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Intensity Based Model
Firm value model

I The model explains the defaultable term structure of interest rate.
I it is not applicable for large portfolio of corporate bonds.
I The defaults are endogenous:

B̄(t ,T ) = B̄(t ,Vt , rt ,T ),

where Vt is the value of the firm and rt is default free interest rate.
Intensity based model

I the model is designed for large portfolios of corporate bonds.
I it does not explain defaultable term structure of interest rate.
I it fits term structure of interest rate into market data.
I The defaults are exogenous.

B̄(t ,T ) = B̄(t ,Nt , rt ,T ),

where Nt is the number of defaults in [0,T ] in the portfolio. Nt will
be modeled by the Non-homogeneous Poisson Process named
Cox process.
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Poisson Process

Definition (1)

(Nt )t≥0 is a (simple, homogeneous) Poisson process with an intensity
λ > 0, iff

i N(0) = 0
ii It has independent and stationary increments.

I (Nti − Nti−1 )i≥1 are independent.
I Nti +s − Nti−1+s

d
= Nti − Nti−1 for all i .

0 ≤ t0 < t1 < · · · < tn.

iii P(Nt+s − Nt = k) = (λs)k

k! e−λs : the probability of k -defaults in
[t , t + s]
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Poisson Process

(Nt ) is a process with a left limit and right continuity.
It has the following properties.

I P(Nt+∆t − Nt = 0) = (λ∆t)0

0! e−λt = e−λt = 1− λ∆t + o(∆t)
I P(Nt+∆t − Nt = 1) = λ∆t

1! e−λt = λ∆t + o(∆t)
I P(Nt+∆t − Nt ≥ 2) = o(∆t)

E [Nt ] = λt : the mean of number of defaults in [0, t ]. λ > 0 is the
default intensity.
The intensity λ is time independent.
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Non-homogeneous Poisson process

Definition

(Nt )t≥0 is a non-homogeneous Poisson process with an intensity
λt = λ(t) > 0, t ≥ 0, iff

i, ii of Definition (1) hold.

iii P(Nt+s − Nt = k) =
(
∫ s+t

t λ(u)du)k

k! e−
∫ s+t

t λ(u)du : the probability of
k -defaults in [t , t + s]

Asymptotic property
I P(Nt+∆t − Nt = 0) = 1− λt∆t + o(∆t)
I P(Nt+∆t − Nt = 1) = λt∆t + o(∆t)
I P(Nt+∆t − Nt ≥ 2) = o(∆t)

The default intensity λt is, in fact, a random process depending of
the macro-economic environment.

Prof. Dr. Svetlozar Rachev (KIT) Intensity Based Model 6 / 17



Cox Processes

Definition
Cox-Process (Nt )t≥0 is a Poisson process with stochastic intensity
(λt )t≥0.

If the intensity λt is a random process which gives only one
trajectory (random path), say λ̃t , then (Nt )t≥0 is a
non-homogeneous Poisson process with intensity λ̃t .
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Cox Processes

In intensity based model, (λt )t≥0 is an Itô process with mean
reverting property,

dλt = µλ(t)dt + σλ(t)dW λ
t .

on the P̃-risk-neutral world.
The default-free interest rate (e.g. ECB-rate) is also an Itô process

drt = µr (t)dt + σr (t)dW r
t

on the P̃-risk-neutral world.
Here

dW λ
t dW r

t = ρdt , −1 < ρ < 1.
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Zero Recovery Security Pricing
Value of a defaultable bond with zero recovery rate.

