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Desirable Properties of an Ideal Risk Measure 

in Portfolio Theory 

 

Abstract 

This paper examines the properties that a risk measure should satisfy in order to characterize 

an investor’s preferences. In particular, we propose some intuitive and realistic examples that 

describe several desirable features of an ideal risk measure. This analysis is the first step in 

understanding how to classify an investor’s risk. Risk is an asymmetric, relative, 

heteroskedastic, multidimensional concept that has to take into account asymptotic behavior 

of returns, inter-temporal dependence, risk-time aggregation, and the impact of several 

economic phenomena that could influence an investor’s preferences. In order to consider the 

financial impact of the several aspects of risk, we propose and analyze the relationship 

between distributional modeling and risk measures. Similar to the notion of ideal probability 

metric to a given approximation problem, we are in the search for an ideal risk measure or 

ideal performance ratio for a portfolio selection problem. We then emphasize the parallels 

between risk measures and probability metrics underlying the computational advantage and 

disadvantage of different approaches. 

Key words: risk aversion, portfolio choice, investment risk, reward measure, diversification. 

JEL Classification: G11, G14, G15 
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1. I�TRODUCTIO� 

In this paper, we describe the characteristics of risk. In doing so, we discuss and critically 

review some desirable properties of a risk measure in portfolio theory. We distinguish several 

observable financial phenomena such as the impact of aggregated risk, temporal horizon, 

propagation effect, risk aversion, transaction costs, and heteroskedasticity. In addition, we 

examine some properties that any risk measure has to take into account such as investment 

diversification, computational complexity, multi-parameter dependence, asymmetry, non-

linearity, and incompleteness. Clearly, it is difficult to believe that a unique risk measure 

could capture all these characteristics and aspects of investor preferences. Thus, we propose 

some different ways to study the various aspects of risk. 

Scientific methodology suggests first observing financial phenomena and then describing 

and characterizing it with respect to the tools and the information available. However, some 

studies on portfolio theory do not apply this approach to the investor problem. In fact, often 

proposals for risk measures for portfolio theory are just applications of measures found in the 

statistics literature. However, some of these proposed measures do not always take into 

account the range of investor attitudes towards risk. We believe that the main interest of 

investors is the consistency of a risk measure with their preferences.  

Just defining the concept of “risk” and “uncertainty” is difficult. There is debate in the 

literature on the “right” definition of risk and uncertainty. Holton (2004) proposes that a 

definition of risk has to take into account two essential components of observed phenomena: 

exposure and uncertainty. Moreover, all the admissible tools available to an investor to cope 

with risk can model only the risk that is perceived. Thus, in the finance literature, researchers 

can use only an operational definition of risk. That is, it is possible to operationally define 

only an investor’s perception of risk. This is in stark contrast with the definition of risk and 

of uncertainty proposed by Knight (1921): risk relates to objective probabilities and a 

probabilistic model can be given; uncertainty relates to subjective probabilities and no 

probabilistic model can be given.  

In this paper we show with some simple examples many different aspects that could 

characterize the risk and the uncertainty of the portfolio choices made by investors. This is 

the first step to model the risk of investors. Even if we discuss and propose some 

methodologies to deal with problems related to risk, we cannot be exhaustive in providing a 
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solution that takes into account all the aspects of risk. Once we define some desirable 

properties of an ideal risk measure to solve the portfolio choice problem, the second step is to 

appropriately model risk and uncertainty. While important, this is not a focus of our paper.  

Attempts at modeling have been proposed in the literature. For example, Ortobelli et al. 

(2005) define and distinguish the uncertainty properties from the risk properties in order to 

describe the correct use of risk and uncertainty measures and their multi-dimensionality as it 

relates to the principal models known and employed in the portfolio literature. However, the 

models proposed by Ortobelli et al. (2005) takes into account only some aspects of perceived 

risk. Further analysis remains to solve all the related problems.   

Attempts to quantify risk have led to the notion of a risk measure. A risk measure is a 

functional that assigns a numerical value to a random variable which is interpreted as a loss. 

Since risk is subjective because it is related to an investor’s perception of exposure and 

uncertainty, risk measures are strongly related to utility functions. In particular, the link 

between expected utility theory and the risk of some admissible investments is generally 

represented by the consistency of the risk measure with a stochastic order, i.e. if X is 

preferred to Y by a given class of investors (non-satiable or non-satiable risk averse), then the 

risk of X is lower than the risk of Y from the perspective of that class of investors (see Pflug 

(2000)). We shall not discuss here the details of this consistency. Nevertheless, it is important 

to realize that since risk measures associate a single number to a random variable, they 

cannot capture the entire information available in a stochastic order in which the cumulative 

distribution function of the loss is employed. 

In portfolio theory, a risk measure has always been valued principally because of its 

capacity of ordering investor preferences. In particular, stochastic-order theory has provided 

some intuitive rules that are consistent with expected utility theory (see, among others, 

Hanoch and Levy (1969), Rothshild and Stiglitz (1970), and Bawa (1976)). However, it is 

well recognized by expected utility specialists that von Neumann–Morgenstern utility 

functions cannot characterize all types of human behavior observed in financial markets. 

Several researchers have emphasized that the investors’ choices are strictly dependent on the 

possible states of the returns (see, among others, Karni (1985)). Thus, investors have 

generally state-dependent utility functions. In order to take into account common attitudes 

and interests that characterize a decision maker’s behavior, Karni (1985), Schervisch, 
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Seidenfeld and Kadane (1990), among others, have generalized the classical Von Neumann– 

Morgenstern approach to state-dependent utility functions. Moreover, it has been recently 

demonstrated that the state-dependent utility and the target-based approaches are equivalent 

(see Bordley and LiCalzi (2000), Castagnoli (2004)). Therefore, when it is assumed that 

investors maximize their expected state-dependent utility functions, it is implicitly assumed 

that investors minimize the probability of the investment return falling below a specified risk 

benchmark. In particular, even if there are no apparent connections between the expected 

utility approach and a more appealing benchmark-based approach, expected utility can be 

reinterpreted in terms of the probability that the return is above a given benchmark (see, also, 

Castagnoli and LiCalzi (1996,1999)). These theoretical results justify many intuitive 

portfolio choice approaches based on the safety-first rules as a criterion for decision-making 

under uncertainty (see, among others, Roy (1952), Tesler (1955/6), Bawa (1976, 1978), and 

Ortobelli and Rachev (2001)). 

It is well known that risk is an asymmetric concept related to downside outcomes, and 

any realistic way of measuring risk should consider upside and downside potential outcomes 

differently. Furthermore, a measure of uncertainty is not necessarily adequate in measuring 

risk. The standard deviation considers both positive and negative deviations from the mean as 

a potential risk. Thus, in this case, outperformance relative to the mean is penalized just as 

much as underperformance. Balzer (1990, 2001) and Sortino and Satchell (2001), among 

others, have proposed that investment risk might be measured by a functional of the 

difference between the investment return and a specified benchmark. In particular, the most 

celebrated and used benchmark approaches are based on coherent risk measures (see Szegö 

(2002, 2004)). As a matter of fact, the intuitive characteristics of investment risk, which are 

defined in a coherent risk measure, represent one of the most important aspects of the 

analysis by Artzner et al (1999). However, even if a coherent risk measure “coherently” 

prices risk, it cannot consider exhaustively all investment characteristics. The benchmark 

might itself be a random variable, such as a liability benchmark (such as an insurance product 

or defined benefit pension fund liabilities), the inflation rate or possibly inflation plus some 

safety margin, the risk-free rate of return, the bottom percentile of return, a sector index 

return, a budgeted return or other alternative investments.  
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 In practice, a benchmark is established by an investor and the risk benchmark is 

then communicated to the asset manager selected by the investor. The goal of the asset 

manager is not to underperform the benchmark. In contrast, minimizing the probability of 

being below a benchmark is equivalent to maximizing an expected state dependent utility 

function (see Castagnoli and LiCalzi (1996, 1999)). Thus, the benchmark approach is a 

generalization of the classic von Neumann–Morgenstern approach. In addition, the same 

investor could have multiple objectives and hence multiple benchmarks. Thus, risk is a 

multidimensional phenomenon. However, an appropriate choice of benchmarks is necessary 

in order to avoid incorrect evaluation of opportunities available to investors. For example, 

too often little recognition is given to liability targets. This is the major factor contributing to 

the underfunding of defined benefit pension plans in the United States (see Ryan and Fabozzi 

(2002)).  

From this discussion, one must recognize that risk is a relative (to a given benchmark), 

asymmetric, and multidimensional concept. In particular, Rockafellar et al (2005) and 

Ortobelli et al (2005) have emphasized that risk cannot be assessed by measuring only the 

uncertainty of investments. In addition to asymmetry, relativity, and multidimensionality of 

risk, the discussion to follow justifies the following desirable features of investment risk: 

inter-temporal dependence, non-linearity; correlation, and diversification among different 

sources of risk. Moreover, risk measures have to take into account the impact of downside 

risk, aggregated risk, transaction costs, computational complexity, and risk aversion in 

investor’s choices. Clearly, we do not think that there exists a unique axiomatic definition of 

risk measure that summarizes all these phenomena related to risk. We only suggest in this 

paper the use of a scientific methodology to deal with these issues to detect the phenomena 

(typically using classic econometric tools, even if sometimes this could be done by a simple 

observation) and overcome singularly the related problems.  

