-equivalent rate of return is the risk-free rate of return which provides 

the same utility as the return on a given combination of risky assets.   
9 (Dumas and Jacquillat 1990) argue that in the international context this result in-

troduces country-specific bias. They advocate shrinkage towards a portfolio 
which assigns equal weights to all currencies. 

10 The empirical risk function is computed as the loss of utility due to the estima-

tion risk ( ) ( )
max

max* ˆ
ˆ,

F

qFF
L

−
=ϖϖ  averaged over repeated samples, where 

*ϖ  is the solution to (1) when the true parameter vector θ  is known, ϖ̂  is the 

portfolio choice on the basis of the sample estimate θ̂ , maxF and F are the 

corresponding values of the utility functions.  
11 See, for example, (Frankfurter, Phillips, and Seagle 1972). 
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1.3. Combining Prior Beliefs and Asset Pricing Models 

(Ledoit and Wolf 2003) develop a shrinkage estimator for the covariance 
matrix of returns in a portfolio selection setting, choosing as a shrinkage 
target the covariance matrix estimated from Sharpe’s ( Sharpe 1963) sin-
gle-factor model of stock returns. They join a growing trend in the shrink-
age estimator literature of deriving the shrinkage target structure from a 
model of market equilibrium. Equivalently, the asset pricing model serves 
as the reference point around which the investor builds prior beliefs. There 
is a trade-off then between the degree of confidence in the validity of the 
model and the information content of the observed data sample. The influ-
ential work of Black and Litterman (Black and Litterman 1990, 1991, 
1992) (BL) presumably constitute the first analysis employing this ap-
proach.12 Their model allows for a smooth and flexible combination of an 
asset pricing model, the Capital Asset Pricing Model (CAPM), and inves-
tor’s views. The CAPM is assumed to hold in general, and investors’ be-
liefs about expected stock returns can be expressed in the form of devia-
tions from the model predictions.13 Interpretations of the BL methodology 
from the Bayesian point of view are scarce (Satchell and Scowcroft 2000; 
He and Litterman 1999; Lee 2000; Meucci 2005), although, undoubtedly, 
the BL decision-maker is Bayesian, and somewhat ambiguous. 

The excess returns of the N assets in the investment universe are as-
sumed to follow a multivariate normal distribution ( )Σ,~ µNr .14 The 
implied equilibrium risk premiums Π  are used as a proxy for the true 
equilibrium returns and the distribution of expected .equilibrium returns is 
centered on them, with a covariance matrix proportional to Σ : 

( )ΣΠ τµ ,~ N  
(1.7) 

where the scalar τ  indicates the degree of uncertainty in the CAPM.15 The 
investor’s views (linear combinations of expected asset returns) are ex-

                                                      
12 For example, (Jorion 1991) mentions the possibility of using the CAPM equilib-

rium forecasts to form prior beliefs but doesn’t pursue the idea further. 
13 BL consider an equilibrium model, such as the CAPM, as the most appropriate 

neutral shrinkage target for expected returns, since equilibrium returns clear the 
market when all investors have homogeneous views. 

14 The covariance matrix Σ  is estimated outside of the model (see (Litterman and 
Winkelmann 1998)) for the specific methodology) and considered as given. 

15 The equilibrium risk premiums Π  are the expected stock returns in excess of 
the risk-free rate, estimated within the CAPM framework. In the setting of the 
BL model, the vector Π  is determined by a procedure appropriately called 
“reverse optimization”. The market-capitalization weights observed in the capi-
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pressed as probability distributions of the expected returns on the so-called 
“view” portfolios: 

( )Ω,~ QNPµ , (1.8) 

where P  is a (K x N) matrix whose rows correspond to the K view portfo-
lio weights. The magnitudes of the elements iϖ  of Ω  represent the degree 

of confidence the investor has in each view. 
There is no consensus as to which one of the distributions in Eqs. (1.7 

and 1.8) defines the prior and which one the sampling density. (Satchell 
and Scowcroft 2000; Lee 2000; Meucci 2005) favor the position that the 
investor views constitute the prior information which serves to update the 
equilibrium distribution of expected returns (in the role of the sampling 
distribution). This interpretation is in line with the Bayesian tradition of 
using subjective beliefs to construct the prior distribution. On the other 
hand, He and Litterman’s (He and Litterman 1999) reference to Eq. (1.8) 
as the prior also has grounds in the Bayesian theory. Suppose that we are 
able to take a sample from the population of future returns, in which our 
subjective belief about the expected stock returns is realized. Then, a view 
could be interpreted as the information contained in this hypothetical sam-
ple.16 The sample size corresponds to the degree of confidence the investor 
has in his view. 