_
B(0,T)

_
B(T1,T)

_
D=1 
(100Mio)

T:maturityT1:First defaultt t+∆t
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Zero Recovery Security Pricing
B̄(t ,T ) = B̄(t ,Nt , rt ,T ).
Nt : non-homogeneous Poisson process with intensity λt

By Itô-formula and Arbitrage Pricing Theory (APT), we obtain

∂B̄
∂t

+
∂B̄
∂r
µr (t) +

1
2
∂2B̄
∂r2 σ

2
r (t)− B̄(t ,T )(λt + rt ) = 0 (1)

(1) is a generalization of the PDE for B(t ,T ), default-free bond,
when λt = 0,

∂B
∂t

+ µr (t)
∂B
∂r

+
1
2
σ2

r (t)
∂2B
∂r2 − rtB(t ,T ) = 0.

The solution
B(t ,T ) = E P̃

t

[
e−

∫ T
t rudu

]
.

Hence, the solution of (1) is

B̄(t ,T ) = B(t ,T )e−
∫ T

t λudu.
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Zero Recovery Security Pricing

In terms of the yield, we have

B(t ,T ) = e−Yt,T (T−t) B̄(t ,T ) = e−Ȳt,T (T−t)

where Yt ,T is the yield of default free bond and Ȳt ,T is the yield of
defaultable bond.
Spread

S(t ,T ) = Ȳt ,T − Yt ,T =
1

T − t
(
ln B(t ,T )− ln B̄(t ,T )

)
=

1
T − t

∫ T

t
λudu.

Note that Ȳt ,T − Yt ,T ≥ 0, since B̄(t ,T ) ≤ B(t ,T ).
In case λt ≡ λ, S(t ,T ) = λ: the default intensity.
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Pricing with Fractional Recovery
Value of a defaultable bond (or portfolio) with fractional recovery rate.

_
B(0,T)

_
B(T1,T) _

D=1 
(100Mio)

T:maturityT1 T2

_
B(T2,T)

  _
qB(T1,T)

  _
qB(T2,T)
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Pricing with Fractional Recovery

The pricing equation

∂B̄
∂t

+
∂B̄
∂r
µr (t) +

1
2
∂2B̄
∂r2 σ

2
r (t)− B̄(t ,T )(qλt + rt ) = 0

Solution:
B̄(t ,T ) = B(t ,T )e−

∫ T
t qλudu.

Spread

S(t ,T ) =
1

T − t

∫ T

t
qλudu.

Equation

B̄(t ,T ) = B(t ,T )e−
∫ T

t qλudu = E P̃
t

[
e−

∫ T
t ru+qλudu

]
.

implies r̄t = rt + qλt : Defaultable short rate.
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Pricing with Stochastic Intensity

Consider the risk-free interest rate and the intensity of the Cox
process :

drt = µr (t)dt + σr (t)dW r
t

dλt = µλ(t)dt + σλ(t)(ρdW r
t +

√
1− ρ2dW̄t ).

The pricing equation

0 =
∂B̄
∂t

+ µr (t)
∂B̄
∂r

+ µλ(t)
∂B̄
∂λ

+
1
2
σ2

r (t)
∂2B̄
∂r2

+ ρσr (t)σλ(t)
∂2B̄
∂r∂λ

+
1
2
σ2
λ(t)

∂2B̄
∂λ2 − (r + qλt )B̄.

The final condition is B̄(T , r , λ) = 1. The boundary conditions are
B̄ → 0 as r , λ→∞, and B̄ <∞ as r , λ→ 0
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Pricing with Stochastic Intensity

Solution:
B̄(t ,T ) = E P̃

t

[
e−

∫ T
t r̄udu

]
where r̄u = rt + qλt .
Credit derivative pricing:

F (t ,T ) = E P̃
t

[
e−

∫ T
t r̄uduX

]
where X is the value of a default affected payoff.
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Example

Example : CIR model

drt = (ar − br rt )dt + σr
√

rtdWt

dλt = (aλ − bλλt )dt + σλ
√
λt (ρdWt +

√
1− ρ2dW̄t )

The constant ar , br and σr are calibrated on the default free term
structure of interest rate.
The constant aλ, bλ, σλ, ρ, and q should be calibrated from the
defaultable term structure of interest rate (= Market data).
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