Section 2 summarizes some of the basic characteristics of risk emphasizing how some 

aspects of diversification motivate the use of reward-risk functionals. Section 4 describes the 

parallels between risk measures and probability metrics, while Sections 5 and 6 analyze 

several aspects of risk which impact the portfolio choices made by investors. We summarize 

our principal findings in Section 7. 
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2. U�CERTAI�TY A�D RISK: TEMPORAL DEPE�DE�CE, DIVERSIFICATIO� 

A�D REWARD-RISK A�ALYSIS 

The most popular measure used as a proxy for risk is the standard deviation. However, 

as demonstrated in several papers, the standard deviation cannot always be utilized as a 

measure of risk because it is a measure of uncertainty. Nevertheless, the two notions of 

uncertainty and risk are related. Generally, we refer to a generic risk measure considering 

either a proper risk measure or a measure of uncertainty according to the definition in 

Ortobelli et al. (2005). Measures of uncertainty also known as dispersion measures can be 

introduced axiomatically (see Ortobelli (2001)). We call uncertainty measure any 

increasing function of a positive functional D defined on the space of random variables 

satisfying the following properties:  

Dev 1:  ( ) ( )D X C D X+ ≤  for all X and constants 0C ≥  

Dev 2:  D(0)= 0, and D(aX) = aD(X) for all X and a > 0 

Dev 3: D(X)  ≥ 0 for all X, with D(X)> 0 for non-constant X 

According to these properties, positive additive shifts do not increase the uncertainty of 

the random variable X and the uncertainty measure D is equal to zero only if X is a constant. 

Therefore, we can say that the functional D measures the degree of uncertainty. One example 

of an uncertainty measure sensitive to additive shifts is the colog, defined as: 

( ) ( log ) ( ) (log )colog X E X X E X E X= − . 

This measure satisfies the above three properties and it is consistent with preferences of 

risk averse investors, that is, if all risk averse investors prefer the gross return X to Y, then 

( ) ( )colog X colog Y≤  (see Giacometti and Ortobelli (2001)). Particular uncertainty 

measures are the deviation measures (see Rockafellar et al (2005)) that satisfy property 

Dev 1 as equality (i.e., ( ) ( )D X C D X+ =  for all X and constants C) properties Dev 2, Dev 

3 and 

Dev 4:  D(X + Y) ≤ D(X) + D(Y) for all X and Y 

The deviation measure D depends only on the centered random variable X – EX and is 

equal to zero only if X – EX = 0.. Examples include the standard deviation and the mean 

absolute deviation. Further, the family of deviation measures does not include only 

symmetric representatives, i.e. the equality ( ) ( )D X D X= −  is not guaranteed. The 

asymmetric representatives include, for instance, the semi-standard deviation.. Moreover, 
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next we show that the classical minimization problem that includes an uncertainty measure 

can be seen as a particular special case of the maximization of a reward-risk problem.   

A systematic approach towards risk measures has been undertaken in Artzner et al 

(1999) where the family of coherent risk measures is introduced. A coherent risk measure 

is any functional ρ defined on the space of random variables with finite variance satisfying 

the following properties:  

R1. ρ(X + C) = ρ(X)– C, for all X and constants C 

R2. ρ(0) =0, and ρ(aX)  =a ρ(X),  for all X and all a > 0 

R3. ρ(X + Y) ≤ ρ(X)  + ρ(Y), for all X and Y 

R4. ρ(X) ≤ ρ(Y) when X ≥ Y 

Property R2 implies positive homogeneity of the functional. Property R3 implies sub-

additivity and the combination of Properties R2 and R3 is sub-linearity, which implies 

convexity. If we relax the positive homogeneity assumption, we obtain the class of convex 

risk measures. That is, a risk measure is said to belong to the class of convex risk measures 

if it satisfies R1, R4, and the following convexity property:  

R5. ρ(aX +(1 - a)Y) ≤ aρ(X)  + (1 - a)ρ(Y), for all X, Y and 0 ≤ a ≤ 1 

 

One example of a coherent risk measure is expected shortfall or expected tail loss (ETL) 

defined as  

( )
0

1
( ) qETL X VaR X dq

α

α α
= ∫                                        (1) 

where { }1( ) ( ) inf / ( )XVaR X F x P X xα α α−= − = − ≤ ≥  is the value-at-risk (VaR) of the 

random variable X. If we assume a continuous distribution for the distribution of X, then 

( ) ( / ( ))ETL X E X X VaR Xα α= − ≤ − , which is also known as conditional value-at-risk 

(CVaR). VaR itself is used as a risk measure and while it has an intuitive interpretation, 

examples can be constructed showing that it is not convex. ETL can be interpreted as the 

average loss beyond VaR. Both measures (VaR and ETL) consider the downside risk of 

portfolio returns (see, among others, Sortino and Satchell (2001)). 

There is a relationship between deviation measures and coherent risk measures (see 

Rockafellar et al (2005)). In particular, when the return distribution functions depend only on 

the mean and a risk measure most of these measures are equivalent for risk-averse investors 
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(see Ortobelli et al (2005)). On the other hand, Biglova, et al (2004) have shown (exploring 

the relationship between uncertainty measures and risk measures and how to employ them in 

order to obtain optimal choices) that one family cannot replace the other in portfolio selection 

problems.  

2.1. Mean reversion, clustering of volatility, and cointegration 

The previous axiomatic definitions of risk and uncertainty do not consider most of the 

observed phenomena that characterize typical financial series. Consider the following 

example. Figure 1 shows the MSCI World Index daily return series from January 4, 1993 to 

May 31, 2004. As we can see, the dispersion around the mean changes sensibly, in particular 

during the period after the September 11, 2001 and when the oil/energy crises began. These 

oscillations suggest that the process is mean reverting and that the dispersion changes over 

the time. Hence, in some periods there are big oscillations around zero and in other periods 

the oscillations are small. Clearly, if the degree of uncertainty changes over time, the risk too 

has to change over time. In this case, the investment return process is not stationary; that is, 

we cannot assume that returns maintain their distribution unvaried in the course of time.  

[I�SERT HERE FIGURE 1] 

Under the assumption of stationary and independent realizations, the oldest observations 

have the same influence on our decisions as the most recent ones. Is this assumption 

realistic? Recent studies on investment return processes have shown that historical 

realizations are not independent and exhibit autoregressive behavior. Consequently, we 

observe the clustering of volatility effect; that is, each observation influences subsequent 

ones. In particular, the last observations have a greater impact on investment decisions than 

the oldest ones. Thus, any realistic measure of risk should change and evolve over time 

through a proper modeling of the behavior of financial variables.  

One of the simplest models proposed in the literature for such modeling is the 

exponentially weighted moving average model (EWMA) and considers exponential weights 

(see Longerstaey and Zangari (1996)). Under the assumptions of the model, the risk measure 

follows a predictable process and at time t the observation kr  (k < t) is a possible outcome 

with probability (1 ) t kλ λ −− , where [0,1]λ∈  is a decay factor that can be estimated with a 

root mean square error (RMSE ) method (see Longerstaey and Zangari (1996)). Thus if the 
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forecasted risk measure of return 1tr +  is given by 1/ 1( ( ))t t t tE f rσ + +=  for an opportune 

function f, then the conditional heteroskedasticity of return series can be modeled assuming 

that 1/ / 1 (1 ) ( )t t t t tf rσ λσ λ+ −= + − . 

[I�SERT HERE FIGURES 2 A�D 3] 

In contrast, the risk of a country/sector is linked to the risk of the other countries/sectors. 

For example, let us consider the United States and German daily return series as part of the 

MSCI World Index from January 4, 2000 to May 31, 2004 (see Figures 2 and 3). These series 

present a correlation of 56.16% and we observe a greater dispersion of the German series 

than the U.S. series (as suggested by their standard deviation: the U.S. series standard 

deviation is 0.000174 and the German series standard deviation is 0.000323). As a matter of 

fact, for any peak in the U.S. returns, there is an analogous higher peak in the German series. 

This propagation effect is known as cointegration of returns series and is a consequence of 

the globalization of markets. Clearly, Figures 2 and 3 cannot provide a meaningful measure 

of cointegration of global capital markets and we need to test the financial data with standard 

econometric procedures to statistically assess the presence or absence of phenomena such as 

mean reversion, autoregressive behavior, and cointegration. Typically the behavior of 

simultaneous financial series is well captured by multivariate ARMA-GARCH type models 

(see, among others, Rachev and Mittnik (2000)). 

2.2 Risk Diversification 

From the above discussion we deduce that it could be important to limit the propagation 

effect by diversifying risk. As a matter of fact, there is considerable evidence that 

diversification diminishes the probability of big losses. Hence, an adequate risk measure 

values and accounts for the dependence among different investments, sectors, and markets. 

In particular, recall that in order to consider the diversification effect, it is required that a risk 

measure be a convex functional.  

The convexity property only guarantees that diversification could take place once we 

construct a portfolio. In the optimal portfolio selection problem, this property alone is not 

sufficient to find a solution – we need an assumption about the multivariate distribution of 

portfolio items returns. It is through the multivariate modeling that we are able to describe 

the dependence between the gross returns of the portfolio items. As a matter of fact, investors 

want to diversify the portfolio in order to minimize the risk. Therefore, diversification makes 
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sense only when there exists some values (0,1)a∈ , such that (1 ) min( ; )aX a Y X Yσ σ σ+ − < , i.e. 

when the risk of a portfolio is lower than the risk of the single investments. Thus, when  

(0,1)a∃ ∈ : (1 ) min( ; ; (1 ) )aX a Y X Y X Ya aσ σ σ σ σ+ − ≤ + − ,                     (2) 

we say that strong diversification holds and it is convenient to diversify the portfolio 

considering both X and Y. However, most of portfolio theory has been developed considering 

both the mean and the risk of the portfolios. Thus, for most of investors a diversification will 

appear convenient in a mean-risk plane if there exist some values (0,1)a∈ , such that for a 

given positive convex measure σ  

(1 )

( (1 ) ) ( ) ( )
max ;

aX a Y X Y

E aX a Y E X E Y

σ σ σ+ −

 + −
>  

 
. 

In this case, we say that weak diversification is convenient. Weak diversification is 

generally guaranteed from the existence of some values (0,1)a∈  that maximize the ratio 

between the mean and the risk measure. In this case, there exists (0,1)a∈  such that  

( ) ( )(1 )
(1 )(1 )

aX a Y
aX a YE aX a Y E X Y

a

σ
σ+ −

+ −

∂
+ − = −

∂
.                     (3) 

[I�SERT HERE FIGURE 4] 

Figure 4 provides an example where weak diversification holds but strong diversification 

does not. In this figure the curve X-Y represents the mean-risk representation of the portfolios 

(1 )aX a Y+ −  convex combinations of funds X and Y. Thus, strong diversification does not 

hold since (1 )X aX a Yσ σ + −≤  for any a  belonging to the interval (0,1) . However, there exists a 

portfolio Z= (1 )bX b Y+ −  with (0,1)b∈  that presents the highest mean risk ratio (i.e. 