The particular definition one adopts does not have a bearing on the re-
sults. Deriving the posterior distribution of expected returns is a straight-
forward application of conjugate analysis and yields the familiar result 

( )VNQ
~

,~~,,,,| µτµ ΩΣΠ  
(1.9) 

where the posterior mean and covariance matrix are given by 

( )( ) ( )( )QPPP 11111 ''~ −−−−− Ω+ΠΣΩ+Σ= ττµ  (1.10) 

and 

                                                                                                                          

tal market are considered the optimal weights *ω . Using the estimate Σ̂  of 
the covariance matrix, the risk premiums are backed out of the standard mean-

variance result ( )( )ΠΣΠΣ= −− 11 ˆ'/ˆ/1* ιλω , where λ  is the coefficient of 

relative risk aversion. 
16 See (Black and Litterman 1992) for this interpretation. Interpreting prior belief 

in terms of a hypothetical sample is not uncommon in Bayesian analysis. See 
also Stambaugh (1999). 
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( )( ) 111 '
~ −−− Ω+Σ= PPV τ . (1.11) 

The estimator of expected returns in Eq. (1.10) clearly has the form of a 
shrinkage estimator (the weights of Π  and Q  sum up to 1). When the 
level of certainty about the equilibrium returns increases (τ  approaches 0), 

their weight ( )( ) ( ) 1111 ' −−−− ΣΩ+Σ ττ PP  increases and the investor opti-
mally holds the market portfolio. If, on the contrary, belief in the devia-
tions from equilibrium returns is strong, more weight is put on the views. 
(Lee 2000) extends the BL model to the tactical allocation problem. The 
equilibrium risk premiums Π  are replaced by the vector of expected ex-
cess returns corresponding to a neutral position with respect to tactical 
bets, i.e., to holding the benchmark portfolio. 

Admittedly, the BL methodology does not make use of all of the avail-
able information in historical returns, particularly, the sample means. (Pas-
tor 2000; Pastor and Stambaugh 1999) address this issue by developing a 
framework in which uncertainty in the validity of the asset pricing model 
is quantified in terms of the amount of model mispricing. The estimate of 
expected returns is a weighted average between the model prediction and 
the sample mean, thus incorporating the benefits of both the Bayes-Stein 
and the BL methodologies.17 

Let the return generating process for the stock’s excess return be  

Ttfr ttt ...,,1' =++= εβα , 
(1.12) 

where tf  denotes a (K x 1) vector of factor returns (returns to benchmark 

portfolios), and tε  is a mean-zero disturbance term. Then, the slopes of the 

regression in Eq. (1.12) are stock’s sensitivities (betas). The stock’s ex-
pected excess return implied by the model is 

( ) ( )tt fErE 'β=  
(1.13) 

That is, the model implies that 0=α .18 When the investor believes there 
is some degree of pricing inefficiency in the model, the expected excess re-
turn will reflect this through an unknown mispricing term: 

                                                      
17 The investigation of model uncertainty is expanded and explicitly modeled in 

the context of return predictability using the Bayesian Model Averaging 
framework by (Avramov 2000; Cremers 2002), among others. See Section 5. 

18 α  is commonly interpreted as a representation of the skill of an active portfolio 
manager. (Pastor and Stambaugh 2000) point out this interpretation is not infal-
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( ) ( )tt fErE 'βα += . 
(1.14) 

In a single factor model such as the CAPM, the benchmark portfolio is 
the market portfolio. In a multifactor model, the benchmarks could be 
zero-investment, non-investable portfolios whose behavior replicates the 
behavior of an underlying risk factor (sometimes called factor-mimicking 
portfolios)19 or factors extracted from the cross-section of stock returns us-
ing principal components analysis.20. (Pastor 2000) investigates the impli-
cations for portfolio selection of varying prior beliefs about α . When be-
liefs about a pricing model are expressed, the prior mean of α , 0α , is set 

equal to zero. It could have a non-zero value, when, for example, the in-
vestor expresses uncertainty about an analyst’s forecast. The prior variance 

ασ  of α  reflects the investor’s degree of confidence in the prior mean – a 

zero value of ασ  represents dogmatic belief in the validity of the model; 

∞=ασ  suggests complete lack of confidence in its pricing power. (Pas-

tor and Stambaugh 1999), investigating the cost of equity of individual 
firms, suggest that 0α  could be set equal to the average ordinary least 

squares estimate from a subset (cross-section) of firms sharing common 
characteristics. 

(Pastor 2000) assumes normality of stock and factor returns, and conju-
gate uninformative priors for all parameters in Eq. (1.12) but α . In the 
special case of one stock and one benchmark, the optimal weight in the 
stock is shown to be proportional to the ratio of the posterior mean of α  

and the posterior mean of the residual variance, 2~/~ σα . The posterior 
mean α~  has the form of a shrinkage estimator:  

( )( ) 

















+







Ψ=







 −−−−

β
α

σ
β
α

β
α

ˆ
ˆ

'~
~

112

0

011 XXM

, 

(1.15) 

where 

( )( ) 1121 '
−−− +Ψ= XXM σ , 

                                                                                                                          
lible. For example, the benchmarks used to define α  might not price all passive 
investments. 