( ) ( ) ( )
max ;

Z X Y

E Z E X E Y

σ σ σ
 

>  
 

). Therefore in this case weak diversification is convenient. 

Observe that strong diversification implies weak diversification when the financial random 

variables are the gross returns and we assume no short sales plus the limited liability 

hypothesis (i.e., the final wealth is a positive random variable). These definitions of 

diversification serve only to identify when it makes sense to diversify the portfolio. When we 

assume only the convexity property, we do not know if it makes sense to diversify a portfolio 

between two investments and we cannot say anything about the optimal portfolio. For 
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example, in some cases where we have a portfolio of two linearly dependent returns X and 

Y=bX+c, we do not need to diversify the portfolio because one return is redundant and in a 

frictionless market it should be replicated by the other one. Moreover, any deviation measure 

(such as the standard deviation) does not present weak diversification when two gross returns 

X and Y are strongly positive correlated, even if the convexity does not tell us anything about 

the opportunity of diversifying the portfolio. Another simple example where convexity holds 

but weak diversification does not is shown in Figure 5. As a matter of fact, in this example 

portfolio X presents the highest mean/risk ratio and then weak diversification is not 

convenient, even if (1 ) (1 )aX a Y X Ya aσ σ σ+ − ≤ + −  for any a  belonging to (0,1) . 

[I�SERT HERE FIGURE 5] 

2.3 Reward measures 

These different definitions of diversification underline the importance of taking into 

account an investor’s reward and not only risk in the portfolio selection problem. In 

particular, De Giorgi (2005) introduced the first axiomatic definition of reward measures 

identifying the axioms that characterize uniquely the mean as reward measure. In contrast to 

the highly restrictive definition proffered by De Giorgi, we assume a reward measure to be 

any functional v defined on the space of random variables of interest satisfying the following 

intuitive property:  

Isotonicity with the market preferences: the functional v is isotonic with respect to the order 

of preference of the market, i.e., if any investor in the market prefers X to Y, then 

( ) ( )v X v Y≥ . In particular, when all the investors are non-satiable and risk-averse, we could 

consider functionals isotonic with the second-stochastic order. 

Considering that in portfolio theory we need only order the choices for the investors’ attitude 

towards risk, we do not need further axioms to express a choice. However, sometimes it 

could be important to underscore the coherency properties applied to reward measures. A 

coherent reward measure is any functional v defined on the space of random variables 

satisfying the following properties:  

M1. v(X + C) = v(X)+C, for all X and constants C 

M2. v(0) =0, and v(aX)  =a v(X),  for all X and all a > 0 

M3. v(X + Y) ≥  v(X)  + v(Y), for all X and Y 

M4. v(X) ≥ v(Y) when X ≥ Y 
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The combination of Properties M2 and M3 implies concavity. Similar to convex risk 

measures a reward measure is said to belong to the class of concave reward measures if it 

satisfies M1, M4, and the following concavity property:  

M5. v(aX +(1 - a)Y) ≥  av(X)  + (1 - a)v(Y), for all X, Y and 0 ≤ a ≤ 1 

 

From this definition we deduce that all the functionals opposite of coherent (convex) risk 

measure are coherent (concave) reward measures and vice versa. In practice, a coherent 

reward measure recognizes that: 1) wealth increases when we add an amount of riskless 

wealth; 2) when wealth is multiplied by a positive factor, then the reward must grow also 

with the same proportionality; 3) the aggregated reward of two investments is higher than the 

sum of the two associated single rewards. and;  4) more wealth is preferred to less wealth.  

The definition of a coherent risk (reward) measure takes into account that investors are 

generally non satiable and risk averse. However, in some circumstances it could be important 

to identify the most aggressive investments among several possible. In this case the investor 

should be non satiable and a risk lover. The reward (risk) measure that considers the 

preferences of non satiable and risk lover investors should satisfy the axioms M1, M2, M4 

(R1, R2, R4), and the sub-additivity (super-additivity), i.e., ( ) ( ) ( )v X Y v X v Y+ ≤ +  

( ( ) ( ) ( )X Y X Yρ ρ ρ+ ≥ + ). We will call these measures aggressive reward (risk) measures. 

A typical example of an aggressive reward measure is  

( ) ( )v X ETL Xα= − .  

When we assume a continuous distribution for X, then 1( ) ( / ( ))ETL X E X X VaR Xα α−− = ≥ − . 

Therefore, the level of aggressiveness depends on α , the smaller α  is, the more aggressive 

the investor is. When α  is 1, an investor is maximizing the mean. As a matter of fact, this 

measure is isotonic with convex order (see Shaked and Shanthikumar (1994)). Thus, if any 

risk-lover investor (with convex utility function) prefers X to Y, then 

( ) ( )ETL X ETL Yα α− ≥ −  for any (0,1)α ∈ .  

A reward measure v  is aggressive if and only if it can be seen as a coherent risk measure 

ρ  applied at the opposite of the random variable (i.e., ( ) ( )v X Xρ= −  for any random 

variable X). Similarly, a risk measure ρ  is aggressive if and only if it can be seen as a 

coherent reward measure v  applied at the opposite of the random variable (i.e., 



 

 

14

( ) ( )X v Xρ = −  for any random variable X). On the other hand, De Giorgi (2005) proved that 

the unique reward measure that satisfies axioms M1, M2, M4 and it is linear, i.e., 

( ) ( ) ( )v X Y v X v Y+ = + , is the expected value, that is ( ) ( )v X E X= .  

2.4 Reward-risk ratios  

The solution of the optimal portfolio problem is a portfolio that minimizes a given risk 

measure provided that the expected reward is constrained by some minimal value R: 

( )

( )
uAwl

Rrrwv

ts

rrw

b
T

b
T

w

≤≤
≥−

−

..

min ρ

     (4) 

The set of all solutions, when varying the value of the constraint, is called the efficient 

frontier. Along the efficient frontier there is a portfolio that provides the maximum expected 

reward per unit of risk. In order to find this optimal portfolio, we have to minimize the ratio 

between the reward and the risk if the reward and risk measures are both negative for all 

portfolios and we have to maximize the ratio when both measures are positive. That is, this 

optimal portfolio is a stationary point of the ratio when reward and risk measures have the 

same sign. For simplicity, we assume that this optimal portfolio is the solution of the ratio 

problem 

( )
( )
uAwl

ts

rrw

rrwv

b
T

b
T

w

≤≤

−

−

..

max
ρ

     (5) 

In both problems (4) and (5), v is a functional measuring the expected reward, the vector 

notation w
T
r stands for the returns of a portfolio with composition w = (w1, w2, …, wn), l is a 

vector of lower bounds, A is a matrix, u is a vector of upper bounds, and rb is some 

benchmark (which could be set equal to zero). The set comprised by the double linear 

inequalities in matrix notation l ≤ Aw ≤ u includes all feasible portfolios. An example of a 

reward-risk ratio is the celebrated Sharpe ratio (see Sharpe (1994)). In this case, the reward 

measure v is a linear functional and is the expected active portfolio return E(w
T
r - rb) and the 

risk measure ρ is represented by the standard deviation. Beside the Sharpe ratio, many more 
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examples can be obtained by changing the risk and reward functional (see Rachev et al 

(2007), Ortobelli et al. (2006), and Biglova et al (2004) and the references therein):  

 

• STARR ratio: E(wTr - rb)/ETLα(w
Tr - rb) 

• Stable ratio: E(wTr - rb)/σrp, where σrp is the portfolio dispersion. Here it is assumed     

that the vector r follows a multivariate sub-Gaussian stable distribution and thus 

σrp= (w
TQw)1/2, where Q is the dispersion matrix (see Rachev, Mittnik (2000)).  

• Farinelli-Tibiletti ratio: (E(max(wTr – t1, 0)
 γ)) 1/γ / (E(max(t2 - w

Tr, 0) δ)) 1/δ, where t1 

and t2 are some thresholds.  

• Sortino-Satchell ratio: E(w
T
r - rb) / (E(max(t - w

T
r, 0)

 γ
))
 1/ γ
, γ ≥ 1 

• Rachev ratio (R-ratio): ETLα(rb - w
Tr)/ETLβ(w

Tr - rb) 

• Generalized Rachev ratio (GR-ratio): ETL(γ, α)(rb - w
T
r)/ETL(δ, β)(w

T
r - rb), where 

ETL(γ, α)(X) = (E((max(-X, 0))
γ
| -X > VaRα(X)))

 γ*
 and γ* = min(1, 1/γ)  

• VaR ratio: VaRα(rb - w
T
r)/VaRβ(w

T
r - rb) 

• Gini-type-ratio (GT-ratio): ( , ) ( , )( ) / ( )T T
m b n bGT r w r GT w r rβ α− −  , 1m n ≥ , 

(0,1)β ∈  where the Gini-type measure 
( ) 2

( , )
0

1
( ) ( ) ( )v

v uv

v v
GT X u uETL X du

β

β β
β

−−
= −∫  is 

a linearizable coherent risk measure (see Ortobelli et al. (2006)). 

• Spectral type ratio (ST-ratio) 1 2( ) / ( )T T
b bM r w r M w r rφ φ− −  where 1, 2φ φ  are non-

negative, decreasing and integrable functions such that 
1

0
( ) 1u duφ =∫ , and 

( )1

0
( ) ( ) uM X u VaR X duφ φ= ∫  is a coherent risk measure identified by its risk 

spectrum φ  (see Acerbi (2002)). 

We say the reward-risk ratio is a dispersion type ratio if the risk measure is an uncertainty  

measure. Examples of dispersion type ratios are the Sharpe ratio and Stable ratio. As for the 

risk and reward measures we can define axiomatically coherent ratios. A coherent ratio is 

any functional G defined on the space of all admissible portfolios satisfying the following 

properties: 
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A1. It admits the representation 
( )
( )

( )
v X

G X
Xρ

= , where v is a reward measure, ρ  is a 

generic risk measure that has the same sign of v for all admissible portfolios X 

A2. The reward measure v must satisfy property M3 and the risk measure ρ  must satisfy 

property R3  

A3. If X Y≥ , then ( ) ( )G X G Y≥  provided that the reward and risk measures are both 

strictly positive, and ( ) ( )G X G Y≤  provided that the reward and risk measures are both 

strictly negative for all admissible portfolios. 

We call aggressive-coherent ratios any functional that satisfies Properties A1, A3 and in 

the ratio representation both, reward and risk measures, satisfy either property M3 or 

property R3.  

Clearly not all the above reward risk ratios are coherent, aggressive-coherent or 

dispersion type ratios. Typically, the ratio between a coherent reward measure v and a 

coherent risk measure ρ  with the same sign of v for all admissible portfolios is a coherent 

ratio. For example, the STARR ratio and the ratio between the mean and a Gini-type measure 

are coherent ratios (as any ratio between the mean of gross returns and a positive coherent 

risk measure).  

The ratio between an aggressive (coherent) reward measure v and a coherent (aggressive) 

risk measure ρ  with the same sign of v, is an aggressive-coherent ratio. The R-ratio is a 

typical example and can be interpreted as the ratio between the average (active) profit 

exceeding a certain threshold and the average (active) loss below a certain level. Other 

examples of aggressive-coherent ratios are the GR-ratio, GT-ratio, and ST-ratio. In the R-

ratio and GR-ratio, the reward functional is non-linear. The R-ratio and the GR-ratio have 

been proposed because there is empirical evidence that they are more appropriate for 

investment decisions in the case of heavy-tailed returns (see Biglova et al (2004)).  

2.5 Computational complexity and reward-risk analysis 

The computational complexity of the portfolio selection problem is another important 

aspect. In particular, when we assess dynamic strategies. Thus the complexity of the 

optimization problem could be much higher when we solve reward-risk problems with many 

assets and further simplifications are necessary to solve large portfolio problems.  
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Depending on what properties we assume for the reward and the risk measures, we can 

reduce the optimal ratio problem to a simpler one, under some regularity conditions, at the 

price of increasing the dimension. The regularity conditions are basically strict positivity of 

the risk measure in the feasible set and existence of a feasible portfolio with strictly positive 

reward measure. Similar considerations are still valid when we minimize the ratio for strictly 

negative risk and reward measures. In the following we consider the maximization ratio 

problem for which we discuss the following cases (for more details, see Stoyanov et al 

(2007a)):  

Case 1. The reward functional v is concave and the risk functional ρ is convex. Then the ratio 

is a quasi-concave function and the optimal ratio problem can be solved through a sequence 

of convex feasibility problems. The sequence of feasibility problem can be obtained using the 

set:  

( ) ( )




≤≤
≤−−−=Χ

uAwl

rrwtvrrw b
T

b
T 0ρ

 

where t is a fixed positive number. For a given t the set X is convex and therefore we have a 

convex feasibility problem. A simple algorithm based on bisection can be devised so that the 

smallest t is found, tmin, for which the set X is non-empty, for more details, see Stoyanov et al 

(2007a). If tmin is the solution of the feasibility problem, then 1/tmin is the value of the optimal 

ratio and the portfolios in the set  

( ) ( )




≤≤
≤−−−=Χ

uAwl

rrwvtrrw b
T

b
T 0min

min
ρ

 

are the optimal portfolios of the ratio problem (5).  

Case 2: If, in addition to the conditions in Case 1, both functions are positively 

homogeneous, then the optimal ratio problem reduces to a convex programming problem. An 

example of an equivalent convex problem to (5) is 

( )
( )

( )
0

1

..

min
,

≥
≤≤

≥−

−

t

utAxlt

trrxv

ts

trrx

b
T

b
T

tx
ρ

     (6) 
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where t is an additional variable. If (xo, to) is a solution to (6), then wo = xo/to is a solution to 

problem (5). There are other connections between problems (5) and (6). Let ρo be the value 

of the objective at the optimal point (xo, to) in problem (6). Then 1/ρo is the value of the 

optimal ratio, i.e. the optimal value of the objective of problem (5). Moreover, 1/to is the 

reward of the optimal portfolio and ρo/to is the risk of the optimal portfolio if the reward 

constraint is satisfied as equality at the optimal solution.  

Case 3. If in addition to the conditions in Case 2, the reward function is linear (or 

linearizable), and the risk function is an increasing function of a quadratic form, then the 

optimal portfolio problem reduces to a quadratic programming problem. The Sharpe ratio, 

the Stable ratio are examples. An example of an equivalent problem to the Sharpe ratio 

problem is 

( )
( ) ( )

0

1

..

,,min 1
,

≥
≤≤

=−

−Σ−

t

utAxlt

tErErx

ts

xtxt

b
T

T

tx

    (7) 

where Σ1 is the covariance matrix  















Σ
=Σ

T
br

brb

σ

σσ 2

1  

where Σ is the covariance matrix between portfolio items returns, 2
b
σ  is the variance of the 

benchmark portfolio returns, ( ) ( ) ( )( )nbbbbr rrrrrr ,cov,...,,cov,,cov 21=σ  is a vector of 

covariances between the benchmark portfolio returns and the returns of the main portfolio 

items. Again, if (xo, to) is a solution to (7), then wo = xo/to is a solution to the version of 

problem (5) in which the reward function is the mathematical expectation and the risk 

function is the standard deviation – the optimal Sharpe ratio problem. The connections 

between problems (7) and (5) are the same as the ones given in Case 2 above as problem (7) 

is just a particular version of problem (6).  

Case 4: If the reward function is linear (or linearizable) and the risk function is linearizable, 

then the optimal ratio problem reduces to a linear programming problem. An example of 

such a problem in which we have the ETL as the risk measure, i.e. the STARR ratio problem, 
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is readily obtained from the corresponding version of problem (6) by incorporating the 

linearization:  

( )

Fkdt

utAxlt

Fkdtrrx

tErErx

ts

d
F

k

k
k
b

kT
b

T

F

k

k
dtx

,,2,1,0,0

,,2,1,

1

..

1
min

1
,,,

K

K

=≥≥
≤≤

=≤−+−

=−

+ ∑
=

θ

α
θ

θ

   (8) 

where kr  and k
b
r  k = 1, 2, …, F are scenarios for the vector of portfolio items returns and 

the benchmark portfolio returns accordingly, d = (d1, d2, …, dF) is a vector of additional 

variables, θ and t are also additional variables. The relations between (8) and (5) are the same 

as the ones in Case 2. One should bear in mind that in the objective of problem (8) we have a 

linear approximation of the ETL function which is possible due to the available scenarios. 

Thus the objective at the optimal point is an approximation of the optimal ETL. For more 

details about linearization, see Rockafellar and Uryasev (2002).  

Clearly, as we have noted, the dimension of the optimization problem increases as we 

simplify the problem structure. If in practice the computational burden increases a lot, the 

reduction may not be considered. For instance the STARR ratio problem can be solved either 

as a linear programming problem or as a convex problem or as a sequence of convex 

feasibility problems depending on which is more practical. Unfortunately this classification is 

not complete in the sense that there are reward-risk ratios that are not quasi-concave, such as 

the R-ratio, the GR-ratio and the Farinelli-Tibiletti ratio. One way to solve such a problem is 

to search for a local solution making use of quasi-Newton-type techniques.  

It is very important for the optimal ratio problem that the risk measure be strictly positive 

(negative) for all feasible portfolios. If there exists a feasible portfolio with a negative 

(positive) risk measure in the interior of the feasible set, then the continuity of the risk 

function in the optimal ratio problem suggests that there will be a feasible portfolio for which 

the reward-risk ratio explodes. The risk function is continuous in an open set, since it is 

convex. Thus, sometimes it might be more appropriate to consider linearized versions of the 

reward-risk ratios, that is 
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( ) ( )T T

b bav w r r w r rλρ− − −     (9) 

where v is a reward measure, ρ  is a generic risk measure, 0, 0a λ≥ ≥  are risk aversion 

parameters that are not both equal to zero.  

For example, the linearized version of the STARR ratio is 

E(w
T
r - rb) – λ ETLα(w

T
r - rb). 

In the special case of a=λ =1, if the reward functional is the mathematical expectation and the 

risk measure has the property R1 and is strictly expectation bounded, then expressions of 

type (9) are deviation measures, i.e. they satisfy all axioms of deviation measures (for more 

details and a proof, see Rockafellar et al 2005)). Strict expectation boundedness means that 

the risk measure satisfies all properties R1, R2, and R3 (not necessarily R4) and also ρ(X) > 

E(-X) for all non-constant X. Moreover, expression (9) includes most of the previous ones. 

As a matter of fact, we have just discussed the equivalence between optimal reward–risk 

ratios and the types of measures defined in (9). We obtain a generic risk measure when in 

formula (9) we consider a=0, λ=1. Similarly, we obtain reward measures when in formula (9) 

we consider a=1, λ=0. 

Certainly an optimization problem in which we have a linearized reward-risk ratio in the 

objective with a pre-selected value for λ and a is equivalent to problem (4) with a suitable 

choice of the limit R. Objectives of type (9) can also be regarded as utility functions with a 

special structure. The corresponding optimization problems are reducible to convex ones and 

it is not necessary to impose assumptions about the positivity of the risk function.  

From the above discussion we deduce that functionals of type (9) provide the largest class 

of reward-risk portfolio selection problems investors should maximize (taking into account 

the complexity of the optimization problem). In particular, we could also consider the 

financial insight of the typical coherency axioms assuming the following new class of “utility 

measures” applied to all admissible portfolios.  

Thus, we say the functional S is a coherent reward–risk utility functional if it satisfies the 

following properties:  

B1. It admits the decomposition ( ) ( )( )S X av X Xλρ= −  for all X, where v is a reward 

measure, ρ  is a generic risk measure, 0, 0a λ≥ ≥  and they are not both equal to zero.  