19  See, for example, (Fama and French 1993). 
20  See (Connor and Korajczyk 1986). 
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( ) 12 ' −XXσ  = (sample) covariance estimator of the least-squares esti-

mators α̂  and β̂ , 

( )( ) 112 '
−−XXσ  = sample precision matrix, and 

1−Ψ  = prior precision matrix. 
Pastor’s results demonstrate greater stability of optimal portfolio 

weights, which take less extreme values. Examining the home bias that is 
observed in solutions to international asset allocation studies, Pastor finds 
that the holdings of foreign equity observed for U.S. investors is consistent 

with a prior standard deviation ασ  equal to 1% – evidence for strong be-

lief in the efficiency of the U.S. market portfolio.21 
Building upon the recognition of the fact that no model is completely 

accurate, (Pastor and Stambaugh 2000) undertake an empirical investiga-
tion comparing three asset pricing models from the perspective of optimal 
portfolio choice, while accounting for investment constraints. The models 
are: the CAPM, the Fama-French model, and the Daniel-Titman model22 
Pastor and Stambaugh explore the economic significance of different in-
vestors’ perceptions of the degree of model accuracy by comparing the 
loss in certainty-equivalent return from holding portfolio A (the choice of 
an investor with complete faith in model A), when in fact the decision-
maker has full confidence in model B or C. They observe that when the 
degree of certainty in a model is less than 100%, cross-model differences 
diminish (the certainty-equivalent losses are smaller). Investment con-
straints dramatically reduce the differences between models, which is in 
line with Wang’s (Wang 1998) conclusion that imposing constraints acts 
to weaken the perception of inefficiency of the benchmark portfolio (see 
Section 4). 

                                                      
21 Home bias is a term used to describe the observed tendency of investors to hold 

a larger proportion of their equity in domestic stocks than suggested by the 
weight of their country in the value-weighted world equity portfolio 

22 The (Fama and French 1993) model is a factor model in which expected stock 
returns are linear functions of the stock loadings on common pervasive factors. 
Book-to-market ratio and size-sorted portfolios are proxies for the factors. The 
Daniel and Titman (1997) model is a characteristic-based model. Expected re-
turns are linear functions of firms’ characteristics. Co-movements of stocks are 
explained with firms’ possessing common characteristics, rather than being ex-
posed to the same risk factors, as in the Fama-French model. 
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1.4. Testing Portfolio Efficiency 

Empirical tests of mean-variance efficiency in the Bayesian context of 
both the CAPM and the Arbitrage Pricing Theory (APT) could be divided 
into two categories. The first one focuses on the intercepts of the multi-
variate regressions describing the CAPM 

Nirr iMi ...,,1, =++= εβα  
(1.16) 

and the APT 

Ttuffr ttkktt ...,,1,... ,,11 =++++= ββα
, 

(1.17) 

where returns are in risk-premium form (in excess of the risk-free rate), 

Mr  in (1.16) is the market risk premium, tjf ,  is the risk premium (return) 

of factor j at time t, and jβ  is return’s exposure (sensitivity) to factor j. As 

in the previous section, the pricing implications of the CAPM and the APT 
yield the restriction that the elements of the parameter vector α  are jointly 
equal to zero. Therefore, the null hypothesis of mean-variance efficiency is 
equivalent to the null hypothesis of no mispricing in the model.23 The test 
relies on the computation of the posterior odds ratio. 

At the heart of the tests in the second category lies the computation of 
the posterior distributions of certain measures of portfolio inefficiency. A 
strand of the pricing model testing literature focuses on the utility loss as a 
measure of the economic significance of deviations from the pricing re-
strictions, for example, by comparing the certainty-equivalent rate of re-
turn. (McCulloch and Rossi 1990) follow this approach. 

1.4.1 Tests involving posterior odds ratios 

(Shanken 1987; Harvey and Zhou 1990; McCulloch and Rossi 1991) em-
ploy posterior odds ratios to test the point hypotheses of the restrictions 
implied by the CAPM (the first two studies) and the APT (the third study).  

The test of efficiency can be expressed in the usual way: 

                                                      
23 When returns are expressed in risk-premium form, and expected returns are lin-

ear combinations of exposures to K sources of risk, the mean-variance efficient 
portfolio is a combination of the K benchmark (factor) portfolios and perform-
ing the test above in the context of the APT is equivalent to testing for mean-
variance efficiency of this portfolio. 
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0:0 =αH  vs. 0:1 ≠αH  (1.18) 

The investor’s belief that the null hypothesis is true is incorporated in the 
prior odds ratio, and then updated with the data to obtain the posterior odds 
ratio. The posterior odds ratio is the product of the ratio of predictive den-
sities under the two hypotheses and the prior odds and is given by 

( )
( )

( ) ( )
( ) ( )00|

00|

|0

|0

≠≠
===

≠
==

αα
αα

α
α

pp

pp

p

p
G

r

r

r

r
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where r  denotes the data.24 It is often assumed that the prior odds is 1 
when no particular prior intuition favoring the null or the alternative exists. 
Then, G becomes: 
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where ( )0|, =Σ αβL  is the likelihood function ( )Σ,,βαL  evaluated at 

0=α . Since the posterior odds ratio is interpreted as the probability that 
the null is true divided by the probability that the alternative is true, a low 
value of the posterior odds provides evidence against the null hypothesis 
that the benchmark portfolio is mean-variance efficient. 