B2. S(0) = 0, and S(bX) = bS(X) for all X and b> 0 
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B3. ( ) ( ) ( )S X Y S X S Y+ ≥ +  for all X and Y 

B4 ( ) ( )S X C S X+ ≥  for all X and constants 0C ≥  and S  is isotonic with the order of 

preference of the market, i.e., if all investors prefer X to Y then ( ) ( )S X S Y≥ . 

In addition, we say the functional S is an aggressive-coherent reward–risk utility 

functional if it satisfies Property B4 and it admits the decomposition B1 with an aggressive 

(coherent) reward measure v and a coherent (aggressive) risk measure ρ .  

In the definition of coherent reward–risk utility functional we recognize the importance 

of risk aversion considering properties B2 and B3 that imply the concavity of the functional. 

At the same time, with property B4 we identify the most important aspect in portfolio theory 

that is the isotonicity with stochastic orders. Thus, in a market where investors are non-

satiable and risk averse we could consider, v and ρ , (in the decomposition of property B1) 

respectively, a coherent reward measure and a coherent risk measure for any positive a 

andλ . In addition, we could combine the aggressiveness of a reward measure with the 

coherency of a risk measure maximizing aggressive-coherent reward–risk utility functionals. 

A special case of aggressive-coherent reward–risk utility functional is the utility version of 

the R-ratio: 

aETLα(rb – w
T
r)- λ ETLβ(w

T
r - rb). 

Aggressive-coherent reward-risk utility functionals may be used to identify optimal 

portfolios selected by investors who are neither risk averters nor risk preferred – for example 

investors with Friedman-Savage (1948) type utility functions. Therefore, among the many 

measures proposed in portfolio literature, we noted that: 

a) coherent risk, reward measures, coherent ratios and coherent reward–risk utility 

functionals serve to identify optimal choices of non-satiable risk averse investors; 

b) aggressive risk, reward measures serve to identify optimal choices of non-satiable risk 

preferring individuals; 

c) aggressive-coherent ratios and reward–risk utility functionals serve to identify optimal 

choices of non-satiable investors who are neither risk averters nor risk preferred. 

Table 1 summarizes properties and examples of the main measures and functionals  

proposed in this section to solve  portfolio selection problems.  

[I�SERT HERE TABLE 1] 
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3. A PARALLEL BETWEE� U�CERTAI�TY MEASURES A�D THE THEORY OF 

PROBABILITY METRICS 

Let us consider the problem of benchmark tracking. A common formulation of the 

problem is  

( )bT

w
rrw −

Χ∈
σmin  

where σ is the standard deviation and X is the set of feasible portfolios. The measure shown 

in the objective function is called the tracking error. It is the standard deviation of active 

returns. In essence, by solving this problem we are trying to stay “close” to the benchmark 

while satisfying the constraints where the degree of proximity is calculated making use of the 

standard deviation. Here the benchmark rb can be either stochastic or non-stochastic.  

Certainly this problem can be reformulated using any uncertainty measure in the 

objective. Even more generally, this problem can be considered from the point of view of the 

theory of probability metrics, the rationale being that, under the most general conditions, the 

distance between two random variables can only be defined via a probability distance.  

Let Λ = Λ(R) be the set of all real-valued random variables on a given probability space 

(Ω, F, Pr). A probability distance µ with a parameter K is a functional defined on the space of 

all joint probability distributions PrX,Y generated by the pairs of random variables Λ∈YX ,  

satisfying 

i. (identity) Pr(X = Y) = 1 � µ(X, Y) = 0 

ii. (symmetry) µ(X, Y)  = µ(Y, X) 

iii. (triangle inequality) µ(X, Z) ≤ K(µ(X, Y) + µ(Y, Z)) for all X, Y, Z in Λ 

If the parameter K is equal to 1, then the probability distance is called a probability metric in 

line with the usual triangle inequality defining a metric.  

Generally, there are three types of probability distances –primary, simple and compound– 

depending on certain modifications of the identity property – whether µ(X, Y) = 0 implies 

that only certain moment characteristics of X and Y agree or that only the cumulative 

distribution functions of X and Y coincide or that Pr(X = Y) = 1. For the purpose of 

restatement of the benchmark tracking problem, we shall first define the three types and give 

some examples.  
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In order to provide a formal definition of a primary probability distance, another notation 

is required. Let h be a mapping defined on Λ with values in R
J
, that is we associate a vector 

of numbers with a random variable. The vector of numbers could be interpreted as a set of 

some characteristics of the random variable. An example of such a mapping is: X � (EX, σX) 

where the first element is the mathematical expectation and the second is the standard 

deviation. In particular, if the random variable is interpreted as investment returns, then the 

first element is the expected return and the second is a measure of the uncertainty. Similarly, 

we can extend the vector to include any (finite) number of characteristics among which we 

can have measures of risk, uncertainty, reward measures, etc.  

Furthermore, the mapping h induces a partition of Λ into classes of equivalence. That is, 

two random variables X and Y are regarded as equivalent, X ~ Y, if their corresponding 

characteristics agree: 

X ~ Y  � h(X) = h(Y) 

Since the probability distance is defined on the space of pairs of random variables, we have 

to translate the equivalence into the case of pairs of random variables. Two sets of pairs (X1, 

Y1) and (X2, Y2) are said to be equivalent if there is equivalence on an element-by-element 

basis, i.e. h(X1) = h(X2) and h(Y1) = h(Y2).  

Let µ be a probability distance such that µ is constant on the equivalence classes induced 

by the mapping h:  

(X1, Y1) ~ (X2, Y2) � µ(X1, Y1) = µ(X2, Y2) 

Then µ is called primary probability distance. Examples of primary probability distances 

include:  

• µ(X, Y) = |EX – EY|, here h is the mapping X � EX.  

• µ(X, Y) = |(E|X|
p
)
 1/p
 – (E|Y|

p
)
 1/p
 |, p ≥ 1; here h is the mapping X � (E|X|

p
)
 1/p
.  

• µ(X, Y) = |h1(X) – h1(Y)| + | h2(X) – h2(Y)|, here h is the mapping X � (h1(X), h2(X)) 

As we have remarked, a simple probability distance is such that µ(X, Y) = 0 implies that  

FX(t) = FY(t) where FX(t) = P(X < t) is the cumulative probability distribution function. 

Examples of simple probability distances include 

• µ(X, Y) = supt|FX(t) – FY(t)| which is also known as the uniform (or Kolmogorov) 

metric 
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• ( ) ( ) ( )∫ −=

R

YX dttFtFYX ,µ , which is also known as the Kantorovich metric 

• ( ) ( ) ( )
p

R

p
YX dttFtFYX

1

,
















−= ∫µ , p ≥ 1, which is also known as the class of Lp 

metrics 

A compound probability distance is such that µ(X, Y) = 0 implies Pr(X = Y) = 1. 

Examples include:  

• µ(X, Y) = (E|X – Y|p) 1/p.  

• µ(X, Y) = inf{ε > 0: Pr(|X – Y| > ε) < ε} and ( )
YX

YX
EYX

−+

−
=

1
,µ , both are also 

known as the Ky Fan metrics.  

For many more examples of the various types of probability distances and approaches to 

construct them, see Rachev (1991) and Stoyanov et al (2007b).  

The benchmark tracking problem that we started with can be reformulated in the 

following way:  

( )bT

w
rrw ,min µ

Χ∈
                                              (10) 

where µ is some probability distance. The second argument in the probability distance does 

not change with w; hence in solving the problem we intend to “approach” the benchmark, but 

changing the type the probability distance changes the perspective. If we would like only 

certain characteristics of our portfolio to be as close as possible to the corresponding 

characteristics of the benchmark, we can use a primary probability distance. When the 

objective for our portfolio is to mimic the entire distribution of the benchmark, not just some 

characteristics of it, then we should use a simple probability distance. Finally, if we would 

like to replicate the benchmark exactly, then we should use a compound probability distance. 

In particular, in Table 2 we summarize the main properties and examples of tracking error 

type measures. 

[I�SERT HERE TABLE 2] 

In the initial benchmark tracking problem, we have a compound probability distance as 

the objective function because the standard deviation is just one example of an Lp metric in 
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the space of random variables with finite variance. Therefore, relating the benchmark 

tracking problem to the theory of probability distances represents a significant extension of 

the initial problem.  

In addition, it should be noted that, some risk measures and reward-risk ratios have 

properties similar to some probability metrics. For example, let us consider a version of the 

GR-ratio in which γ = δ 

GR γ = ETL(γ, α)(rb – w
T
r)/ETL(γ, β)(w

T
r – rb)                    (11) 

where ETL(γ, α)(X) = (E((max(-X, 0))
γ
| -X > VaRα(X)))

 γ*
 and γ* = min(1, 1/γ). Letting γ 

approach zero and infinity, at the limit we obtain expressions close to the corresponding 

expressions of the Lp metric. That is, as γ � ∞ we obtain  

GR ∞ = ETL(∞, α)(rb - w
T
r)/ETL(∞, β)(w

T
r - rb) 

where ETL(∞, α)(X) = ess sup(max(-X, 0)| -X > VaRα(X)). Here ess sup stands for the essential 

supremum. At the other limit, as γ � 0,  

GR 0 = ETL(0, α)(rb - w
Tr)/ETL(0, β)(w

Tr - rb) 

where ETL(0, α)(X) = Pr({-X > 0} ∩ {-X > VaRα(X)}), i.e. if VaRα(X) > 0, then ETL(0, α)(X) = 

α and if VaRα(X) ≤ 0, then ETL(0, α)(X) = Pr(-X > 0).  

The parallels considered suggest that there is an interesting relationship between the well-

developed theory of probability metrics and the theory of optimal portfolio choice. This 

interplay might throw more light on the relationship between different classes of risk 

measures and/or uncertainty measures. Moreover, it might suggest an approach to select an 

ideal risk measure or an ideal performance ratio for a particular portfolio choice problem just 

as there is an ideal probability metric for a given approximation problem in probability 

theory. For this reason, we think that the established relationship should be extended and 

better studied in future research.  

 

4. TEMPORAL HORIZO� A�D AGGREGATED RISK 

We will use the following empirical example to evaluate and qualify several other aspects 

of investor preferences. Let us consider the portfolio selection among 13 developed country 

stock market indices: Australia, Canada, France, Germany, Hong Kong, Italy, Japan, 

Netherlands, Singapore, South Africa Gold, Sweden, United Kingdom, and United States. 

The stock indices are part of the MSCI World Index for the period January 4, 1993 to May 
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31, 2004. Part of this historical data (during the period 1/4/1993-1/1/2002) is used to estimate 

the different parameters of the models. Then over a period of two years and five months 

(1/1/2002-5/31/2004), we verify the behavior of the models. We share the period of analysis 

in this way in order to have enough observations to get robust statistics. Thus, the vector of 

returns is given by 1 13' [ ,..., ]r r r=  and vector of wealth is 1 13' [ ,..., ]w w w= . In addition, we 

assume a risk-free asset proxied by 30-day Eurodollar CD (and offering one-month Libor) 

that on 1/1/2002 was r0 = 1.87%.  

Considering daily data for this period, we first value two “optimal portfolios” when no 

short sales are allowed (i.e., 0iw ≥ ) and it is not possible to invest more than 25% (i.e. 

0.25iw ≤ ) of the initial capital (that we assume to be equal to 1) in a single asset: 

a) The first portfolio is the global minimum variance portfolio (that is a strong risk-

averse choice).  

b) The second portfolio maximizes the R-ratio  

ETL40%(r0 - w
T
r)/ETL1%(w

T
r - r0)                                     (12) 

 

Thus, the first portfolio minimizes the uncertainty and, as intuition suggests, it presents 

the highest level of risk aversion. With the second portfolio we do not minimize the 

uncertainty, but we take into account downside risk. As a matter of fact, the risk measure 

expected shortfall ETL1%(w
T
r - r0) considers the portfolio downside risk, and the reward 

measure ETL40%(r0-w
T
r) takes into consideration the possible profits. Therefore, the second 

portfolio maximizes the excess return considering the greatest profits and at the same time 

minimizing and controlling the biggest losses. 

Alternatively, we compute two other portfolios with the same restrictions of the previous 

ones (i.e., 0 0.25iw≤ ≤ ), but assuming yearly returns (261 days of returns) with daily 

frequency for the same time period. The two portfolios are again the global minimum 

variance portfolio and the portfolio that maximizes the R-ratio given by (12).  

Figure 6 proposes an ex-post comparison of the final wealth during the period 

1/1/2002-5/31/2004. That is, we consider the ex-post final wealth of the four optimal 

portfolios assuming an unitary wealth is invested on 1/1/2002. In particular, series 

dayminvar and daymaxRR describe respectively the final wealth behavior of the two daily 
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optimal return portfolios (global minimum variance and the portfolio that maximizes the R-

ratio given by (12)), while series yearminvar and yearmaxRR represents respectively, the 

final wealth graph of the two optimal yearly return portfolios. Figure 6 indicates and 

emphasizes the differences among the four portfolios which are coherent with the different 

choices made. As a matter of fact, the minimum variance portfolios (series dayminvar and 

yearminvar) generally present a lower final wealth than the maximum ratio portfolios. In 

addition, we observe that the final wealth obtained with optimal portfolios based on yearly 

returns is generally higher than that obtained with optimal portfolios valued on daily 

returns. Therefore the investor’s temporal horizon and the relative aggregated risk 

influence his/her future choices.  

[I�SERT HERE FIGURE 6]  

This behavior is confirmed by the results reported in Table 3, which shows the ex-ante 

and ex-post VaR and ETL (for two confidence levels, 99% and 95%) based on daily returns 

of the four optimal portfolios. The ex-ante analysis clearly indicates that the minimum 

variance portfolios (portfolios 1 and 3) present a lower dispersion (standard deviation) and an 

higher risk of big losses (VaR and ETL) than portfolios that maximize the R-ratio given by 

(12) (respectively portfolios 2 and 4). Thus the ex-ante analysis suggests that the more 

conservative minimum variance portfolios (portfolios 1 and 3) not always take into account 

the possibility of big losses. In contrast, the ex-post analysis shows the differences between 

the first two and the last two portfolios. Therefore, Figure 6 and Table 3 emphasize how 

investor’s temporal horizon could influence the agents’ future choices. 

[I�SERT HERE TABLE 3] 

As a matter of fact, the risk portfolio on one day is generally different from the risk 

portfolio based on one year, and the forecasting analysis has to take into account the 

aggregated risk possibly considering also the conditional heteroskedasticity of portfolio 

series.  

Moreover, the following three questions are raised by this example:  

1) What are the best risk measures: the best ratios and the best reward measures? 

2) Which reward/risk takes into account downside risk and offer flexibility with respect 

to risk aversion? 

3) What different roles are covered by reward measures and ratios?  
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In addition, we want to better understand the impact of transaction costs on portfolio 

dynamic strategies. 

 

5. DY�AMIC STRATEGIES, A�D TRA�SACTIO� COSTS  

In order to value the impact of transaction costs and of different reward/risk ratios in a 

dynamic setting, we propose two empirical comparisons. 

5.1 Impact of proportional transaction costs 

Let us consider the portfolio selection among the one-month Libor risk-free asset (that 

was r0 = 1.32% on 5/30/2003) and the same 13 international indexes used in the previous 

example based on the period 1/3/2000-5/31/2004. We assume that on 5/30/2003 the agent 

invests a unitary capital and recalibrates the portfolio monthly considering that no short sales 

are allowed and it is not possible to invest in a single asset more than 25% of the initial 

capital. Hence, we consider dynamic strategies with and without constant and proportional 

transaction costs of 0.5%. Then, we compare dynamic portfolio strategies with and without 

constant proportional transaction costs. In particular we assume that after k months the 

investor chooses the portfolio composition ( ) ( ),1 ( ),13,..., 'k k kx x x =    that maximizes the 

Sharpe ratio. That is, the investor solves the problem  

( )

( )( ) 2

( ),

13

( ),
1

( ( ))

0 0.25

1

kx

k i

k i
i

E X
max subject to

E X E X

x

x
=

−

≤ ≤

=∑

                            (13) 

where 

'
( ) 0

( 1) ( 1)13
( )'

( ) 0
( 1) ( 1)1

1

(1 )
0.005 .

(1 )

k

k k
k ii

k i n
k ki

ii
i

x r r without transaction costs

X x r
x r r x with tr costs

x r

− −

− −=

=

 −




=  +
− − −

 +


∑
∑

 and ( ) ( )( )
1 13
[ ,..., ] '
k kkr r r=  is 

the k-th ex-post monthly observation of return vector r. In addition, we assume that the 

variance follows the exponential weighted model 2 2 2
1/ / 1 (1 )t t t t tXσ λσ λ+ −= + −  with 0.94λ =  
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(as suggested by the RiskMetrics approach described in Longerstaey, and Zangari (1996)). 

Then, the investor’s wealth after k months is given by 

( )' ( )
1 ( )

( 1) ( 1)13
( )' ( )

1 ( )
( 1) ( 1)1

1

1

(1 )
1 0.005 .

(1 )

k
k k

k kk
kk ii

k k i n
k ki

ii
i

W x r without transaction costs

W x r
W x r x with tr costs

x r

−

− −

−
− −=

=

 +

    =  + + − −

  +   

∑
∑

.             (14) 

 

[I�SERT HERE FIGURE 7] 

Figure 7 shows the final wealth process with and without transaction costs during the 

period 5/30/2003-5/31/2004. After 12 recalibrations, the difference between the final wealth 

obtained without transaction costs and with transaction costs was about 1% (of the initial 

wealth). In particular, when we consider transaction costs, we observe that the portfolio 

composition do not change during the monthly recalibrations. Therefore, in this case the 

transaction costs do not have a material impact on the investor choices, but they could have, 

when the investor is more sensitive toward risk.  

5.2 Impact of different reward risk ratios  

Let us compare the ex-post performance of three different reward/risk strategies. We 

consider the portfolio selection among the one-month Libor risk-free asset r0 and the same 

13 international indexes used in the previous example based on the period 1/4/1993-

5/31/2004. We assume an agent invests an unitary capital on 11/1/96 (i.e., 0 1W = ) and 

he/she recalibrates the portfolio daily when no short sales are allowed (i.e., 0iw ≥ ). In 

particular, we compare the optimal dynamic strategies of investors that maximize either a 

dispersion type ratio (Sharpe ratio), a coherent ratio (STARR ratio E(wTr-r0)/ETL1%(w
Tr - 

r0)) and an aggressive-coherent ratio (R-ratio ETL1%(r0 - w
T
r)/ETL1%(w

T
r - r0)) during the 

period 11/1/96-5/31/2004. Every day we solve the optimization problem using observations 

from the prior 1000 days. Once we determine the optimal portfolio ( )kx , the investor’s 

wealth after k days is given by  

( )' ( )

1 ( )1 k

k k kW W x r−= + , 
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where ( )kr  is the k-th ex-post daily observation of return vector r. We solved the 

optimization problem every day from date 11/1/96 till 5/31/2004 (totally 1,974 times).  

[I�SERT HERE TABLE 4] 

[I�SERT HERE FIGURE 8] 

Table 4 reports the average of the 1974 optimal portfolio weights obtained from the 

different strategies and the half absolute differences among any couple of portfolio 

composition vectors. That is, we compute the distance 
13

( ) ( )

1

1

2

STARR Sharpe

i i

i

x x
=

−∑ , 

13
( ) ( )

1

1

2

R Sharpe

i i

i

x x
=

−∑ , 
13

( ) ( )

1

1

2

STARR R

i i

i

x x
=

−∑ , where ( )STARR

ix , ( )Sharpe

ix , ( )R

ix  are the i-th 

components of the average vectors of weights obtained maximizing respectively the 

STARR, Sharpe, and R-ratios. These values give an idea on how the average portfolio 

composition changes, adopting the different strategies. The difference in average of the 

portfolio compositions is much higher (more than 57%) when we consider the optimal 

weights obtained with the R-ratio and the other strategies than the difference between the 

Sharpe and STARR strategies (about 16.31%). In particular, we observe that the Japan 

index gives the largest weight (in average about the 32.89%) in the optimal portfolio 

composition of the strategy based on the R-ratio. Instead, the Japan index does not enter in 

the composition of optimal portfolios obtained maximizing the STARR and Sharpe ratios. 