Assume the disturbances in Eq. (1.16) are identically and independently 
distributed (i.i.d.) normal with a zero mean vector and a covariance matrix 
Σ . (Harvey and Zhou 1990) explore three distributional scenarios – a mul-
tivariate Cauchy distribution, a multivariate normal distribution, and a 
Savage density ratio approach. In the first two scenarios, the prior distribu-
tion under the null is taken to be a diffuse one: 

( ) 2/)1(

0 ,
+−Σ∝Σ N

p β . (1.21) 

Under the alternative, the prior is 

( ) ( )ΣΣ∝Σ +−
|,,
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1 αβα fp
N

, (1.22) 

where ( )Σ|αf  is the prior density function of α  (a multivariate Cauchy 
or a multivariate normal). Following (McCulloch and Rossi 1991), Harvey 

                                                      
24 We assume that ( )0=αp  and ( )0≠αp  are strictly greater than zero. 
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and Zhou investigate also the so-called Savage density ratio method,25 as-
serting a conjugate prior under the alternative hypothesis, 

( ) ( ) ( )ΣΣ=Σ IWNp |,,,1 βαβα  (N denotes normal density, IW denotes 
inverted Wishart density)). The prior under the null is: 
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Large deviations of the intercepts from zero, under the multivariate 
normal prior, intuitively, provide greater evidence against the null hy-
pothesis than large deviations from zero under the multivariate Cauchy 
prior. Therefore, the normal prior is expected to produce lower posterior 
odds ratio than the Cauchy prior. 

The Savage density assumption leads to a simplification of the posterior 
odds. Assuming a prior odds ratio equal to 1, 
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where both the marginal posterior density of α  in the numerator and  the 
prior density in the denominator can be shown to be multivariate Student-t 
densitites. 

In an examination of the efficiency of the market index, (Harvey and 
Zhou 1990) find that the posterior odds increase monotonically for increas-
ing levels of dispersion in the prior distributions. Both the Cauchy and the 
normal priors provide evidence against the null. The posterior probability 
of mean-variance efficiency varies between 8.9% and 15.5% under the 
normal assumption, and between 26.2% and 27.2% under the Cauchy as-
sumption. The Savage prior case is analyzed for three different prior as-
sumptions of relative efficiency of the market portfolio, reflected in the 
choice of hyperparameters of β  and Σ .26 The Savage prior offers more 

                                                      
25 The Savage density ratio method involves selecting a particular form of the 

prior density under the null, as in Eq. (1.23), which results in the simplification 
of the posterior odds ratio in Eq. (1.24). 

26 Relative efficiency is measured by the correlation ρ  between the given bench-

mark index and the tangency portfolio; 1=ρ  implies efficiency of the 

benchmark. (Shanken 1987) shows that in the presence of a risk-free asset, ρ  

is equal to the ratio between the Sharpe measure (ratio) of the benchmark port-
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evidence against the null, compared to the normal and Cauchy priors – the 
probability of efficiency is generally less than 1%. 

(McCulloch and Rossi 1991) explore the pricing implications of the 
APT and observe great variability of the posterior odds ratio in response to 
changing levels of spread of the Savage prior.27 The ratio in the high-
spread specification exceeds the one in the low-spread case by more than 
40 times when a five-factor model is considered. Overall, evidence against 
the null hypothesis is weak in the case of the one-factor model (except in 
the high-variance scenario) and mixed in the case of the five-factor model.  
McCulloch and Rossi caution, however, against drawing conclusions about 
the benefit of adding more factors to the one-factor model. The addition of 
factors needs to be analyzed in a different posterior-odds framework, in 
which the restriction of zero coefficients of the new factors is imposed. 

1.4.2 Tests involving inefficiency measures 

Investors are often less interested in an efficiency test offering a “binary” 
outcome (reject/do not reject) than in an investigation of the degree of in-
efficiency of a benchmark portfolio. (Kandel, McCulloch, and Stambaugh 
1995) target this argument and develop a framework for testing the 
CAPM, in which the posterior distribution of an inefficiency measure is 
computed.28 (Wang 1998) extends their analysis to incorporate investment 
constraints. 

Denote by p the portfolio whose efficiency is being tested and by x  the 
efficient portfolio with the same variance as p. Then, the observation that 
the expected return of p is less than or equal to the expected return of x 
immediately suggests an intuitive measure of portfolio p’s inefficiency: 

                                                                                                                          
folio and Sharpe measure of the tangency portfolio (which is the maximum 
Sharpe measure). 

27 A parallel could be drawn between McCulloch and Rossi’s (McCulloch 1990, 
1991) investigation and the traditional two-pass regression procedure for testing 
the APT. The authors first extract the factors using the principal components 
approach of (Connor and Korajzcyk 1986) and then perform the Bayesian 
analysis. In contrast, (Geweke and Zhou 1996) adopt a single-stage procedure 
in which the posterior distribution of a measure of the APT pricing error is ob-
tained numerically. Admittedly, the Geweke-Zhou approach could only be em-
ployed to a relatively small number of assets, in contrast to the McCulloch-
Rossi approach. 

28 (Shanken 1987; Harvey and Zhou 1990) also discuss similar measures. 
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px µµ −=∆
, 

(1.25) 

where jµ  denotes the expected return of portfolio j. The benchmark port-

folio is efficient if and only if 0=∆ . The non-negative value of ∆  could 
also be interpreted as the loss of expected return from holding portfolio p 
instead of the efficient portfolio x (carrying the same risk as p). Another 
measure of inefficiency explored by Kandel, McCulloch, and Stambaugh 
is ρ , the correlation between p and any efficient portfolio. The posterior 

density of ∆  and ρ  does not have a closed-form solution under standard 
diffuse prior assumptions about the mean vector µ  and the covariance 
matrix Σ  of the risky asset returns. An application of the Monte Carlo 
methodology, however, makes its evaluation straightforward. Suppose the 
posterior density of the mean and covariance are given by ( )r,| Σµp  and 

( )r|Σp , respectively. Then, a draw from the (approximate) posterior dis-

tribution of ∆  and ρ  is obtained by drawing repeatedly from the posterior 
distributions of µ  and Σ  and then computing the corresponding values of  

∆  and ρ . 
Kandel, McCulloch, and Stambaugh observe an interesting divergence 

of results depending on whether or not a risk-free asset is available in the 
capital market. For example, in the absence of a risk-free asset, most of the 
mass of ρ ’s posterior distribution lies between -0.1 and 0.3, while when 
the risk-free asset is included, the posterior mass shifts to the interval 0.89 
to 0.94 (suggesting a shift from a very weak to a very strong correlation 
between the benchmark and the efficient portfolio). Similarly, the posterior 
mass of ∆  lies farther away from 0=∆  in the former than in the latter 
case. An investigation into the extent that the data influence the posterior 
of ρ  reveals that informative, rather than diffuse, priors are necessary to 
extract the information of inefficiency contained in the data in the presence 
of a risk-free asset and, in general, the prior’s influence on the posterior is 
strong. When the risk-free asset is excluded, the data update the prior bet-
ter, and the results show that the benchmark portfolio (composed of NYSE 
and AMEX stocks) is highly correlated with the efficient portfolio. 

The methodology of Kandel, McCulloch, and Stambaugh is easily 
adapted to account for investment constraints in testing for mean-variance 
efficiency of a portfolio. (Wang 1998) proposes to modify ∆  in the fol-
lowing way to incorporate short-sale constraints: 
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[ ]ppp xxxxxxx Σ≤Σ≥−=∆ '',0|''max
~ µµ

, 
(1.26) 

where px are the weights of the given benchmark portfolio under consid-

eration, x are  the weights of the efficient portfolio, andµ'x  and µ'px  are 

the expected portfolio returns, denoted by xµ and pµ , respectively, in 

(1.25). The constraint modification to reflect a 50% margin requirement29 
is Nixi ...,,1,5.0 =−≥ . For each set of draws of the approximate poste-

riors ofµ  and Σ , the constrained optimization in (1.26) is performed and 

a draw of ∆  is obtained. 
Wang compares the posterior distributions of the inefficiency measures 

with and without investment constraints. When no constraints are imposed, 

the posterior mean of ∆~  is 20.9% (indicating that a portfolio outperform-
ing the benchmark by 20% could be constructed). Imposing the 50% mar-

gin constraint brings the values of the posterior mean of ∆~  down to 
8.37%, while when short sales are not allowed, the posterior mean de-
creases to 4.25%. Thus, the benchmark’s inefficiency decreases as stricter 
investment constraints are included in the analysis. Additionally, (Wang 
1998) observes that uncertainty about the degree of mispricing declines 

with the imposition of constraints, making the posterior distribution of ∆~  
less dispersed. 

1.5 Return Predictability 

Predictability in returns impacts optimal portfolio choice in several ways. 
First, it brings in horizon effects. Second, it makes possible the implemen-
tation of market timing strategies. Third, it introduces different sources of 
hedging demand. In this section we will explore how these three conse-
quences of predictability are examined in the Bayesian literature.  

With the exception of (Kothari and Shanken 1997) who investigate a 
Bayesian test of the null hypothesis of no predictability, most of the pre-
dictability literature focuses on the implications of predictability for the 
optimal portfolio choice, rather than on accepting or rejecting the null hy-

                                                      
29 A 50% margin requirement is a restriction on the size of the total short sale posi-

tion an investor could take. The short sale position can be no more than 50% of 
the invested capital. 
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pothesis, since portfolio performance and utility gains (losses) provide 
natural measures to assess predictability power. 

1.5.1 The static portfolio problem 

The vector autoregressive (VAR) framework is a convenient and compact 
tool to model the return-generating process and the dynamics of the en-
dogenous predictive variables. For the simple case of one predictor, its 
form is: 
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where tr is the excess stock return (return on a portfolio of stocks) in pe-

riod t, 1−tx  is a lagged predictor variable, whose dynamics is described by 

a first-order autoregressive model, and tε  and tu  are correlated distur-

bances. The vector ( )', tt uε  is assumed to have a bivariate normal distribu-

tion with a zero mean vector and a covariance matrix 
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The predictor is a variable such as the dividend yield, the book-to-market 
ratio, and interest rate variables, or lagged values of the continuously com-
pounded excess return tr .30 

The dividend yield is considered a prime predictor candidate and all of 
the studies discussed below use it as the sole return predictor. 

The investor maximizes the expected utility, weighted by the predictive 
distribution as in Eq. (1.1). 