Figure 8 shows the ex-post final wealth process of the three strategies during the period in 

consideration. This figure shows that the optimal portfolios obtained by applying the R-

ratio outperform the optimal portfolios obtained using alternative ratios over the entire 

period. In particular, on 5/31/2004 the final wealth of the three different strategies based on 

R-, Sharpe and STARR ratios is respectively 1.76, 1.07, and 0.91. Therefore, as we 

expected, we obtain that the strategy based on the maximization of the STARR ratio 

provides the most conservative behavior while the strategy based on the R-ratio permits to 

increase the final wealth much more than the others. Thus, even in periods with big market 

crises (Asian and Russian crises 1997-2000, crises during and subsequent to September 

11th 2001), the “aggressive-coherent” behavior of the non-satiable investors who are neither 

risk averse nor risk loving (those that maximize the R-ratio) permits to increase the final 

wealth much more than adopting “conservative strategies”. 
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6. �O�-LI�EARITY A�D DISTRIBUTIO�AL MODELI�G 

As proposed by Balzer (2001), Ortobelli et al (2005) we could consider other desirable 

properties of a risk measure, such as non-linearity and distributional modeling of risk. Next, 

we briefly summarize these properties.  

6.1 Fon linearity of Risk 

According to Balzer’s definition, the non-linearity of risk is related to an investor’s 

attitude, which is generally considered non-linear with respect to different sources of risk 

(see Balzer (2001)). For example, suppose that investors employ the expected shortfall as a 

risk measure. Let us consider two investments, the returns of which have equal expected 

shortfall ETL5%. For example, suppose that for the first investment the future losses below the 

VaR at 95% confidence level are 2% with probability 0.025 and 1% with probability 0.025. 

For the second investment, the future losses are 30% with a probability 0.002 and 0.3125% 

with a probability 0.048. Thus, the extreme losses from the first investment are medium in 

magnitude and are equally probable, and the losses from the second investment are more 

dispersed – there is a very large loss with small probability and a very small loss with much 

higher probability.. Considering that the two investments have the same expected shortfall 

ETL5%, investors that assume this risk measure will be indifferent between the two 

investments. However, evidence reported by Olsen (1997) suggests that most investors 

perceive a low probability of a large loss to be far more risky than a high probability of a 

small loss. Therefore, investors perceive risk to be non-linear. This simple counter-example 

shows that a unique risk measure (even if coherent) cannot be sufficient to describe 

investors’ behavioral tendencies.  

6.2 Asymptotic distributional modeling 

The previous example also underlines that a risk measure does not summarize all the 

information relevant to the risk. In order to overcome this incompleteness of risk measures, 

further parameters that characterize the investor’s attitude towards risk are used and 

analyzed, such as skewness and the kurtosis. Typically, a measure of an investment’s 

skewness is introduced to take into account the investors’ preferences. Generally skewness is 

parameterized with a non-linear measure that partially overcomes and solves the empirical 

misspecification of some linear factor models. On the other hand, Ortobelli et al (2005) have 
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shown that skewness and further distributional parameters could have an important impact on 

portfolio choices. However, that approach was based on a classical definition of skewness 

and in many situations the data behavior suggests utilizing precise assumptions on the 

asymmetric return distribution based on a different definition of skewness. For example, let 

us consider the evolution of a unit of random wealth, considering two admissible gross 

returns F and G (see Figure 9). 

[I�SERT HERE FIGURE 9] 

 The gross return 1( , , )F Sα γ β δ≈  (series 1) is drawn from an α -stable distribution with 

index of stability α =1.5, dispersion 0.008, skewness parameter 1 1β = − , and daily mean 

equal to δ =1.0001 (see Rachev and Mittnik (2000) and Samorodnitsky and Taqqu (1994) 

about stable modeling of asset returns). The gross return 2( , , )G Sα γ β δ≈  (series 2) is α -

stable distributed with the same parameters except for skewness, that is 2 1β = . From 

Figure 9, intuition suggests that gross return G is preferable to F even if the two gross returns 

present the same mean, dispersion, and index of stability (these three parameters could be 

used to characterize the behavior of symmetric returns).  

This example makes clear that 1) a reward measure and a risk measure are still 

insufficient to describe the complexity of investor’s choices and  2) investors generally prefer 

positive skewness. In addition, many other distributional parameters could have an important 

impact in the investor choices.  

In order to consider the best approximation of historical return series, many statistical 

studies have emphasized the advantage of an asymptotic approximation (see Rachev and 

Mittnik (2000)). In particular, stable modeling of financial variables permits the correct 

identification of investor behavior. It is well known that daily returns r often have 

distributions whose tails are significantly heavier than the Gaussian law, that is, for large x 

( ) ( )P r x x L xα−> ≈                                                       (15) 

where 0<α<2 and ( )L x  is a slowly varying function at infinity. This tail condition implies 

that the returns are in the domain of attraction of a stable law. That is, given a sequence 

{ }( )i

i F
r

∈
of independent and identically distributed (i.i.d.) observations on r, then, there exist 
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a sequence of positive real values { }i i Fd
∈

 and a sequence of real values { }i i F
a

∈
 such that, 

as n→+∞ 

( )

1

1 n
di

n
n i

r a X
d =

+ →∑                                                (16) 

where "
d→ " points out the convergence in the distribution, ( , , )X Sα γ β δ≈  is an α-stable 

random variable. This convergence result is a consequence of the Stable Central Limit 

Theorem (SCLT) for normalized sums of i.i.d. random variables (see Samorodnitsky and 

Taqqu (1994) and Rachev and Mittnik (2000)) and it is the main justification of stable 

modeling in finance and econometrics. In particular, the SCLT permits one to characterize 

the skewness and kurtosis of investment returns in a statistically proper way. Moreover, 

using the maximum likelihood method to estimate the stable parameters, we could also 

obtain appropriate confidence intervals of these parameters. In addition, if ( , ,0)X Sα γ β≈  is 

a stable centered distribution, then, when x tends to infinity, 

( )
( )

( )( ) ( )( )( ) ( )
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where ( )
1/

cos 2
2

B

α

α
π

α
−

 = − 
 

 and 
( )

sin
2

Cα
α πα
π
Γ  =  

 
. Thus, returning back to our 

previous example, we observe that for large positive x:   

( ) ( )( ) ( )P return G x P return F x< − ≤ < −  and ( ) ( )( ) ( )P return G x P return F x> ≥ > .         

This relation provides theoretical justification of what intuition suggested in the previous 

example. As a matter of fact, gross return G presents lower probability of big losses and a 

larger probability of great earnings than gross return F, even if the two alternative returns 

present the same dispersion, mean, and index of stability. This is another typical way to 

consider multi-parameter dependence of portfolio choices. Thus, modern portfolio theory has 

to answer many more questions regarding risk measures. 
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7. CO�CLUDI�G REMARKS  

Using several examples, in this paper we have described some intuitive characteristics of 

risk measures. Although, we could not claim that this is an exhaustive analysis, the principal 

focus of the paper is identifying the intrinsic properties of risk that all investors have to take 

into account. Thus, even if in order to study some problems we propose some risk 

measures/ratios and utility functionals, we do not claim that these measures or functionals 

could solve all the problems related to the theory of portfolio choice. However, we believe 

that they could serve to deal with those particular problems. These basic considerations 

suggest that we cannot use a unique axiomatic definition of risk that has to be valid for any 

measurement. As a matter of fact, celebrated coherent risk measures, such as shortfall risk, 

do not take into account the non-linearity and multi-dimensionality nature of risk. In contrast, 

it is reasonable to expect that a single measure cannot be relied upon to characterize uniquely 

investor choices. Because a unique risk measure cannot be specified, we propose to model 

risk of return series, taking into account of their singular characteristics that could change 

with respect to the period of analysis, or to the country/sector economic situation, or the 

dependence by some macroeconomic variables. In particular, the examples presented justify 

the following desirable features of investment risk: 

• Asymmetry, relativity and multidimensionality of risk. 

• Inter-temporal dependence. 

• Non-linearity and distributional modeling 

In addition, we discuss how any investment choice has to take into account: 

• Stochastic dominance order, correlation, and diversification among different 

sources of risk  

• Differences and common features between risk and uncertainty and their proper use 

• Impact of downside risk, aggregated risk, reward measures, proper risk measures, 

and risk aversion in investor’s choices.  

• Impact of dynamic strategies, transaction costs and computational complexity. 

In summary, some aspects of risk are embedded in the risk measure and other aspects are 

incorporated through proper modeling of the assets returns distribution. For example, the 

axioms behind the coherent risk measures demonstrate how some characteristics of risk can 

be implanted in the definition of a risk measure, while other aspects such as diversification, 
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are possible to account for only if the return distribution of the assets is modeled in a realistic 

way. Therefore it is the combination of a risk measure and a stochastic model that investment 

decisions should be based on.  

In addition, we considered the benchmark tracking problem and modified the deviation 

measure in the objective function to be a probability distance. The new problem is more 

flexible and contains the traditional problem as a special example and is a significant 

extension. We also mention a parallel between reward-risk ratios and probability metrics, 

suggesting that such relationships be better studied in future research as they might imply 

interesting connections between classes of risk measures or propose an approach to select an 

ideal risk measure or performance ratio for a given portfolio choice problem.  
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39Measures used in 
portfolio theory 

Properties satisfied for any couple 
of random variables X and Y 

Examples 

 

Generic risk measure 

It is either an uncertainty measure or a measure consistent with 

first stochastic order 

All the following risk 

measures 

uncertainty measure 

 

Any increasing function of functional D that satisfies: 

i) ( ) ( ) 0D X C D X C+ ≤ ∀ ≥ ; ii) ( ) ( ) 0D aX aD X a= ∀ ≥ ;iii) ( ) 0D X ≥  

and ( ) 0D X =  only if X is constant. 