(Kandel and Stambaugh 1996) examine the problem in Eq. (1.1) in a 
static, single-period investment horizon setting, while (Barberis 2000) ex-
tends it to consider multi-period horizon stock allocations with optimal re-
balancing. Kandel and Stambaugh investigate a no-predictability informa-
tive prior for B  and Σ . They do so by constructing it as the posterior 
distribution that would result from combining the diffuse prior 

                                                      
30 Numerous empirical studies of predictability have identified variables with pre-

dictive power. See, for example, (Fama 1991). 
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( ) 2/)2(
,

+−Σ∝Σ N
Bp with a hypothetical sample identical to the real sam-

ple, save for a sample coefficient of determination 2R  equal to zero.31 The 
behavior of the optimal stock allocations is analyzed over a range of values 
of the predictors, for a number of samples that differ by the number of pre-

dictors N, the sample size T, and the regression 2R . Kandel and Stam-
baugh’s results confirm an intuitive relation between the optimal stock al-
location and the current value of the predictor variable, Tx . Specifically, 
the greater the positive difference between the one-step ahead fitted value 

Txb̂  and the returns’ long-term average  xbr ˆ= , the higher the stock al-
location. 

Kandel and Stambaugh put forward a related criterion for assessing the 
economic significance of predictability evidence. The optimal allocation 

aω  in the case when xxT =  (where x  is the long-term average of the 

predictor variable) is no longer optimal when xxT ≠ . Then, a comparison 
of the certainty-equivalent returns associated with the expected utilities of 
the optimal allocations when xxT =  and when xxT ≠  allows one to ex-
amine the economic implications (if any). 

(Kandel and Stambaugh 1996) emphasize the important departure of the 
evidence of economic significance from the evidence of statistical signifi-
cance. For example, given an 2R  (unadjusted) from the predictive regres-
sion of only 0.025 (implying a p-value of 0.75 of the standard regression F 
statistic), the investor optimally allocates 0% of his wealth to stocks when 

predicted return Txb̂  is one standard deviation below its long-term aver-

age r , but 61% when rxb T =ˆ , under a diffuse prior and a coefficient of 
risk aversion equal to 2. Under the no-predictability informative prior, the 
allocations are, respectively, 53% and 83%. Therefore, statistical insignifi-
cance of the predictability evidence does not translate into economic insig-
nificance. 

The mechanism through which predictability affects portfolio choice is 
further enriched by the investigation of (Barberis 2000), who ties the Kan-
del and Stambaugh’s framework to the issue of a varying investment hori-
zon. Incorporating parameter uncertainty into the portfolio problem tends 

                                                      
31 In a related paper, (Stambaugh 1999) characterizes the economic importance of 

the sample evidence of predictability by considering hypothetical samples car-
rying the same information content about B  and Σ  as the actual sample but 

differing in the value of Ty . 
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to reduce optimal stock holdings, and this horizon effect is, not surpris-
ingly, stronger at a long-horizon than at a short-horizon. In contrast, when 
the possibility of predictable returns is taken into account, perceived risk 
of stocks by a buy-and-hold investor at long horizons diminishes because 
the variance of cumulative returns grows slower than linearly with the ho-
rizon. Thus, a higher proportion of wealth is allocated to stocks at long ho-
rizons compared with the case when returns are assumed to be i.i.d. and 
these differences increase with the horizon.32 Analyzing the interaction of 
the two opposing tendencies, Barberis finds that introducing estimation 
risk, in a static setting, reduces the horizon effect for a risk-averse investor 
– the uncertainty about the process parameters adds to uncertainty about 
the forecasting power of the predictor(s) and increases risk at longer hori-
zons. As a result, the 10-year buy-and-hold portfolio strategy of an inves-
tor with a risk aversion parameter of 10, who takes both predictability and 
uncertainty into account, results in up to a 50% lower allocation compared 
to the case of predictability only, with no estimation risk. 

Both (Barberis 2000) and (Stambaugh 1999) explore the sensitivity of 
the optimal allocation to varying the initial predictor’s value, 0x . Long-

horizon allocations under uncertainty generally increase with the horizon 
for low starting values of the predictor and decrease for high starting val-
ues, leading to a lesser sensitivity to the predictor’s starting value. Stam-
baugh demonstrates that treating 0x  as a stochastic realization of the same 

process that generated Txxx ...,,, 21 , compared to considering it fixed, 
brings in additional information about the regression parameters and 
changes their posterior means. He observes that, when estimation risk is 
incorporated, the long-horizon (in particular, 20-years) optimal allocation 
is often decreasing in the predictor, even though expected return is not. 
This pattern can be ascribed to the skewness of the predictive distribution. 
Incorporating uncertainty (particularly the uncertainty about the autore-
gressive coefficient of the predictor) induces positive skewness for low ini-
tial values of the predictor (leading to high allocations) and negative skew-
ness for high initial values (leading to low allocations). 

                                                      
32 Empirically observed mean-reversion in returns (negative serial correlation) 

helps explain the horizon effect. However, Barberis notes that predictability it-
self may be sufficient to induce this effect, if not mean-reversion. Specifically, 
the negative correlation between the unexpected returns and the dividend yield 
innovations is one condition for the horizon effect. See also (Avramov 2000), 
and Section 5 below. 
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1.5.2 The dynamic portfolio problem 

As mentioned earlier, market-timing is one of the modifications to the 
portfolio allocation problem resulting from predictability. Suppose that an 

investor at time T with an investment horizon TT ˆ+  has a dynamic strat-

egy and rebalances at each of the dates 1ˆ...,,1 −++ TTT . The new in-
tertemporal context of the problem allows us to consider a new aspect of 
parameter uncertainty33 – not only does the investor not know the true pa-
rameters of the return generating process but the relationship between the 
returns and the predictors may also be time-varying. At time T, the Bayes-
ian investor solves the portfolio problem taking into account that at each 
rebalancing date, the posterior distribution of the parameters is updated 
with the new information. It turns out that this “learning” (Bayesian updat-
ing) process plays an important role in the way the investment horizon af-
fects optimal allocations.34 The underlying factor driving changes in alloca-
tions across horizons is now a hedging demand – a risk-averse investor 
attempts to hedge against the perceived changes in the investment oppor-
tunity set (equivalently, in the state variables).35  

(Barberis 2000) considers a discrete dynamic setting with i.i.d. stock re-
turns to explore the effects of learning about the unconditional mean of re-
turns and finds that uncertainty induces a very strong negative hedging 
demand at long horizons.36 A long-horizon investor who admits the possi-
bility of learning about the unconditional mean in the future allocates sub-
stantially less to stocks than an investor with a buy-and-hold strategy. 

                                                      
33 An early discussion of the Bayesian dynamic portfolio problem in a discrete-

time setting (without accounting for predictability) can be found in (Winkler 
and Barry 1975). (Grauer and Hakansson 1990) examine the performance of 
shrinkage and CAPM estimators in a dynamic, discrete-time setting. 

34 (Merton 1971; Williams 1977) show that incorporating learning in a dynamic 
problem leads to the creation of a new state variable representing the investor’s 
current beliefs. Here, the new state variables are the posterior estimates of the 
unknown parameters, whose dynamics might be nonlinear. If learning is ig-
nored, the current dividend yield is the only state variable, and it fully charac-
terizes the predictive return distribution. 

35 Hedging demands are introduced by (Merton 1973). An investor who is more 
risk averse than the log-utility case (i.e., with a coefficient of risk aversion 
higher than 1) aims at hedging against reinvestment risk and increases his de-
mand for stocks when their expected returns are low. Recall that expected stock 
returns are negatively correlated with realized stock returns. 

36 The intuition behind the negative hedging demand is that an unexpectedly large 
return leads to an upward revision of unconditional expected return  



1. Bayesian Applications to the Investment Management Process      23 

While the framework introduced by Barberis involves learning about the 
unconditional mean of returns only, (Brandt, Goyal, Santa-Clara, and 
Stroud 2004) address simultaneous learning about all model parameters. 
The utility loss from ignoring learning is substantial but is negatively re-
lated to the amount of past data available and to the investor’s risk aver-
sion parameter. Brandt et. al observe that the utility gains from accounting 
for uncertainty or for learning are of comparable size, and increasing with 
the horizon and the current predictor value. They break down the hedging 
demand and analyze its components – (1) the positive hedging component 
arising from the negative correlation between returns  and changes in the 
dividend yield and (2) the negative hedging component due to the positive 
correlation between returns and changes in the model parameters. The ag-
gregate effect can be positive at short horizons (up to five years) but turns 
negative for longer horizons. 

Brandt et. al observe that learning about the mean of the dividend yield 
and about the correlation between returns and the dividend yield induce a 
positive hedging demand which could partially offset the negative hedging 
demand above. 

A question of practical importance to investors is whether it is possible 
to take advantage of the evidence of predictability in practice. (Lewellen 
and Shanken 2002) offer an insightful answer which is unfortunately dis-
appointing. They find that patterns in stock returns, like predictability, 
which a researcher observes, cannot be perceived by a rational investor. 

1.5.3 Model Uncertainty 

(Avramov 2000; Cremers 2002) address what could be viewed as a defi-
ciency shared by the predictability investigations above – model uncer-
tainty, introduced by selecting and treating a certain return-generating 
process as if it were the true process. At the heart of Bayesian Model Av-
eraging (BMA) is computing a weighted Bayesian predictive distribution 
of the “grand” model, in which individual models are weighted by their 
posterior distributions.37 

Suppose that each individual model has the form of a linear predictive 
regression: 

tjjtjt Bxr ,1, ε+= − , 
(1.28) 

                                                      
37 If K variables are entertained as potential predictors, there are K2  possible 

models.  