Colog(X) and all 

deviation measures 

 

deviation measure 

 

 

i) ( ) ( )D X C D X constant C+ = ∀ ; ii) ( ) ( )D aX aD X=  0a∀ ≥ ;  

iii) ( ) ( ) ( )D X Y D X D Y+ ≤ + ; iv) ( ) 0D X ≥  and ( ) 0D X =  only if X 

is constant. 

Standard deviation; 

MAD; semi-stand. 

deviation 

expected bounded risk 

measure 

 

i) ( ) ( )X C X C constant Cρ ρ+ = − ∀ ; ii) ( ) ( )aX a Xρ ρ=  0a∀ ≥ ; 

 iii) ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + ; iv) ( ) ( )X E Xρ > −  for all non-constant 

X. 

MiniMax and ETLα(X)

 

coherent risk measure 

 

i) ( ) ( )X C X C constant Cρ ρ+ = − ∀ ; ii) ( ) ( )aX a Xρ ρ=  0a∀ ≥ ;  

iii) ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + ; iv) ( ) ( )X Yρ ρ≤  if X Y≥ . 

ETLα(X); Spectral 

measures; Gini type 

measures  

Aggressive risk measure 

i) ( ) ( )X C X C constant Cρ ρ+ = − ∀ ; ii) ( ) ( )aX a Xρ ρ=  0a∀ ≥ ; 

 iii) ( ) ( ) ( )X Y X Yρ ρ ρ+ ≥ + ; iv) ( ) ( )X Yρ ρ≤  if X Y≥ . 
-ETLα(-X) 

 

Reward measure Any measure isotonic to investors’ preferences 

Depends on the class of 

investors 

coherent reward measure 

i) ( ) ( )v X C v X C constant C+ = + ∀ ; ii) ( ) ( )v aX av X=  0a∀ ≥ ; 

 iii) ( ) ( ) ( )v X Y v X v Y+ ≥ + ; iv) ( ) ( )v X v Y≥  if X Y≥ . 
Opposite of coherent 

risk meas. 

aggressive reward 

measure 

i) ( ) ( )v X C v X C constant C+ = + ∀ ; ii) ( ) ( )v aX av X=  0a∀ ≥ ; 

 iii) ( ) ( ) ( )v X Y v X v Y+ ≤ + ; iv) ( ) ( )v X v Y≥  if X Y≥ . 

coherent risk measures

applied to opposite of 

random variables 

reward-risk ratio 

Any ratio between a reward measure v and a generic risk measure 

ρ  with the same sign of v. 
All the following 

reward risk ratios 

dispersion type reward-

risk ratio 

A reward-risk ratio where the risk measure is an uncertainty 

measure Stable and Sharpe ratios

coherent reward-risk 

ratio 

 

 

i) ( ) ( )( ) /G X v X Xρ=  is a reward-risk ratio; ii) If X Y≥ , then 

( ) ( )G X G Y≥  provided that the reward and risk measures are both 

strictly positive, and ( ) ( )G X G Y≤  provided that the reward and 

risk measures are both strictly negative;  

iii) ( ) ( ) ( )v X Y v X v Y+ ≥ + , ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + ; 

STARR ratio; the ratio 

between the mean and a 

coherent risk measure 

 

aggressive-coherent 

reward-risk ratio 

 

i) and ii) as coherent reward-risk ratios and iii) either 

( ) ( ) ( )v X Y v X v Y+ ≥ + , ( ) ( ) ( )X Y X Yρ ρ ρ+ ≥ + ; or  

( ) ( ) ( )v X Y v X v Y+ ≤ + , ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ + . 

R-; GR-, GT-and  ST-

ratios. 

 

reward-risk utility 

functional 

( ) ( )( )S X av X Xλρ= − where v is a reward measure, ρ  is a generic 
risk measure, 0, 0a λ≥ ≥  are not both equal to zero.  

All the reward-risk 

utility functionals 

coherent reward-risk 

utility functional 

i) S is a reward-risk utility functional; ii) ( ) ( ) 0S X C S X C+ ≥ ∀ ≥  

and S  is isotonic with the order of preference of the market;  

iii) ( ) ( )S aX aS X=  0a∀ ≥ ; iv) ( ) ( ) ( )S X Y S X S Y+ ≥ + ; 

When v and ρ  are 
respectively coherent 

reward and risk meas. 

aggressive-coherent 

reward-risk utility 

functional 

Property i) and ii) of coherent reward-risk utility functionals and 

iii) either ( ) ( ) ( )v X Y v X v Y+ ≥ + , ( ) ( ) ( )X Y X Yρ ρ ρ+ ≥ + ; or  

( ) ( ) ( )v X Y v X v Y+ ≤ + , ( ) ( ) ( )X Y X Yρ ρ ρ+ ≤ +  

One measure between 

and ρ  is aggressive and 
the other is coherent 

Table 1 Properties and examples of the main reward, risk measures and functionals used in portfolio theory.
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Measures Properties of Tracking error type measures Examples 

primary probability 

distance (metric) 

 

 

 

i)  µ(X, Y)=0�only certain characteristics of X and 

Y agree 

ii) µ(X, Y)=µ(Y, X) 

iii) µ(X, Z) ≤ K(µ(X, Y) + µ(Y, Z)) for all real random 

variables X, Y, Z defined on the probability space 

(primary probability metric if K=1) 

µ(X, Y) = |EX – EY|, 

µ(X, Y)=|(E|X|
p
)
 1/p
–(E|Y|

p
)
1/p
| 

 

 

simple probability 

distance (metric) 

 

 

i) µ(X, Y)=0� X and Y have the same distribution 

ii) µ(X, Y)=µ(Y, X) 
iii) µ(X, Z) ≤ K(µ(X, Y) + µ(Y, Z)) for all real 
random variables X, Y, Z defined on the probability 

space (simple probability metric if K=1) 

µ(X, Y) = supt|FX(t) – FY(t)| 

( ) ( ) ( )∫ −=

R

YX dttFtFYX ,µ  

compound 

probability distance  

(metric) 

 

 

i) µ(X, Y)=0� Pr(X=Y)=1 

ii) µ(X, Y)=µ(Y, X) 
iii) µ(X, Z) ≤ K(µ(X, Y) + µ(Y, Z)) for all real 
random variables X, Y, Z defined on the probability 

space (compound probability metric if K=1) 

µ(X, Y) = (E|X – Y|
p
)
 1/p 

( )
YX

YX
EYX

−+

−
=

1
,µ  

Table 2 Properties and examples of the main tracking error type measures. 
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EX-POST ANALYSIS 

 

Optimal portfolios 
on daily data 

Optimal portfolios 
on yearly data and daily frequency 

 Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 

Final Wealth 1.1678741 1.1738809 1.24117601 1.287114

VaR1% 0.0219778 0.0221615 0.02891808 0.024173

VaR5% 0.0144643 0.0141017 0.01736294 0.015798

ETL1% 0.026436 0.0261711 0.03146571 0.028343

ETL5% 0.0189137 0.0187883 0.02423259 0.021512

Standard Deviation 0.0084353 0.008361 0.01011825 0.009037

EX-ANTE ANALYSIS 

 

Optimal portfolios 
on daily data 

Optimal portfolios 
on yearly data and daily frequency 

 Portfolio 1 Portfolio 2 Portfolio 3 Portfolio 4 

VaR1% 0.0183934 0.0180712 0.02297311 0.022305

VaR5% 0.0114121 0.0113635 0.0128053 0.013089

ETL1% 0.0235661 0.0235116 0.02910487 0.030808

ETL5% 0.0160334 0.0159598 0.01898697 0.019467

Standard Deviation 0.0069074 0.0069197 0.00798875 0.008152

Table 3. Ex-ante and ex-post valuation of the four portfolio risk positions. 
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Indexes of the  

MSCI World Index 

Structure of optimal portfolios  
(average over 1974 optimal portfolio weights) 

STARR ratio R-Ratio Sharpe Ratio 

Australia 0,0515 0,0284 0,0722 

Canada 0,0576 0,0529 0,0801 

France 0,1081 0,0015 0,1160 

Germany 0,0005 0,0654 0,0104 

Hong Kong 0,0211 0,0310 0,0208 

Italy 0,0528 0,1181 0,0380 

Japan 0,0000 0,3289 0,0000 

Netherlands 0,0498 0,0121 0,0639 

Singapore 0,0546 0,1593 0,0619 

South African Gold 0,1383 0,0349 0,0959 

Sweden 0,2071 0,0226 0,1015 

UK 0,0049 0,0199 0,0251 

USA 0,2537 0,1250 0,3142 
13

( ) ( )

1

1

2

STARR Sharpe

i i

i

x x
=

−∑ =16.31% 

13
( ) ( )

1

1
58.87%

2

STARR R

i i

i

x x
=

− =∑  

13
( ) ( )

1

1
57.16%

2

R Sharpe

i i

i

x x
=

− =∑  

 

Table 4. Averages and differences among optimal weights obtained under different dynamic 

strategies (based on the STARR, R and Sharpe ratios). 
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Figure 1 MSCI World Index return time series from 1/4/1993 to 5/31/2004. 
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Figure 2 U.S. return time series (as part of MSCI World Index) from 1/4/2000 to 

5/31/2004. 
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Germany

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

04/01/2000 04/01/2001 04/01/2002 04/01/2003 04/01/2004

Times

 

Figure 3 German return time series (as part of MSCI World Index) from 

1/4/2000 to 5/31/2004. 
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Figure 4. Graphical example where weak diversification holds 

but the strong diversification does not holds. 
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Figure 5. Graphical example where convexity 

holds but the weak diversification does not holds.  
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Figure 6 Ex-post comparison among the final wealth of the four optimal 

portfolios obtained with daily returns (series dayminvar and daymaxRR) 

and six months returns and daily frequency (series yearminvar and 

yearmaxRR).  
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Figure 7. Ex-post comparison between the final wealth of the optimal dynamic 

strategies obtained maximizing monthly Sharpe ratio with and without 
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Figure 8. Ex-post comparison of the optimal dynamic strategies (without transaction 

costs) obtained maximizing daily the R- and STARR- and Sharpe ratio. 
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Figure 9. Comparison among simulated data with stable 

asymmetric distributions. 