24      Bagasheva, Rachev, Hsu, Fabozzi  

where  

tr  = (N x 1) vector of excess returns on N portfolios,  

( )1,1, ,1 −− = tjtj zx , 

1, −tjz  = ( jk x 1) vector of predictors, observed at the end of t - 1, that 

belong to model j,  

jB  = (( 1+jk ) x N) matrix of regression coefficients, and 

tj ,ε  = disturbance of model j, assumed to be normally distributed with 

mean 0 and covariance matrix jΣ  (Avramov) or Σ  (Cremers).38 The 

framework requires that two groups of priors be specified – model priors 
(i.e., priors of inclusion of each variable in an individual model), and pri-
ors on the parameters jB  and jΣ of each model. Each model could be 

viewed equally likely a priori, and assigned the diffuse 

prior ( ) K
jMP 2/1= , where KjM j ...,,1, = is the j th model. A different 

prior ties the model selection problem with the variable selection problem, 
as in (Cremers 2002): 

( ) ( ) jj kKk
jMP −−= ρρ 1 , (1.29) 

where ρ  denotes the probability of inclusion of a variable in model j (as-
sumed equal for all variables, but easily generalized to reflect different de-
grees of prior confidence in subsets of the predictors).39 

No predictability (no confidence in any of the potential predictors) is 
equivalent to not including any of the explanatory variables in the regres-
sion in (1.28). Then, returns are i.i.d., and, using (1.29), the model prior 

is ( ) ( )K
jMP ρ−= 1 . 

The posterior probability of model jM  is given by 

                                                      
38 Both Avramov and Cremers treat the regression parameters jB  as fixed. 

(Dangl, Halling and Randl 2005) consider a BMA framework with time-
varying parameters.  

39 (Pastor and Stambaugh 1999) observe that when the set of models considered 
includes one with a strong theoretical motivation (e.g., the CAPM), assigning a 
higher prior model probability to it is reasonable. 
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where tΦ  denotes all sample information available up to time t. The mar-

ginal likelihood function ( )jt MP |Φ  is obtained by integrating out the 

parameters jB  and jΣ : 
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(1.31) 

where ( )jjjj MBL ,;, ΦΣ  is the likelihood function corresponding to 

model jM , ( )jjj MBP |,Σ  is the joint prior and ( )jjjj MBP ,|, ΦΣ  is 

the joint posterior of the model parameters. 
The weighted predictive return distribution is given by: 
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 ( ) jtjjjTt
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(1.32) 

where 
Tt

R ˆ+  is the predicted cumulative return over the investment horizon 

T̂ . 
To express prior views on predictability, Cremers considers three quan-

tities directly related to it: the expected coefficient of determination, 

( )2RE , the expected covariance of returns, ( )ΣE , and the probability of 
variable inclusion, ρ . He asserts conjugate priors for the parameters and 
includes a hyperparameter which penalizes large models. (Avramov 2000) 
uses a prior specification for jB  and jΣ  based on the one of (Kandel and 

Stambaugh 1996). The size of the hypothetical prior sample, 0T , deter-

mines the strength of belief in lack of predictability (as 0T  increases, belief 

in predictability diminishes). 
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Both Cremers and Avramov find in-sample and out-of-sample evidence 
of predictability.40 Avramov estimates a VAR model similar to Eq. (1.27). 
His variance decomposition of predicted stock returns into model risk, es-
timation risk, and uncertainty due to forecast error shows that model un-
certainty plays a bigger role than parameter uncertainty. He finds that 
model uncertainty is proportional to the distance of the current predictor 
values from their sample means. To gauge the economic significance of 
accounting for model uncertainty, Avramov uses the difference in certainty 
equivalent metric and reaches an interesting result: the optimal allocation 
for a buy-and-hold investor is not sensitive to the investment horizon. This 
finding is contrary to the general findings of the Bayesian predictability 
literature. He ascribes the finding to the positive correlation between the 
unexpected returns and the innovations on the predictors with the highest 
posterior probability. The dividend yield, which is most often the only pre-
dictor in predictability investigations, has a lower posterior probability 
than the term premium and market premium predictors, and therefore, a 
smaller influence in the “grand” model (confirmed by Cremers’ results). 

1.6. Conclusion 

The application of Bayesian methods to investment management is a vi-
brant and constantly evolving one. Space constraints did not allow us to 
review many worthy contributions.41 Active research is being conducted in 
the areas of volatility modeling, time series models, and regime-switching 
models. Recent examples of stochastic volatility investigations include 
(Jacquier, Polson, and Rossi 1994; Mahieu and Schotman 1998; Uhlig 
1997); time series models are explored by (Aguilar and West 2000; 
Kleibergen and Van Dijk 1993; Henneke, Rachev, and Fabozzi 2006); re-
gime switching has been discussed by (Hayes and Upton 1986; So, Lam, 
and Li 1998), and employed by (Neely and Weller 2000).  

Bayesian methods provide the necessary toolset when heavy-tailed 
characteristics of stock returns are analyzed. (Buckle 1995; Tsionas 1999) 
model returns with symmetric stable distribution, while (Fernandez and 
Steel 1998) develop and employ a skewed Student t parameterization. 

                                                      
40  Other empirical studies of return predictability include (Lamoureux and Zhou 

1996; Neely and Weller 2000; Shanken and Tamayo 2001; Avramov and Chor-
dia 2005). 

41 For a more detailed discussion, see (Rachev, Hsu, Bagasheva, and Fabozzi 
2007). 
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These investigations have been made possible thanks to great advances in 
computational methods, such as Markov Chain Monte Carlo (see Bau-
wens, Lubrano, and Richard 2000)). 

The individual investment management areas mentioned above, several 
of which were surveyed in the previous sections, will continue to evolve in 
future works. We see the main challenge lying in their integration into co-
herent financial models. Without doubt, Bayesian methods are the indis-
pensable framework for embracing and addressing the ensuing complexi-
ties. 
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